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ROTATING ELECTRIC FIELD IN A MULTI-PHASE ELECTRODE SYSTEM

3inbkoBebkuil 10. @., Cunopyk 1O. K., TypoBcbkuii A. O. Enexrpuune odeproBe mose y daratodasHiii
€JIeKTPOaHii cucTemi. 3amporOHOBAaHO MaTeMaTHYHY MOJEIH IPOBITHUKOBOI 0araToeneKTpOMHOI LHIIiHAPUIHOL
CTPYKTYypH, 10 3a0e31edye piBHOMIPHHUHA PO3IOIT HAPYKEHOCTI EIEKTPUYHOTO MOJS MK €JIEKTPOJaMH IIPH 3HAYHO
HIDKYId X €MHOCTI TOpIBHSHO 13 IUIOCKUMH €JEKTpOJaMHy. BiAnoBiZHO N0 Mojeni BHUKOHAHO aHaJi3 PO3MOMLTY
HAIPYXEHOCTI eIeKTPUYHOrO IONA BCEpEeIUHI NMPOCTOpYy, 0OMEXEHOro 6araTo3B's3HOI0 I'DAHHULICI0 Ha OCHOBI Teopii
IHTETpAJIbHUX CUHTYJISIPHUX DIBHSHb Y BUIJISIII 3a7adi COpsDKEHHsS moiisi. Po3paxyHOK po3mofisy Hoss 3BEAEHO /10
PO3IIIsIY YaCTKOBOI 3ajiavi, KOJNU JIUIIE OJUH €JIeKTPOJ 3HAXOJMUTHCS MiJl HAPYrolo BiAMiHHOW Bix Hyis. [lokasaHo,
IO [IPY TAPMOHIYHOMY J>KHBJICHHI E€JIEKTPOJHOI CUCTEMH, IIO CKJIAJA€ThCs 3 OJAHAKOBUX 3a PO3MipaMu pPiBHOMIpHO
pO3TaIlIOBaHUX IYroNOAIOHUX €JEKTPOJIB, HAPYraMH OJHAKOBOI aMIUTITYAH, (a3a KOXKHOTO 3 SKHX JOPIBHIOE HOTro
KYTOBOMY IOJIOKEHHIO, 3a0€3MeYyeThCsl ICHYBaHHS Y CTPYKTYPl 30HH 00€pPTOBOTO PiBHOMIPHOTO €IEKTPUYHOIO ITOJIS.
HaBeznieHo po3paxyHKOBI CITIBBIAHOIICHHS JJIsl BU3HAUYEHHS HANIPY)KEHOCTI €JIEKTPUYHOTO TTOJISl MIXK €IeKTPOJaMU.

Knwowuosi cnoea: enektpuyHe noyie, BUCOKA 4acTOTa, CHUHTYIISPHI PIBHSIHHS, KOMIUIEKCHA TUIOIIMHA

3unbkoBekuil  10. ®@., Cupopyk IO. K., Typosckumii A. A. DiekTpuuyeckoe Bpamampleecss Ioje B
MHoOroasHoil 3j1eKkTpogHoil cucteme. IlpennoxeHa MaTeMaTHdeckas MOJETb IPOBOAAIIEH MHOIO3JIEKTPOIHON
LIWIHHAPHYECKOH CTPYKTYpHI, KOTOpast o0eclieuMBaeT paBHOMEPHOE pachpeelieHHe HAPsHKEHHOCTH AJIEKTPUIECKOT0
MOJIST MEXIY SJIEKTPOAAMH IIPpU 3HAYMTENBHO HH3IIEH WX €MKOCTH 10 CPaBHEHHIO C IUIOCKUMHM 3JeKTpomamu. B
COOTBETCTBMHM C MOJEJIBIO BBHINOJHEH aHalW3 paclpe/iesieHus] HANpsDKEHHOCTH HJIEKTPUYECKOTro II0Nsi BHYTPH
MPOCTPAHCTBA, OTPaHMYEHHOT0 MHOT'OCBSI3HOM I'paHHUIIel Ha OCHOBE TEOPUH WHTEIPAJIbHBIX CUHTYJISIPHBIX YPaBHEHHH B
BUJIE 3aJ]a4M CONpsDKEHMS Mo Pacuer pacmpeneneHus mois CBEJEH K PAacCMOTPEHMIO YacTHYHOW 3ajaud, KOraa
TOJIBKO OJIMH DJIEKTPOJ] HAXOMUTCS TI0J] HANPsHKEHHEM OTJIMYHBIM OT HyJsl. [lokasaHo, 4To Mpyu rapMOHUYHOM MTUTAHUU
JNIEKTPOJHOM CHCTEMBI, COCTOSIIEH M3 OAMHAKOBBIX II0 pa3MepaM pPaBHOMEPHO PACHOJIOKEHHBIX AyrooOpa3HBIX
AJIEKTPOAOB, HAPSDKEHUSIMH OJJMHAKOBOM aMIUTUTYIbI, (paza KakJoro U3 KOTOPBIX paBHA €ro YIJIOBOMY IOJIOXKEHUIO,
obecrieunBaeTcs CYIIECTBOBAHUE 30HBI BPAIIAIOIIETOCS PaBHOMEPHOIO BJIEKTPUYECKOro IIONS B CTIPYKTYpe.
[TpuBeneHs pacueTHbIe COOTHOIIEHHUS TS ONPEAEICHHS HAPSHKEHHOCTH AIIEKTPHYECKOT0 MO MEXK/Y AJIEKTPOAAMHU.

Kniouesvle cnosa: >neKTpuyuecKoe 1oje, BEICOKas 4acToTa, CUHIYIIpHBIE ypaBHEHHS, KOMIUIEKCHAS IJIOCKOCTb

Zinkovskiy Yu. F., Sydoruk Yu. K., Turovskiy A. O. Rotating electric field in a multi-phase electrode
system. In our study we have proposed a mathematical model of conductive multielectrode cylindrical structure in order
to provide both a homogeneous distribution of electric field and lower capacitance with respect to plane electrodes.
Based on the model the analysis of the electric field distribution inside the space restricted with multiple connected
boundary on the basis of the boundary value coupling approach of the theory of singular integral equations is
performed. The calculation of the electric field distribution is reduced to the consideration of partial problem where
only one electrode possesses a non-zero voltage. It is shown that providing the harmonic feeding of the electrode system
consisting of identically sized equally spaced arc-shaped electrodes with voltages of the same amplitudes and phases
equal to the angular position of the electrode on the circle will ensure the feasibility of the rotating and homogeneous
field in the area. The expressions for determination of the electric field strength in the area are given.

Keywords: clectric field, high frequency, singular integral equations, complex plane.

1. Introduction. Multiple connected electrode structures are often used in electron flow control
systems, in radio frequency dielectric heating apparatus or for hypothermia in medicine. However,
in listed cases the important problem arises of providing the field controlling and field distribution
homogeneity within a given area between the electrodes.

A common way for providing of homogeneous electric field distribution is the use of two
parallel metal plates [1]. In order to reduce the inhomogeneity caused by edge effects and so ensure
the uniformity of the field between the plates it is necessary to increase the size of the electrodes,
which simultaneously will cause significant increase of their capacity.

When creating such systems it is also necessary to take into account the fact that the load on the
generator is predominantly of capacitive nature, and significant increase of the capacity causes
difficulty in matching of the electrodes with the generators thus affecting the efficiency.

To provide the high level of homogeneity of electric field in the interaction zone, high energy
efficiency and significantly lower capacity, compared to plain electrodes, without the degradation of
productivity it is proposed the following electrode structure [2].

Cmop. 83



Hayxo6i 3anucku YKpaincbkozo HayK080-00C1iono2o incmumymy 36°a3ky. — 2014. — Ne2(30)

The structure consists of n arc-shaped electrodes placed on the side of a hollow cylinder of
radius 7 and length /, where / >> r. It is assumed that the electrodes are perfectly conductive and are
of negligibly small thickness, and the whole structure is surrounded with vacuum. The potential of
each electrode is Vo1, Voo, ... , Vo, respectively.

The objective of this research is to provide a mathematical model for describing the proposed
structure in order to obtain the expressions for electric field calculation within the structure volume.
Thus it is necessary to determine the distribution of the electric field in the region inside the
electrodes structure, which then specify the optimal number and sizes of the electrodes to provide
the required size of the interaction area. Herewith the area of interaction is to be located within the
field homogeneity region.

2. Analytical analysis techniques. Since />>r the problem of calculation of the potential
and strength of the electric field within the cylinder is reduced to a plane problem in an infinite
complex plane with a ring-shaped n-electrode boundary L of radius ». Ring-shaped boundary L is
divided into separate segments of disconnected arcs
Ly, Ly, ..., L, € L, which have no common points (Fig. 1).
Arcs Ly, Lo, ..., L,, located in the intervals a;bi, axb,, aszbs,
..., anb,, are equipotential because of being perfectly
conductive. The potential of each arc, respectively, equals
Voi, Voas..., Vou. With respect to a circle of radius r full
complex plane z is divided into two symmetrical sections:
external Sy, for which |z] >r, and internal S_, for which
|zl < r, where z is an independent complex variable. The
problem is to determine the complex potential
®d(z) = U(z) + jW(z), where V(z) is a potential of the field,
and the electric field £(z) = —j[®'(z)] [3], where ®'(z) is  Fig. 1. Arrangement of electrodes of
the derivative of the potential with respect to z. Electric the structure
field strength E(z) is a single-valued analytic function, and a sign [...] stands for a complex
conjugation. These functions are specified at every point within the complex plane z [4]. All over
the complex plane function £(z) possess the following properties:

1. E(z) is limited in value everywhere except the arcs' ends (points a; and b;), at which
E(z)—oo.

2. Due to the symmetry of £(z) with respect to the boundary circle £”(y) =—E (y) on arcs a;by,
and £7(y) = E (y) on arcs byay.+1, where £'(y) is the electric field at the boundary arcs on the outside
and E (y) is the electric field on the inside of the circle, ¥ denotes the complex coordinate on the
boundary.

3. On arcs a;b; tangential component of the electric field E(y) with respect to the boundary
circle takes zero value, and on arcs byax+; the perpendicular component of the electric field is equal
to zero both on the external and on the 4. At infinity £(z) has a zero of second order.

5. With respect to the boundary circle the electric field and the complex potential are related
by the equations

£

o {121] o]

where §: and S_ denote the external and internal sides of the boundary, respectively.

According to the properties referred to above, £(z) is a piecewise holomorphic function and L
denotes a set of finite number of simple (smooth) arcs (L1, Ly, ..., Ly € L), which have no common
points, in addition the electric field £'(y) at L obeys the expression: £ (y) = G(7)E (y).

Due to the property 2 the function G(y) is equal to —1 at arcs axby and is equal to 1 at bray+1, 1.e.
G(y) 1s piecewise constant function with the discontinuity of the first kind when going through the
points a; and by. So points a; and by are nodal and singular, and G(y) is constant all over on the L
except nodes.
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The above properties of £(z) fit the field coupling problem of the theory of singular integral
equations [2].

A general form of the expression of homogeneous problem of field coupling in the case when
the function to be found (the electric field) is finite can be written at infinity as follows [2]:

F(8)=X(&)P(8), (1)
where F(&) is the function to be found, X(§) is some canonical solution, P(§) is an arbitrary

polynomial of power £, & is independent complex variable.
With respect to the problem, expression (1) takes the form:

E(z)=X(2)P(2). ()

Following the above theory the power of the polynomial P(z") and the so-called index of the
problem of coupling y is determined by the behavior of E(z) at infinity.

Since E(z) has at infinity a zero of the second order, P(z") is of power m, so the power of X(z*)
is equal to x = (m + 2). According to definition [3]:

%= [argG(y)]L/2x,
where the sign [...], denotes the increment of expression enclosed in parentheses when passing the
contour L once in a positive direction. Due to the fact that a; and b; are singular nodes
[arg(G(Y))].=2nn, x=n, m =n—2. With the known index of the problem of coupling the
polynomial expression will take the form

% & % \ -k
P(z ):kZZCk_] ()", 3)
where Cj stands for arbitrary complex constant.

The class of the problem is determined depending on the behavior of G(y) and F(z) in nodes.
Accordingly, the nodes are singular when F(z) at nodes is infinite, and non-singular, when the
function in the nodes is limited. Conventionally, the class of the problem is denoted by /;, where i is
the number of non-singular nodes at the boundary line.

Thus, in general, the problem of class %, has the canonical function:

R (€)
X(8)=0"——. C)
R, ()
where Q is an arbitrary constant and
q 2n
REO=[](E-c). RE=]](E-<) )
k=1 k=q+1
where ci, ¢z, ..., ¢, are non-singular nodes; cy+1, Cg+2, ..., €2, are singular nodes. The discussed

problem has no non-singular nodes, therefore ¢ = 0 and the problem is characterized as a problem
of class /g, and its canonical function is

(6)

n

where R(z*) = (z*—ak)(z*—bk) and constant Q can be obtained according to the property 3 on
k=1

the boundary circle from the expression 0 = #|[ | 4,5, [4].

k=1
In what fallows the expressions of the electric field and potential, it is advisable, to be
represented in the form of normalized variable Z = z/r, which is achieved by conformal mapping of
the complex plane z onto the plane of a single boundary circle Z.
Using expressions (2), (3), (5), (6) and performing the procedure of conformal mapping we
obtain the expression of the electric field
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The two expressions above can be used as initial for calculating the electric field and potential
at each point in the region Z for arbitrary distribution of the points a; and by within the boundary
circle L as well as for random distribution of potential on the boundary arcs L;. According to the
statement of the problem it is necessary to create uniform distribution of electric field within the
electrode structure, which is only possible when Ly =L, = L3 =...= L,, and biay = bya; =...= b,a.
Let 2¢; denotes the angle by which all the arcs are bent down, respectively, the angular interval
between the adjacent arcs is denoted by 2¢,, the angular distance between the midpoints of adjacent
arcs is 2z/n (Fig. 1). Assuming the linearity of dielectric properties of treated medium the total
electric field and potential within the given structure with an arbitrary distribution of the voltages
among the arcs can be found as the sum of strengths and potentials obtained from the partial
solution of the problem where only one arc L; possesses potential Vo, and the others arcs are of zero
potential. With regard to these conditions, the
expression of the electric field (7) can be written as

Vor, U follows:
Lk n ok
o 2Gal)
E(Z')=——2— : )
r \/Z 2 —27" cosng, +1
— and the electric field lines pattern is depicted

in Fig. 2. The electric field structure is symmetric
with respect to line u, which passes through the
center of arc L;, which possesses potential Vo
(Fig. 2), therefore the symmetric coefficients must
be equal to each other: C; =C,, C; = Cpp...
Hence the number of unknown coefficients is
reduced to N=n/2 for even n and to N=(n+1)/2
for odd values of n.

After performing the boundary conditions symmetrization with respect to the wu-axis, the
equation (9) takes the form:

N L i

P ZCI. A exp{j(”—ijzn(k—l)}rz Zexp{—j(n—ijzn(k—l)}

ES | LR 2 Jn 2 _Jn

EZ), = VALY - - .10
r \/Z 2 —27"cosng, +1

Taking into account that the distance from all the points on the boundary circle to the origin
equals 7, in order to describe location of any point on the circle, it is sufficient to specify only the
angular coordinate ¢, which corresponds to a polar coordinate system.

Hence on boundary circle we have Z = exp(j¢). Substituting the value of Z in (10) and using
Euler transformation, we obtain the expression for electric field strength on the boundary circle:

Fig. 2. Electric field lines pattern
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i ZN:Cl. cos(n/2 - i){(p —E(k — l)}
n

E(Z)k 2\/5(_1) = e /20 68))
r

\/cos ne — Cos nQ,

In expression (11) the electric field is presented by means of components E, and E,. However,
since the boundary is circular it is convenient to present electric field vector by sum of components
E, and E, as follows: E, + jE, = ( E, + jE,)e”®. Expression (11) is used to determine the unknown
coefficients C; by integrating E(Z )’; between the nodes by and a;+;, whose difference of potential is

known. As the number of the intervals is equal to N, the number of the linear independent
equations, wherefrom the N unknown coefficients C; are defined, is also equal to N. The N-order set

when applying the potential Vi to the A-th arc is written as

al . I n I/b a

Y C,sin (i—(2p ~1) |P,,,(cosn@,) = —=—L, (12)
n 2n

where P_,(cos(ng;)) is a Legendre function of order (—i/n), p denotes the number of equation

(pell, 2, ..., N)), ka is the difference of potential between the points by+,-1 and ax+p. In this

’+p—lak+p

i=1

set only the first equation, for which p = 1, has a right-hand side (Vor # 0), in other equations for
which p>1, the right side is zero. A more detailed mathematical explanation of the given
expressions has been provided in [5, 6].

The high degree of homogeneity of the electric field within the inside region z and rotation of field
can be obtained if the potential distribution on the boundary arcs is provided according to the expression:

Vok = Vomsin[ot + (k— 1)2x/n], (13)

where ® and ¥V, represent the cyclic frequency and amplitude of the electrodes supply signal,
accordingly, ¢ is time. Thus the total vector of the electric field will be oriented between the
electrodes with the maximum instantaneous voltage, phase of signal at which is equal to 7/2 + zM,
where M is arbitrary integer.

Since C; = Vo, and F; = —(n/2rm) (4/4;) (1/P-in(cos n@,)), where 4 is the determinant of the
set (12) and 4; is the algebraic complement of its i-th element [6], so the expression (10), after (13)
being substituted in it, and finding the total field generated by all the arcs by calculating the
corresponding sum by £, takes the form:

E(Z) :gVOm F Sinmt(l+Z*("_Z))+jcoscot(1—Z*("—2))
r

\/Z*z" ~27"" cosng, +1 (14)

3. Results and discussions. Calculation of the electric field according to equation (14) shows
that for small values of n the electric field in the inner region of complex plane z is considerably
inhomogeneous, but there is a rise in homogeneity when » increases. To illustrate this statement in
Fig. 3 and Fig. 4 the graphical results of calculations of |E(z)| for n = 4 and n = 8 are presented.

Here in the figures it is assumed that z = x + jy, where x and y are the coordinates normalized to
the radius r. It is apparent that for n = 8 the radius of homogeneity zone 7, is equal to 60 % of the
boundary circle radius. At the same time for n = 4 the size of uniformity zone is virtually absent.
The size of the uniformity zone also depends on the angle 2¢,. For small values of # the effect of
this parameter on the homogeneity of the field is significant, but with the increase of n the effect on
the zone size decreases. A major advantage of this electrode structure is the fact that the electric
field in the zone of homogeneity has rotational character.

4. Conclusions. The problem of field coupling of the theory of singular integral equations is an
effective tool for analyzing the distribution of the electric field inside the space bounded by multiply
connected circular arc-shaped boundary, and allows us to obtain precise analytical expressions for the
electric field distribution within the electrode structure. The calculations showed that the size of the
zone of uniform field distribution inside the structure is determined by the phase and amplitude
distribution on each electrode. When excited the regularly placed electrodes with a harmonic voltage
with relative phase shift corresponded to the angular position of the electrode on the circle, with a
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number of elements of structure equal to 8 the size of uniformity zone is 60% of the diameter of the
structure. Thus excited the electrode structure provides the uniform rotation of the field.
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a) a)
V01=V0m V3=V 0m
V04=V tmsin3n/4 V02=V Omsinm/4
102=0 104=0 Vo5=0 V01=0
V06=V Omsin 54 Vo=V Omsin 704
V03=-V0m V07=-V0m
b) b)
Fig. 3. Dependence of |E(x, y)| (a) and the Fig. 4. Dependence of |E(x, y)| (a) and the
electric field lines pattern (b) for n = 4 electric field lines pattern (b) for n = 8
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