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CONTACT INTERACTION OF TWO ELASTIC HALF-SPACES
WITH A CIRCULAR RECESS
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The method of functions of intercontact gaps extended to axially symmetric contact prob-
lems of two half-spaces one of which contains a circular surface recess is presented. This
approach consists in construction of the integral representations of the displacements and
stresses within the every of mated solids through functions defined on the unknown but
bounded region of contact interface. For the case considered in the paper, namely, a
frictionless contact of half-spaces, the integral representations contain only one unknown
function — height of the gap. As examples, analytical solutions are obtained for some
shapes of the initial recess. With some recess shape, the contact normal stresses exhibit
peaks at the point which corresponds to the initial defect edge. This distinguished feature
of the stress distribution is discussed.

Key words: contact problem, conforming boundaries, local fault of contact, the method of
functions of intercontact gaps, discontinuity of curvature.

The contact interaction of solids allowing for intersurface gaps has been stu-
died by many researchers. The plane and axially symmetric problems were studied
in [1-7]. The thermomechanical opening and closing of interface gaps due to ther-
mal contact resistance were examined in [6-10]. The interaction of solids in the
absence of local contact caused by the presence of thin rigid inclusions was investi-
gated in [11-14].

In papers written by Martynyak and co-workers [15-19], the plane frictionless
contact problems for eastic isotropic and anisotropic half-planes with locally dis-
turbed boundaries have been formulated and solved. Effect of friction [20, 21],
stick-slip phenomena [22—23] and filler of interfacial gaps [24-29] on contact inter-
action of solids with such boundaries has been investigated. The above-mentioned
papers are grounded on a method which is called the method of functions of inter-
contact gaps. Problems, close to those but dealing with the three-dimensional con-
tact in the axially symmetric case, were solved in our papers [30-32]. The aim of
the present paper is to summarize and generalize the theoretical approach sugges-
ted in these works. Moreover, some new effects not having been properly analyzed
before are discussed.

Formulation of the problem. Consider two dissimilar isotropic eastic semi-
infinite solids in frictionless contact due to a uniform normal pressure p applied at
infinity. The surface of one of the bodies (body 1 in Fig. 1) contains a local devia-
tion from the plane in the form of a small smooth circular recess with radius b,
while the surface of the second body (body 2) isflat.

Refer the contacting couple to a cylindrical coordinate system (r, q, 2) (see
Fig. 1) in such a way that the z-axis coincides with the axis of symmetry and a
plane z = 0 is the plane of nominal contact.
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I In this system, the shape of the ini-
tial surface recess, occupying a region
{(r,z=0):0£r £b}, is described by a
given function f(r).
b Due to the presence of the imperfec-
o ¥ tion, the intimate contact of solids occurs
not over the whole plane z= 0 but in a
certain circular region of radius a. Since
the initial recess is smooth, the gap loca-

i f I P tion is not fixed arjd_its size erends on
the external load (it is found in the pro-

Fig. 1. Contact of two half-spaces cess of the problem solution).
with allowance for intersurface gap. Thus, the nominal contact interface

z = 0 is subdivided into two regions: the
region of the gap {(r,z=0):0£r £a} and the region of solid 1 —solid 2 contact
{(r,z=0):af£r <¥}.

To solve this contact problem, we utilize the principle of superposition. Ex-
tracting in the solution the basic stress-and-strain state formed as a result of frictio-
nless contact of half spaces with plane boundaries under compression (which solu-
tion is trivial), the problem under study can be reduced to the determination of
perturbations caused by the given local imperfection and the created intersurface
gap. The boundary conditions of this perturbed problem are as follows:

Z=#¥: s, =0,s," =0, (1)
220 ﬂ?;o, O<r<¥, (2
s, W=s @  o<rey, ©)
s, =p, 0<r<a, (4)
u®-u®=f(), a<r<¥. ()

Hereand in what follows, s, s, S, Sqq arethecomponents of the stress ten-
sor and u,, u, arethe components of the displacement vector in the case of axial
symmetry. Moreover, superscripts (i),i =12 refer the corresponding quantities to

bodies 1 and 2, respectively.

Note, that the radius of the gap a is an unknown parameter. The following
condition of smooth closure of the gap faces serves as an additional equation for
the determination of a:

h¢a) =0, (6)

where h(r) = f(r)+u®(r,0)- u®’(r,0) is the height of the gap. On account of the
physical meaning of this function it vanishes outside the gap, i.e.

h(r)=0, a<r<¥. (7

Procedure of solution. The solution is based on the method of functions of

intercontact gaps that was developed in a number of papers by Martynyak and co-

workers on plane elasticity. It consists in determining some integral equation for

the function of the gap height by means of introducing the interface jump functions
for some displacements and stresses.
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Adopting the idea of this approach in the axially symmetric case, let us consi-
der an auxiliary problem with the boundary conditions (1), (2), (3) and supple-
mented with the following condition:

uD(r,0)- u@(r,0)=f(r)- h(r), OEr<¥ . (8)

The problem of linear elasticity described by boundary conditions (1)—(3) and
(8) can be solved by applying the standard technique of Hankel’s integral transfor-
mations to the equilibrium equations in displacements. Omitting the details of the
quite straightforward procedure, we present the final representations of displace-
ments and stresses within the every body via the Hanke transforms of the height
gap h(r) and initial recess shape f(r) given as

wr.2)= % z‘Jx(l- 2n; - x| ZD(F() - HOQ)e 3, 0rydx, — (9)
w9 =" s 020 m) +x|2D(F () - HOo)e "), (10
s{) h(Ar 2 _ ;é,xs(p(x) - H(0)e X3, (xr) dx, (11)
Q.2 %, -2
T_cc))x [@+x]z(F(x)- H(x))]e " Io(xr)dx, (12
(i)
M:i‘)xz[(l— x| Z|)(F(X) - H))le X@3q(xr) dx-
M 0 (13)
X -x2 1 (xr)
- 04~ 2n; - x|ZD(F (- HEe =2
(i)
w2 _py EXZ(F(x)- H (x))e 3, (xr)dx +
M 0 (14)
X -xiz) Ja(Xr)
+0x[(1- 2n; - x| Z])(F(x) - H(x))]e X! '1de,
0
where H(x):¥6 h(r) Jo(xr)dr, F(x):¥0r f(r)Jo(xr)dr, J, are the Bessd
0 0

functions of the first kind of order k, m =m/(1- n;), M =mm,/(m +m,), and
m, n; stand for shear modulus and Poisson’s ratio of the body denoted by i =1,2.

It is clear that the representations given by (9)—14) guarantee the validity of
the boundary conditions (1)—(3), whereas the last two contact conditions of the
original problem (4) and (5) are reduced, after substituting the corresponding
expressions (10) and (12) into (4) and (7), to the following system of dual integral
equations for finding the Hankel transform H (x):

¥ ¥
QXZH(X) Jo(xr)dx =- Vp+ @sz(x) Jo(xr)dx, 0O<r<a, (15)
0 0

¥

OH(X) Jo(xr)dx =0, a<r<¥. (16)

0
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The technique of its solution is known [33]. Representing the sought function
H(x) intheform

H(x):x'la‘w(r)sinxrdr , (17)
0

equations (15)—16) can be reduced to the Abel integral equation for an unknown
function g(r)

19
?ﬂd g(r)/ r2-r2dr =g(r), (18)

whose solution is [34]
g(r):%@v g(r)/ r-r2dr, (29
0

where g(r) stands for right hand side of the equation (15).
To complete the present problem, it is necessary to determine theradius of the gap
a. For this purpose, we determine the height of the gap h(r) in terms of the function g(r)

h(r) = ogtr)/\F 2- r2 dr (20)

and we see that the condition of smooth closing of the gap (6) is equivalent to the
following equation for a:

o(a) =0. (21)

Having known the function g(r) and the radius of the gap a, the stresses and
displacements within every solid can be found from re ations (9)—(14), (17), (19).

The example. Assume that the shape of theinitial recessis given by theformula
f(r)=hy@- r2/b?)™¥2, 0£r £b (hy= f(0) = b), (22)

where n is a natural number. In the paper our consideration is restricted by the
cases n = 1, 2, 3. Though the case n = 1 has been considered in paper [30], here
some results of this paper are obtained using more general approach.

The Hanke transform F(x) of f(r) is[35]

F(x) = hyb® 2™ 2G(n +3/2)(xb) ™¥2 3 5,5 (xb) . (23)
Thefunction g(r) for n=1, 2, 3 (denoted by g,(r)), calculated from (19), are

é ® 2 é & 2ou
o282 30820 - 2. g oL
Pg b* & pé 24

(24)

The solution of equation (21), bearing (24) in mind, yields the following
values of the gap radiusa for n=1, 2, 3 (denoted by a,):
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12 /3
a=b - AP0 o —p i EIOPD Ty op - SRR T (o)
3pM hy &15pMhy £35pM hy

Now from these expressions it follows that there is a certain level of external
load, namely

PL =M3phy/(4b), P, =M15phy/(16b), p; =M 35phy/(32b), (26)
at which theradius of the gap becomes zero. It means that for this magnitude of the
pressure the gap is closed and the contact of the solids is realized over the whole
contact interfacez = 0.

Fig. 2 illustrates the influence of the
ambient compressive pressure on the
value of the where the contact is absent.
The dependences a=a(p) (a=alb,
p=p/M) shown in this figure are for
the considered cases of shapes of the ini-
tial recess (see (22) for n=123). The
numerical calculations have been perfor-
med for hy/b=10"3. As can be seen, the
radius of the gap monotonically decreases

o . ) il | b} 1t
with increasing pressure. The points of )
intersection of the curves with the abscissa Fig. 2. Dependence of the gap radius
axis determine the values of the pressure on the applied external load
when the gap disappears (see (26)). Note for three shapes of the recess.

that for a small magnitude of applied
pressure p (“low pressure’) the radius of the gap is the largest for the recess,
which corresponds to n=1. This tendency does not hold for all load range. When
the pressure is sufficiently large, i.e. p islarger than 230 3 (“high pressure’) the
situation changes and the biggest gap will befor n=3, while the smallest gap will
befor n=1.

Now pay attention to the contact parameters of the problem: the height of the
gap and the distribution of contact stresses.

The height of the gap can be extracted from formula (20), provided ((r) is

given by (24). After calculations of appearing integrals, we obtain for the cases
n=123

gae , ®&[,2 rzt_f’ﬂ
S 2 60 ) Ty
I’h(r):_EA_p_& _r__ az r2+ 8 ﬂu,
p%M Mgl bZBB M b? a
€ y
é a
e * 2520
2ec P P& °0. 755
hy(r)=-=8"- 261- — = a%-r? +
pEM M M@b
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éx * 2..30 * 2..2 3

A 5] 0 = 5] (0] 3
f‘b(r):_zg;_p_& _r_;T«[aZ_r2+& gl_r_;g az_rzg_
%]

pg;M M b2++ sz b2—
ee 2 5 g (27)
e 25 5 70

- 3p33 —r—zf‘%/az—r29+ p368§/8 a’-r224q.

5Mb® § b? 8 5 7Mb 5y

By diminating p and p,, n=1,2,3 with the aid of (25) and (26) these expres-
sions can be rewritten in the following simple forms:

e 2§12
hl(r):hoggz gl' gg )

. 312
& 3a2 r20ae r20

0 2 Pl 2 9

hy(r) =hg

312
r206
2=

4p> 8b* 2p? 2 b* bgpE aly

a5 21a’ 15a* 7r? 3a%? r*0ada

hs(f):hogg'

r';{r:l I I

Fig. 3. The shapes of half the gap

for two prescibed loads (| - 10° xp =0.382;
I —2.078) and thecasesn=1, 2, 3.

5-100°
Fig. 3 demonstrates the variations
of the gap height h(r)=h(r)/b
(r=r/b) under some external loads.
We can see that the gap becomes
| smaller with increasing pressure.
0 0.5 | F Now, analyze contact normal stress
distribution. To do this, let us substitute
(19) into (12). As aresult, wefind after straightforward manipulation

0

@) ¥ min(r,a)

sz (r,0) P, a2 N 2 .2

Sk AN F(X) Jo(xr)dx - =— ~r2dr. (29
M M 00( (%) Jo (xr) dx Car o0 rg(r)/ r=-r (29)

Computation of the corresponding integrals in the above formula, by using
relations (23) and (24), is performed to yield [35]:

¥
OXCF (X) Jg (xr)dx = (30)
0
i 2
T1- Er—, r<b,
1 .1 2b
.:.—Qarcsn—gl— —r—2i+——\/r2 - b20, r>h,
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Thus, the contact parameters of the problem, namely the gap height and the
normal contact stresses, are found analytically for the three considered particular
shapes of theinitial recessn=1, 2, 3.
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Distributions of the normal compressive stresses §§Z(r ,0)=s §Z(r ,0)/M aong
the contact interface for five cases of the gap radius are presented in Fig. 4 for the
casesn =1, 2, 3. It is seen that the contact pressures - 5%,(r,0) are zero within the

gap region, first they increase with the distance from the gap reaching their maxima
in the vicinity of the initial recess edge, and then decrease monotonically
approaching to the level of the external load p. For the case n = 1 the maximal
value of the normal contact pressure is attained exactly at the point ¥ =1 on the
whole range of loading, whilefor cases n = 2 and n = 3 the points of maximum are
located toward the center of the gap. Moreover, for n = 1 the contact pressure
exhibits the peak at the point T =1, which corresponds to the edge of the initial
defect. Such a behavior is not observed for the remaining cases n=2,3. It can be
explained by the fact that the curvature of smooth curves given by (22) is
discontinues at the point T =1 (i.e r = b) only for n = 1. It is worth noting that
some similar aspects of the influence of the curvature discontinuity in the surface
profiles on the contact pressure distribution in two-dimensional frictionless contact
problems have been discussed in [36].

L o=
IL".'F&
-1
T

10
1)

a
ra

-4 L L 4
0 05 1 15 7 a 05 1 15 7 noows 1 15 7

Fig. 4. Contact normal stress distributions(a—n=1;b—-n=2;c—n=3).
1-a3a=0;2-02;3-04,4-0.6;5-038.

CONCLUSIONS

The method of functions of intercontact gaps is extended to axially symmetric
elasticity contact problems of two half-spaces one of which contains a circular sur-
face recess is presented. This method implies: i) construction of the integral repre-
sentations of the displacements and stresses within every of mated solids by func-
tions defined on the unknown but bounded region of the contact interface (for the
case considered, only one such a function — the height of the intersurface gap); and
ii) reduction of the problem to dual integral equations for Hankel transform of
these functions. Analytical solutions are obtained for some shapes of the initial
recess. The results for the contact characteristics are discussed and presented gra-
phically. For some recess shape, the contact normal stresses exhibit peaks at the
point which corresponds to the initial defect edge. This distinguished feature is
associated with the specific geometry of the surface defect, namely with the dis-
continuity of the curvature.

PE3FOME. Y3araabHEeHO METOJl MIXKKOHTAKTHHUX 3a30piB JUIs pO3B’SI3aHHSA OCECUMETPUY-
HUX KOHTaKTHHUX 3aJlad Teopii NPYKHOCTI A MIBOE3MEXKHUX TUI 3 JIOKAJIBHUM F€OMETPUIHUM
30ypeHHsAM noBepxHi. Ilinxin nepenbayae noOyn0BY IHTErpajIbHUX MOJaHb HAIIPYXEHb Ta Iepe-
MillleHb y KOXKHOMY 3 TiJ1 KOHTaKTHOI Iapy 4yepe3 (QyHKII{, 110 BU3HAUEH] Ha JIOKAJIbHIN 00JacTi
noBepxHi KoHTakTy. [y Ge3dpukiiiiHOl B3aeMOJil TiJI 32 HAsIBHOCTI OJIHI€] KPYrOBOI BHIMKH
BIJNOBIJIHI MOJaHHA OTPUMaHIi Yepe3 ONHY TakKy (QYHKIiIO, 30KpeMa, BUCOTY MIKKOHTaKTHOTI'O
IIPOCBITY, 1 3a7ja4y 3BEJICHO J]0 IIAPHUX IHTErPaIbHUX PIBHAHb. PO3B’ 30K OCTaHHIX OTPUMaHO B
AQHAJIITUYHOMY BUIJISL UTs EBHUX NPo¢iniB oyaTkoBoro aedekxry. IIpoaHanizoBaHO KOHTAKT-
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Hi mapamerpu 3aja4i. BcTaHOBIIEHO, 1110 Yepe3 po3pHB KPUBHUHU MOBEPXHi Y QYHKLIT pO3MOALTY
HOPMaJIbHUX KOHTAKTHUX HaIIPYKEHb 3’ ABIISIOTHCS MIKH.

PE3FOME. O0001IeH METOA MEKKOHTATHBIX 3a30pOB JUIS PELICHUS OCECHMMETPUUYHBIX
KOHTaKTHBIX 337124 TCOPHU YHNPYrOCTH JUIS HOJyOSCKOHEUHBIX TEJI C JOKAJIbHBIM T€OMeTpUYec-
KUM BO3MYIICHHEM IIOBEPXHOCTH. [loaxonm mpenmnonaraer MOCTPOCHHE MHTErPANBHBIX INPei-
CTaBJICHUH NEpeMENICHHI ¥ HANPSDKCHUH B KaXKIOM U3 B3aMMOJICHCTBYIOIINX TEJ KOHTAKTHON
napsl 4epe3 (HYHKIHMHY, OIpe/ieJICHHBIC Ha JIOKAJIBHON 00JIaCTH ITOBEPXHOCTH CONpshKeHus. J[s
0ecHpUKIIMOHHOTO B3aUMOCHCTBYS IIPH HAJWYUH OJHOH KPYrOBOH BBIEMKH COOTBETCTBYIOIIHE
HpECTAaBIICHUS TTOTYYCHBI Yepe3 OIHY TaKylo (YHKLHIO, B YACTHOCTH, BEICOTY MEKKOHTAKTHO-
To 3a30pa, ¥ 3aJa4a CBEJCHA K IMapHBIM MHTCIPaJIbHBIM ypaBHCHUM. PelleHue mociaeqHux mno-
JIy4CHO B aHAJIUTUYECKOM BHJE JUISl HEKOTOPBIX Npoduieii HadansHoro nedexra. [Ipoananmsu-
POBaHBI KOHTAKTHBIC NapaMeTphl 3a/1a4i. BBIABICHO, YTO NMUKK B PacHpeaCICHUH HOPMaJIbHBIX
KOHTaKTHBIX HaNPsHKEHUH 00YCIOBIICHBI Pa3phIBOM KPHBU3HEI IIOBEPXHOCTH.
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