О. В. Сивоконюк

ИММУНОМОРФОЛОГИЯ ОРГАНОВ ЦЕНТРАЛЬНОГО И ПЕРИФЕРИЧЕСКОГО ИММУНОГЕНЕЗА ПРИ ЭКСПЕРИМЕНТАЛЬНОМ ТОКСИЧЕСКОМ ГЕПАТИТЕ

Одесский государственный медицинский университет

Иммунная система — высокоспециализированная, сложно регулируемая структура, клеточные элементы которой находятся в состоянии постоянной пролиферации. Как известно, до 5 мес эмбриогенеза плода человека печень является основным органом гемопоэза и по многим показателям определяет гистогенез лимфоидной ткани. Печень взрослого человека не участвует в кроветворении, но она — жизненно важный, многофункциональный орган. Одна из его функций защитная — имеет прямое отношение к деятельности лимфоидной системы [1]. По данным литературы, практически любая интоксикация в той или иной степени может стать причиной нарушения иммунного статуса организма [2-5]. Патология печени сопряжена с активацией гуморального и клеточного иммунитета, но иногда сопровождается подавлением иммунной функции, особенно Т-клеточной системы.

Изучению функционального состояния иммунной системы при экспериментальном токсическом гепатите посвящено много исследований. При токсическом поражении печени происходят существенные нарушения в органах иммунной системы, которые сопровождаются подавлением иммунного ответа [4—6].

Вместе с тем, в вышеуказанных работах не дана оценка иммуноморфологических изменений в органах центрального (тимус) и периферического (селезенка, мезентериальные лимфатические узлы) иммуногенеза.

Введение экспериментальным животным четыреххлористого углерода (CCl_4) вызывает неспецифический реактивный гепатит. Ранее проведенные нами исследования [7–9] в динамике показали, что пик морфогистохимических изменений приходится на 3-и сутки острого токсического гепатита. Именно этот временной промежуток был избран нами для исследований, результаты которых изложены в данной работе.

Целью настоящей работы явилось иммуногистохимическое исследование основных клонов иммунных клеток, располагающихся в центральных (тимус) и периферических органах (селезенка и мезентериальные лимфатические узлы) иммуногенеза, и степень выраженности апоптоза в условиях острого химического повреждения печени CCI_{Δ} .

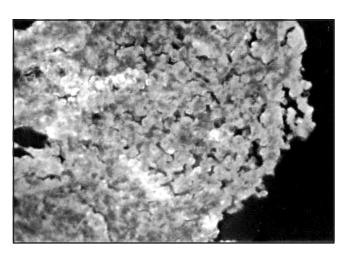
Материалы и методы исследования

Опыты проводили на 60 белых крысах линии Вистар массой 180—250 г. Животных содержали на стандартном рационе вивария в условиях свободного передвижения и доступа к воде. Работу с лабораторными животными проводили с соблюдением общепринятых нормативных и биолого-этических требований.

Были сформированы следующие опытные группы: а) интактные животные (контроль); б) животные с острым токсическим гепатитом.

Острый токсический гепатит (ОТГ) вызывали однократным внутрижелудочным введением 50%-го масляного раствора CCl_4 в дозе 5 мл / 1000 г. Животных выводили из эксперимента на 3-и сутки путем декапитации под легким эфирным наркозом. После фиксации в 10%-м растворе нейтрального формалина и спиртовой проводки кусочки тимуса, селезенки и брыжеечных лимфатических узлов заливали в целлоидин-парафин, изготавливали срезы толщиной 5—6 мкм. Срезы окрашивали гематоксилином и эозином, пикрофуксином по ван Гизону.

Иммуногистохимическое исследование проводили на парафиновых срезах непрямым методом Кунса по методике Brosman (1979). Иммунные клетки дифференцировали с помощью крысиных моноклональных антител (МКА) к различным типам клеток фирмы Serotec. Использовали следующие маркеры: CD95, CD8, CD4, CD3, CD45RA, ED1, IgA, IgM, IgG, C3 фракция комплемента. В качестве люминесцентной метки использовали F (ab)-2 — фрагменты кроличьих антител против иммуноглобулинов мыши, меченных ФИТЦ. Препараты изучали в люминесцентном микроскопе МЛ-2 с использованием светофильтров: ФС-1-2, СЗС-24, БС-8-2, УФС-6-3. Относительные объемы основных клонов иммунных клеток определяли с помощью сетки Г. Г. Автандилова [13] в люминесцентном микроскопе. Апоптозный индекс рассчитывал следующим образом: среднее количество клеток в поле зрения, умноженное на 400, принимали за 100 %; среднее количество клеток, экспрессирующих рецепторы CD95 в поле зрения, умноженное на 400, прини-



мали за X; X = среднее количество клеток, экспрессирующих рецепторы CD95 в поле зрения, умноженное на 400, умноженное на 100, делим на среднее количество клеток в поле зрения, умноженное на 400. Цифровые данные обрабатывали методами вариационной статистики.

Результаты исследований и их обсуждение

Иммуногистохимическое исследование позволило выявить в тимусе интактных животных разные клоны иммунных клеток. Преобладали Т-лимфоциты, а именно CD3+, как известно, представляющие собой общую популяцию Т-лимфоцитов (рис. 1). В обеих зонах тимуса среди них были выявлены как CD4+-Т-хелперы, так и CD8+-Т-супрессоры. Относительные объемы иммунных клеток в лимфоидном компоненте тимуса определяли, не выделяя отдельно показатели для коры и мозгового вещества. Результаты исследования приведены в табл. 1. Соотношение CD4+/CD8+ составило 1,8.

Кроме Т-лимфоцитов в тимусе отмечались также клетки, экспрессирующие рецепторы к ED1⁺ (макрофаги и естественные киллеры), а также не-

Puc. 1. Обилие CD3 лимфоцитов в тимусе контрольного животного. Непрямой метод Кунса с МКА CD3. \times 120

многочисленные В-лимфоциты (CD45RA+) и клетки-продуценты иммуноглобулинов IgM и IgG. Не отмечались клетки-продуценты IgA и C3-фракции комплемента. Если макрофаги (ED1+) располагались диффузно по всей паренхиме долек тимуса, то иммунобласты, также как и В-лимфоциты, локализовались преимущественно в периваскулярных пространствах. Соотношение CD3+/ED1+/CD45RA+ оказалось равным 20,0:2,5:1,0. Апоптозный индекс тимоцитов в группе контроля составил ($23,0\pm2,5$) %.

При экспериментальном токсическом гепатите в органах иммунной системы наблюдаются выраженные гемодинамические и дистрофические нарушения. Наряду с этим, в тимусе отмечаются инволютивные изменения: диффузно-очаговое опустошение коркового слоя, размывание границ между корковым и мозговым слоями, увеличение числа телец Гассалля и появление их в корковом слое на 7-е сутки эксперимента [8-10]. С увеличением сроков развития гепатита усиливалась акцидентальная трансформация тимуса — неспецифическая реакция, развивающаяся на фоне общего адаптационного синдрома, в котором основную роль играют глюкокортикостероиды [10–12]. Опустошение коркового слоя тимуса, вероятно, обусловлено нарастающей гибелью кортизончувствительных лимфоцитов, локализующихся преимущественно в субкапсулярной зоне. Увеличение количества телец Гассалля и их нетипичное распределение в тимусе может быть результатом нарушения коммуникаций эпителиальных клеток с тимоцитами или токсического воздействия CCI⁴ на эпителий тимуса как непосредственного, так и опосредованного через элементы цитокинового каскада [10–12].

На 3-и сутки ОТГ наблюдается, по сравнению с контролем, дефицит Т-лимфоцитов как в коре, так и в мозговом веществе тимуса животных с токсическим гепатитом. Несмотря на это, среди основных клонов иммунных клеток, как и в группе контроля, в ткани тимуса преобладали Т-лимфоциты (CD3+). При этом, в обеих зонах

Таблица 1 Относительные объемы основных клонов иммунных клеток в тимусе животных с токсическим гепатитом (Ме (25 %; 75 %))

	Относительные объемы основных клонов иммунных клеток, %							
Группа	CD3	Отдельные субпопуляции Т-лимфоцитов		ED1	CD45RA	Отдельные субпопуляции клеток-продуцентов иммуноглобулинов		
		CD4	CD8			IgM	IgG	С-3ФК
Контроль		65,0	35,0	10,0	4,0	2,5	1,0	_
	(55,5; 100,0)	(46,0; 79,5)	(22,0; 47,0)	(6,0; 14,0)	(2,5; 6,0)	(1,5; 3,0)	(1,0; 2,0)	
ОТГ	50,0 (32,0; 69,0)*	55,0 (41,0; 69,0)*	45,0 (33,0; 57,0)*	27,0 (22,0; 33,0)*	13,0 (9,0; 17,0)*	3,5 (2,5; 4,5)	4,5 (3,5; 5,5)*	1,0 (1,0; 2,0)*

Примечание. В табл. 1–4: * — P<0,05 по сравнению с контролем.

тимуса выявлялись как CD4+-T-хелперы, так и CD8+-T-супрессоры. Однако относительные объемы этих клонов клеток в дольках тимуса значительно отличались от контрольных показателей (см. табл. 1). Соотношение CD4+/CD8+ уменьшилось по сравнению с контролем и приблизилось к 1 (контрольный показатель 1,8).

Так же, как и в контрольной группе, кроме Т-лимфоцитов в обеих зонах долек тимуса находились клетки, экспрессирующие рецепторы к ED1+ (макрофаги и естественные киллеры), а также В-лимфоциты (CD45RA+) и клетки-продуценты иммуноглобулинов — IgM и IgG. Кроме того, увеличилась популяция клеток-продуцентов С3-фракции комплемента, тогда как продуценты IgA не выявлялись. Макрофаги (ED1+) отмечались диффузно по всей паренхиме долек тимуса, а В-лимфоциты и плазмобласты располагались преимущественно в периваскулярных пространствах. Соотношение CD3+/ED1+/CD45RA+ оказалось равным 3,8:2,0:1,0 (в контроле — 20,0:2,5:1,0), за 1 принимается показатель CD45RA+. Вышеуказанный показатель подтверждает значительное снижение относительного объема Т-клеток в тимусе животных с токсическим поражением печени на фоне достоверного увеличения макрофагальной активности и В-лимфоидного компонента за счет опустошения лимфоидной популяции, оголения стромы, ретикулоэпителиального компонента железы, экспрессирующего рецепторы к ED1+. Увеличение этой популяции обусловлено миграцией макрофагов из крови в тимус в условиях усиленного апоптоза тимоцитов. Последнее подтверждается анализом апоптозного индекса, который составил (32,0±3,6) % и достоверно превысил контрольный показатель.

Иммуногистохимическое исследование ткани селезенки контрольных животных подтвердило известную зональность в расположении Т- и В-лимфоцитов. Преимущественно в периартериальных зонах фолликулов располагались Т-лимфоциты (CD3+, CD4+, CD8+), тогда как в светлых центрах фолликулов и их мантийных зонах преимущественно определялись В-лимфоциты (CD45RA+). В красной пульпе селезенки регист-

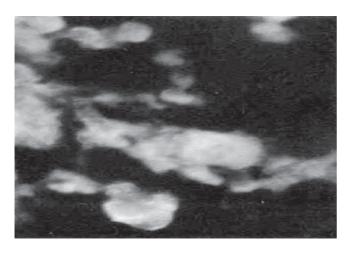
рировались как В-, так и Т-лимфоциты. Во всех зонах органа определялись макрофаги (ED1+). Преимущественно в В-зонах отмечались клеткипродуценты иммуноглобулинов, а именно IgM и IgG. Для количественной оценки основных клонов иммунных клеток нами определялись относительные объемы этих клеток на серийных срезах, обработанных соответствующими МКА. Результаты этих исследований представлены в табл. 2. Соотношение CD4+/CD8+ составило 3,0. Соотношение CD3+/ED1+/CD45RA+ оказалось равным 2,7: 1,0: 4,5. Апоптозный индекс лимфоцитов составил (33,0±2,0) %.

На 3-и сутки ОТГ в селезенке отмечаются выраженные пролиферативные и гиперпластические процессы с присоединением макрофагально-плазмоцитарной реакции [8-10]. При иммуногистохимическом исследовании так же, как и в группе контроля, сохранялась зональность расположения Т- и В-лимфоцитов. По сравнению с контрольной группой практически не изменился относительный объем Т-лимфоцитов, популяция макрофагов значительно увеличилась, а относительный объем В-лимфоцитов уменьшился. При этом соотношение CD3+/ED1+/ CD45RA+ составило 1,5 : 1,0 : 2,0 (контрольный показатель — 2,7 : 1,0 : 4,5). Среди плазмобластов возросла популяция клеток, продуцирующих IgM, и клеток, экспрессирующих поверхностные рецепторы к С3-фракции комплемента (см. табл. 2), относительный объем плазмобластов, продуцирующих IgG, несколько снизился. Среди Т-лимфоцитов относительно увеличилась популяция Т-супрессоров (CD8+) и соответственно уменьшилось количество T-хелперов (CD4+), поэтому значительно снизилось соотношение CD4+/CD8+, составив 1,8 (контрольный показатель — 3,0). Апоптозный индекс лимфоцитов составил (39,0±3,2) %, что достоверно выше контроля.

Иммуногистохимическое исследование в корковом слое лимфатических узлов выявило преобладание В-лимфоцитов (CD45RA+), тогда как в паракортикальной зоне отмечались преимущественно Т-лимфоциты (CD3+,CD4+,CD8+). В моз-

Таблица 2 Относительные объемы основных клонов иммунных клеток в селезенке животных с токсическим гепатитом (Ме (25 %; 75 %))

	Относительные объемы основных клонов иммунных клеток, %								
Группа	CD3	Отдел субпопу Т-лимф	/ляции	ED1	CD45RA	Отдельные субпопуляции клеток-продуцентов иммуноглобулинов			
		CD4	CD8			IgM	IgG	С-3ФК	
Контроль	33,0 (30,0; 36,0)	75,0 (50,0; 98,0)	25,0 (15,0; 35,0)	12,0 (8,0; 16,0)	55,0 (49,0; 61,0)	12,0 (9,0; 15,0)	16,0 (12,0; 20,0)	2,0 (1,0; 3,0)	
ОТГ	34,0 (28,0; 40,0)	65,0 (38,0; 86,0)*	35,0 (29,0; 41,0)*	22,0 (19,0; 26,0)*	44,0 (40,0; 48,0)*	13,0 (9,0; 16,0)	14,0 (9,0; 19,0)	5,5 (2,0; 9,0)*	


Относительные объемы основных клонов иммунных клеток в брыжеечных лимфатических узлах животных с токсическим гепатитом (Ме (25 %; 75 %))

	Относительные объемы основных клонов иммунных клеток, %								
Группа	CD3	субпопу	Отдельные субпопуляции Т-лимфоцитов ED1 CD45F		CD45RA	Отдельные субпопуляции клеток-продуцентов иммуноглобулинов		и нтов	
		CD4	CD8			IgM	IgG	С-3ФК	
Контроль	57,0 (48,0; 63,0)	73,5 (56,0; 90,0)	27,0 (25,0; 29,0)	8,5 (4,0; 18,0)	33,0 (26,0; 40,0)	6,0 (4,0; 8,0)	9,5 (7,0; 11,0)	0,6 (0,5; 0,7)	
ОТГ	44,5 (38,0; 49,0)*	66,0 (52,0; 80,0)*	33,5 (33,0; 35,0)*	26,0 (20,0; 32,0)*	30,0 (25,0; 35,0)	18,5 (15,0; 20,0)*	32,5 (18,0; 37,0)*	6,5 (6,0; 7,0)*	

говом веществе локализовались как Т-, так и В-лимфоциты с преобладанием первых. Макрофаги (ED1+) определялись во всех морфофункциональных зонах лимфатического узла, клетки-продуценты IgM и IgG преимущественно выявлялись в коре и мозговом веществе.

Результаты количественной оценки основных клонов иммунных клеток в виде их относительных объемов представлены в табл. 3. Соотношение CD4+/CD8+ составило 2,7, а соотношение CD3+/ED1+/CD45RA+ оказалось равным 4,5: 1,0: 2,8. Такое соотношение основных клонов иммунных клеток в лимфатическом узле крысы подобно таковому в лимфатическом узле человека [1]. По нашим данным, в лимфатическом узле крысы группы контроля также преобладают Т-лимфоциты, составляющие 55,0 %, а количество В-лимфоцитов несколько выше — 33,0 %. Апоптозный индекс лимфоцитов составил (16,0±1,0) %.

Так же, как и в группе контроля, на 3-и сутки ОТГ в ткани лимфатических узлов сохранялась зональность расположения Т- и В-лимфоцитов. Макрофагальная реакция усилена и макрофаги (ED1+) определялись во всех зонах лимфатического узла (рис. 2). Несколько усилена и реакция плазматизации, в первую очередь, вслед-

Puc. 2. Обилие макрофагов в лимфатическом узле животного с токсическим гепатитом. Непрямой метод Кунса с МКА ED1. \times 900

ствие увеличения популяции IgG -продуцирующих клеток (см. табл. 3). Соотношение CD4+/ CD8+ меньше по сравнению с контролем и составляет 1,6 (в контроле 2,7). Соотношение CD3+/ED1+/CD45RA+ оказалось 1,7: 1,0: 1,1 (в контроле 2,2: 1,0: 1,2), что указывает на относительное увеличение макрофагальной популяции.

Обращает на себя внимание достоверное увеличение степени выраженности апоптоза в лимфоидном компоненте лимфатических узлов при токсическом гепатите. Апоптозный индекс лимфоцитов составил (25,0±3,0) % (табл. 4).

Токсическое поражение печени четыреххлористым углеродом приводит к усилению гуморального и макрофагального звеньев иммунитета и угнетению клеточного звена. Ранее полученные результаты патоморфологических исследований печени, органов центрального (тимус) и периферического иммуногенеза (селезенка и мезентериальные лимфатические узлы) в сочетании с данными иммуногистохимических исследований расширяют возможность использования данной модели для доклинической оценки иммуномодулирующих и гепатопротекторных свойств фармакологических препаратов.

1. При ОТГ в ткани тимуса наблюдается снижение популяции Т-лимфоцитов, в частности Т-хелперов, и уменьшение хелперно-супрессорного индекса, а также увеличение количества В-лимфоцитов, плазмобластов и появление С3-фракции комплемента.

Таблица 4 Апоптозный индекс клеточных элементов печени и органов иммунной системы, %

	Апоптозный индекс, %						
Группа	Печень	Тимус	Селе- зенка	Лимфа- тический узел			
Контроль	4,0±0,5	23,0±2,5	33,0±2,0	16,0±1,0			
ОТГ	15,0±2,0*	32,0±3,6*	39,0±3,2*	25,0±3,0*			

- 2. При ОТГ в ткани селезенки выявляются признаки активизации макрофагального звена иммунитета в виде увеличения количества макрофагов в различных функциональных зонах селезенки. Изменения со стороны Т-клеточной популяции селезенки проявляются уменьшением хелперно-супрессорного индекса. Увеличена популяция клеток-продуцентов С3-фракции комплемента, тогда как популяция клеток-продуцентов IgM и IgG существенно не изменилась.
- 3. При ОТГ в лимфатических узлах выявляются признаки активизации макрофагального и гуморального звеньев иммунитета в виде увеличения количества макрофагов и плазматических клеток в различных функциональных зонах узлов. Выраженные изменения со стороны Т-клеточной популяции, проявляющиеся относительным обеднением Т-зоны, с одной стороны, и уменьшением хелперно-супрессорного индекса, с другой стороны, на фоне вышеуказанной активации макрофагального и гуморального иммуногенеза, свидетельствуют о дисбалансе основных звеньев иммунитета.
- 4. Полученные данные будут использованы в качестве сравнения при изучении иммуногистохимических особенностей печени и органов иммунной системы на фоне ОТГ при использовании нового координационного соединения германия с никотиновой кислотой (МИГУ-1) в сравнении с известными гепатопротекторами эссенциале и гептралом.

ЛИТЕРАТУРА

1. *Хлыстова 3. С.* Становление системы иммуногенеза плода человека. — М.: Медицина, 1987. — 254 с.

- 2. Лазарева Г. А., Бровкина И. Л. Протекторное действие регуляторов энергетического обмена и эссенциале при нитритном поражении // Патол. физиол. и эксперим. терапия. 2006. № 2. С. 21-23.
- 3. Матвеева Л. В., Новикова Л. В., Мосина Л. М. Клинико-иммунологические особенности больных хроническим алкогольным гепатитом // Соврем. аспекты теор. и клин. мед. 2003. № 2. С. 70-73.
- 4. Утешев Б. С., Прокопенко Л. Г., Конопля Е. Н. Лидокаин как иммуномодулятор при токсическом поражении печени // Эксперим. и клин. фармакология. 1997. Т. 60, № 2. С. 45-48.
- 5. *Иммунология* и иммунопатология пищеварительной системы / Ю. И. Бажора, В. И. Кресюн, К. Л. Сервецкий, И. Н. Годзиева. Одесса: ОКФА, 2001. 190 с.
- 6. *Шевченко І. М., Пашолок С. П.* Функціональний стан імунної системи при експериментальному токсичному гепатиті // Одес. мед. журнал. 2004. № 5 (85). С. 23-26.
- 7. Сивоконюк О. В. Імуноморфологія токсичного гепатиту на фоні корекції гепатопротекторами // Одес. мед. журнал. 2003. № 6 (80). С. 34-36.
- 8. Сивоконюк О. В. Патоморфологія органів імуногенезу при дії гепатопротекторів в умовах токсичного ураження // Одес. мед. журнал. 2004. № 3 (83). С. 25-27.
- 9. *Сивоконюк О. В.* Патоморфология органов иммуногенеза при экспериментальном токсическом гепатите // Запорож. мед. журнал. 2005. № 3. С. 119.
- 10. Динамика морфофункциональных изменений органов иммунной системы мышей BALB/с при экспериментальном гепатите / С. С. Обернихин, О. В. Макарова, В. В. Малайцев и др. // Бюл. эксперим. биологии и медицины. 2006. Т. 141, № 4. С. 451-454.
- 11. Гаркави Л. Х., Квакина Е. Б., Кузьменко Т. С. Адаптационные реакции и активационная терапия. М., 1998. 665 с.
- 12. Радченко О. М. Кореляційні зв'язки між морфологічними показниками імунокомпетентних органів, надниркових залоз і клітинами периферичної крові при різних типах адаптаційних реакцій в експерименті // Фізіол. журнал. 2000. Т. 46, № 3. С. 22-25.
- 13. *Автандилов Г. Г.* Медицинская морфометрия. М.: Медицина, 1990. 383 с.

УДК 616.24-002:616.151

Т. І. Тюпка, А. І. Березнякова

ВПЛИВ ЕНАПУ НА МОРФОФУНКЦІОНАЛЬНИЙ СТАН ТКАНИН ЛЕГЕНЬ І МІОКАРДА ПРИ ЕКСПЕРИМЕНТАЛЬНОМУ ГЕМОДИНАМІЧНОМУ НАБРЯКУ ЛЕГЕНЬ

Національний фармацевтичний університет, Харків

Вступ

Проблема набряку легень дотепер залишається актуальною, оскільки ця патологія є ускладненням багатьох серцевосудинних захворювань: мітральних і аортальних пороків, гіпертонічної хвороби, стенокардії, інфаркту міокарда, перикардиту, атеросклерозу та ін. Незважаючи на значну кількість праць,

опублікованих як у вітчизняній, так і в іноземній літературі, багато сторін патогенезу цього захворювання вивчені недостатньо. Цим, значною мірою, визначається низька ефективність методів лікування, які застосовують у практичній медицині. Разом із тим, аналіз даних літератури щодо механізмів розвитку набряку легень дозволив нам зробити припущення про мож-

ливість ефективного застосування інгібіторів ангіотензинперетворюючого ферменту (АПФ) з метою корекції гемодинамічних розладів, які виникають при цій патології [1; 2].

У зв'язку з викладеним, **метою** даної роботи стало вивчення впливу інгібітора АПФ — енапу (КRKA, Slovenia) на морфофункціональний стан тканини легень і міокарда при екс-