Фізико-хімічна механіка матеріалів. – 2012. – № 4. – Physicochemical Mechanics of Materials

УДК 539.3

ВПЛИВ ДЕФЕКТІВ СТРУКТУРИ НА КОНСТРУКЦІЙНЕ ДЕМПФУВАННЯ ОДНОНАПРАВЛЕНО АРМОВАНИХ ВОЛОКНИСТИХ КОМПОЗИТІВ

І. С. КОГУТ

Інститут прикладних проблем механіки і математики ім. Я. С. Підстригача НАН України, Львів

Досліджено конструкційне демпфування в характерному елементі структури однонапрямлено армованих композитів з недостатньою адгезією на поверхнях поділу. Показано, що непроклеї поблизу розривів волокон збільшують демпфування, а щоб підвищити демпфування композитів, армованих короткими волокнами, слід усунути тертя на центральних ділянках волокон.

Ключові слова: волокнистий композит, конструкційне демпфування, ділянка ковзання.

В армованих композитах розсіяння енергії за циклічного деформування обумовлюється втратами в сполучнику і наповнювачі, а також на поверхні поділу фаз. Втрати енергії на поверхнях поділу в основному залежать від відносних зміщень і напружень тертя між матрицею та волокном, а також розривів волокон, які можуть появлятися за механізмом подрібнення [1-3]. За розтягу внаслідок концентрації дотичних напружень біля розривів (рис. 1*a*) пружні зв'язки руйнуються і з'являється ділянка *a* ковзання матриці по волокну, де відбувається конструкційне демпфування. В системах з поганим змочуванням або просочуванням пружні зв'язки слабкі або їх немає зовсім (в межах непроклею), внаслідок цього довжина ділянки ковзання може сягати значних розмірів і зливатися з непроклеями, а це призводить до відчутного зростання відносних зміщень і зменшення її довжини.

Мета роботи – дослідити вплив довжини ділянки фрикційного ковзання на конструкційне демпфування в характерному елементі структури однонапрямлено армованих стрижнів за віднульового циклічного розтягу.

Постава задачі. Приймемо відому модель [4–6], де реальний матеріал замінено гексагонально упакованими циліндричними елементами, в яких зусилля від матриці до волокна передаються за рахунок сухого тертя на контактних поверхнях у межах ділянок ковзання, а торці волокна навантаження не передають. Вважаємо, що волокна абсолютно жорсткі, матриця однорідна, ізотропна і лінійнопружна; в ненавантаженому елементі тиск матриці на волокно (наприклад, від усадки) дорівнює p_0 , а осьових зусиль немає. Елемент може навантажуватись лише розтягальними напруженнями $0 \le \sigma_{\xi} \le \overline{\sigma}$ через торці матриці ($\overline{\sigma} = P(F + +F_1)/FF_0$, де F, F_1 і F_0 – відповідно площі поперечних перетинів матриці, волокна і стрижня; P – зусилля розтягу стрижня; σ_{ξ} і $\overline{\sigma}$ – напруження, які викликають ділянки ковзання завдовжки ξ і a, відповідно). Розсіяння енергії $\Delta \mathcal{P}$ в елементі (рис. 1*b*) таке саме, як в околі розриву неперервного волокна. За таких умов визначення $\Delta \mathcal{P}$ зводять до інтегрування елементарних робіт $d(\Delta \mathcal{P})$, які виконують напруження тертя $\tau(x,\xi)$ на переміщеннях $u(x,\xi)$ матриці відносно волокна в ме-

Контактна особа: І. С. КОГУТ, e-mail: tkim@iapmm.lviv.ua

жах ділянки фрикційного ковзання. Потрібно визначити $\Delta \Im(\beta)$ і знайти оптимальну відносну довжину β^* ділянки ковзання, за якої розсіяння енергії максимальне.

Рис. 1. Епюра дотичних напружень в околі розриву волокна (*a*) і розрахункова схема характерного елемента структури (*b*).

Fig. 1. Curve of tangential stresses in the vicinity of fibre fracture (*a*) and calculation scheme of a typical structural unit (*b*).

Дослідження розподілів напружень у матриці на різних стапах деформування. В межах прийнятої моделі знайдемо розподіли нормального $\sigma(X)$ і дотичного $\tau(X)$ напружень відповідно в біжучому перетині та на внутрішній поверхні матриці, а також визначимо довжину ділянки ковзання за напруження $\overline{\sigma}$. Виберемо початок координат в точці O (рис. 2) у вершині (кінці) ділянки ковзання і розглянемо поетапне деформування структурного елемента за віднульового розтягу.

Перший етап (навантаження) характеризується зростанням напруження σ_{ξ} від 0 до $\overline{\sigma}$, довжини ділянки ковзання ξ з країв до середини елемента і контактного тиску від p_0 до p(X) внаслідок обтискання волокна матрицею, розтягнутою осьовим зусиллям N(X). Нехтуємо неоднорідним розподілом p(X) і вважаємо, що в елементі dX матриці реалізується однорідний осьовий розтяг. За такої умови радіальні переміщення u_r контактної поверхні матриці, спричинені зміною тиску $\Delta p = p(X) - p_0$ і зростанням осьової сили від 0 до N(X), визначають так:

$$u_r = \frac{d}{2E} (\sigma_{\theta} - \mu \sigma_r) - \frac{\mu d}{2EF} N(X) ,$$

де $\sigma_r = \frac{d^2}{D^2 - d^2} \left(1 - \frac{D^2}{d^2} \right) \Delta p; \quad \sigma_\theta = \frac{d^2}{D^2 - d^2} \left(1 + \frac{D^2}{d^2} \right) \Delta p$ – радіальні і колові на-

пруження на контактній поверхні матриці; E, μ – модуль Юнґа і коефіцієнт Пуассона матриці; d і D – діаметри волокна і матриці, відповідно; $N(X) = \sigma(X) \cdot F$.

Враховуючи, що волокно абсолютно жорстке, із умови $u_r = 0$ одержуємо:

$$p(X) = \frac{\mu}{1 + \mu + 2\alpha} \sigma(X) + p_0, \quad \text{de} \quad \alpha = F_1 / F$$

Підставивши значення p(X) в умову рівноваги елемента матриці dx

$$\frac{dN}{dX} = \pi d \cdot \tau(X), \tag{1}$$

отримаємо:

$$\sigma'(X) - \eta \sigma(X) = q , \qquad (2)$$

47

де $\eta = \frac{\mu}{1 + \mu + 2\alpha} \cdot \frac{\pi df}{F}$; $q = p_0 \frac{\pi df}{F}$; f – коефіцієнт сухого тертя-ковзання.

Загальний розв'язок рівняння має вигляд

$$\sigma(X) = Ce^{\eta X} - \frac{q}{\eta}, \qquad (3)$$

де $C = q/\eta$ – константа, визначена з умови $\sigma(0) = 0$. Отже,

$$\sigma(X) = \frac{q}{\eta} \left(e^{\eta X} - 1 \right), \quad \tau(X) = f p_0 e^{\eta X}, \tag{4}$$

а довжина ділянки ковзання, визначена із умови $\sigma(a) = \overline{\sigma}$,

Рис. 2. Розподіли розтягальних напружень у матриці.

Другий етап (розвантаження) характеризується зниженням напруження σ_{ξ} від $\overline{\sigma}$ до 0, тиску і розтягальних напружень відповідно до $p_1(x)$ і $\sigma_1(x)$ (функції в системі координат $xO_1\sigma$ (рис. 2)), зміною напряму напруження тертя на ділянці зворотного ковзання матриці. З умови рівноваги правої половини волокна знаходимо, що довжина ділянки зворотного ковзання у розвантаженому структурному елементі становить a/2.

Підставивши значення $\tau_1(x) =$

$$= fp_1(x) = \frac{\mu}{1 + \mu + 2\alpha} f\sigma_1(x) + fp_0$$
 B

умову рівноваги елемента *dx* матриці в кінці другого етапу

$$\frac{dN_1}{dx} = -\pi d \cdot \tau_1(x) \,,$$

отримуємо рівняння

$$\sigma_1'(x) + \eta \sigma_1(x) = -q ,$$

загальний розв'язок якого

$$\sigma_1(x) = Ce^{-\eta x} - \frac{q}{\eta}.$$

3 умови, що на торці матриці $\sigma_1\left(\frac{a}{2}\right) = 0$, знаходимо $C = \frac{q}{\eta}e^{\eta \frac{a}{2}}$ і записуємо

розподіли напружень у кінці другого етапу деформування

$$\sigma_1(x) = \frac{q}{\eta} e^{\eta \left(\frac{a}{2} - x\right)} - \frac{q}{\eta}, \quad \tau_1(x) = f p_0 e^{\eta \left(\frac{a}{2} - x\right)}.$$

Отже, впродовж першого циклу деформування довжина ділянки ковзання змінюється від 0 до *a* і від 0 до *a*/2 за навантаження і розвантаження, відповідно; в наступних циклах матриця циклічно деформується з країв лише на ділянках завдовжки *a*/2. Центральна частина матриці завдовжки *a* залишається розтягненою в кінці першого циклу напруженням $\sigma_1(0)$ і подальших циклічних деформації не зазнає.

Далі знайдемо розподіли напружень на ділянці ковзання a/2 в кінці першого етапу другого циклу деформування. Для радіальних переміщень контактної поверхні матриці від зміни тиску і осьової сили на величини $p(x) - p_1(x)$ і $N(x) - N_1(x)$, відповідно, запишемо вираз

$$\frac{d}{2E}\left(\sigma_{\theta} - \mu\sigma_{r}\right) - \frac{\mu d}{2EF}\left(N(x) - N_{1}(x)\right) = 0$$

з якого знайдемо:

$$p(x) = \frac{\mu}{1+\mu+2\alpha} \left(\sigma(x) - \sigma_1(x)\right) + p_0 e^{\eta\left(\frac{a}{2}-x\right)}$$

Підставивши p(x) у формулу (1), отримуємо рівняння (2), загальний розв'язок якого (3), де $C = \frac{q}{\eta} e^{\eta \frac{a}{2}}$, визначена із умови $\sigma(0) = \sigma_1(0)$.

Отже, розподіли напружень у межах ділянки ковзання а/2

$$\sigma(x) = \frac{q}{\eta} e^{\eta \left(x + \frac{a}{2}\right)} - \frac{q}{\eta}, \quad \tau(x) = f p_0 e^{\eta \left(x + \frac{a}{2}\right)}$$

такі ж, як в кінці першого етапу першого циклу деформування, бо вони є функції вигляду (4), записані в новій системі координат з початком у точці O_1 . Очевидно, що розподіли напружень на ділянці ковзання $\xi/2$, яка виникає за навантаження $0 \le \sigma_{\xi} \le \overline{\sigma}$ (рис. 2), в системі координат з початком у точці O_2 будуть

$$\sigma(x^*) = \frac{q}{\eta} \left(e^{\eta x^*} - 1 \right), \qquad \tau(x^*) = fp_0 e^{\eta x^*}, \qquad \text{de} \qquad \frac{\xi}{2} \le x^* \le \xi$$

Розрахунок розсіяння енергії за тертя на всій ділянці ковзання. Розсіяння енергії під час навантаження – це робота сил тертя на переміщеннях матриці вздовж волокна в межах ділянки ковзання. Враховуючи, що в структурному елементі з двома ділянками ковзання за навантаження і розвантаження виконуються однакові роботи, розсіяну за цикл енергію можна записати так:

$$\Delta \Im = 4 \int_{0}^{a/2} \delta_{\Im} dx ,$$

де $\delta_{\mathfrak{H}} = \int_{\xi_1}^a T(x, \xi) du$ – елементарна робота сили тертя $T(x, \xi)$ на переміщенні

 $u(x, \xi)$ елемента матриці dx в біжучому перетині x під час навантаження, коли $\sigma_{\xi_l} \le \sigma_{\xi} \le \overline{\sigma}, \ \tau_1(x) \le \tau(x^*) \le \tau(x)$ і $\xi_l \le \xi \le a$ (див. рис. 2).

Переміщення в біжучому перетині *x* матриці за навантаження σ_{ξ} знайдемо, проінтегрувавши на відрізку $\left[\frac{a}{2} - \frac{\xi}{2}, x\right]$ відносні видовження

$$\varepsilon(x,\,\xi) = \frac{\sigma(x) - \sigma_1(x)}{E} - \frac{\mu}{E} \left(\sigma_\theta + \sigma_r\right) = \frac{\sigma(x) - \sigma_1(x)}{E} - \frac{2\mu\alpha}{E} \left(p(x) - p_1(x)\right)$$

від зміни напружень і тиску на величини $\sigma(x) - \sigma_1(x)$ і $p(x) - p_1(x)$, відповідно,

$$\text{de } \sigma(x) = \sigma(x^*)\Big|_{x^* = \xi - \frac{a}{2} + x} = \frac{q}{\eta} \left(e^{\eta \left(\xi - \frac{a}{2} + x\right)} - 1 \right), \ p(x) = p(x^*)\Big|_{x^* = \xi - \frac{a}{2} + x} = p_0 e^{\eta \left(\xi - \frac{a}{2} + x\right)}$$

Одержимо:

$$u(x, \xi) = \frac{1}{E} \left(\frac{q}{\eta} - 2\mu\alpha p_0 \right) \int_{0,5(a-\xi)}^{x} \left(e^{\eta\xi} e^{\eta\left(x-\frac{a}{2}\right)} - e^{\eta\left(\frac{a}{2}-x\right)} \right) dx =$$

= $\frac{1}{\eta E} \left(\frac{q}{\eta} - 2\mu\alpha p_0 \right) \left(e^{\eta\left(\xi + x - \frac{a}{2}\right)} + e^{\eta\left(\frac{a}{2}-x\right)} - 2e^{\eta\frac{\xi}{2}} \right).$

Враховуючи, що $\xi_1 = a - 2x$, $T(x, \xi) = \pi d \cdot \tau(x^*) dx = \pi df p_0 e^{\eta \left(\xi + x - \frac{a}{2}\right)} dx$, $du = u'_{\xi}(x, \xi) d\xi$, одержимо формулу для розсіяння енергії:

$$\Delta \Im = D \int_{0}^{a/2} dx \int_{a-2x}^{a} e^{\eta \left(\xi + x - \frac{a}{2}\right)} \left(e^{\eta \left(\xi + x - \frac{a}{2}\right)} - e^{\eta \frac{\xi}{2}}\right) d\xi = DI,$$

= $4\pi df p_0 \frac{1}{E} \left(\frac{q}{\eta} - 2\mu\alpha p_0\right); I = \frac{1}{12\eta^2} \left[3e^{\eta 2a} + 6e^{\eta a} - 8e^{\eta \frac{3}{2}a} - 1\right].$

Зауважимо, що в праці [7] розсіяння енергії розраховане за площею петлі гістерезису, причому знехтувано впливом зміни контактного тиску на розподіл осьових зусиль і переміщень матриці.

Розрахунок розсіяння енергії на ділянці ковзання з непроклеєм. Розглянемо армування композита волокнами завдовжки a [8], в яких серединна ділянка $2a^*$ покрита замаслювачем (рис. 3a), де $0 \le a^* \le a/2$. Вважаємо, що в зоні покриву f = 0, а тиск матриці на волокно дорівнює p_0 .

Рис. 3. Схема волокна з антифрикційним покривом на серединній ділянці (*a*) і розподіли напружень у матриці (*b*).

Fig. 3. Scheme of a fibre with antifriction coating in the middle region (*a*) and stress distribution in the matrix (*b*).

дe D

Тут розсіяння енергії дорівнює сумі робіт $\Delta \Im_1$ і $\Delta \Im_2$, які виконуються силами тертя на переміщеннях внаслідок пружного деформування матриці відповідно на ділянках $\frac{a}{2} - a^*$ і $\frac{a}{2}$, коли $0 \le \sigma_{\xi} \le \sigma_{\xi_2}$ і $\sigma_{\xi_2} \le \sigma_{\xi} \le \overline{\sigma}$ (рис. 3*b*). Очевидно, що

$$\Delta \Theta_{1} = 4 \int_{a^{*}}^{a/2} dx \int_{a-2x}^{a-2a^{*}} e^{\eta \left(\xi + x - \frac{a}{2}\right)} \left(e^{\eta \left(\xi + x - \frac{a}{2}\right)} - e^{\eta \frac{\xi}{2}} \right) d\xi,$$
$$\Delta \Theta_{2} = 4 \int_{a^{*}}^{a/2} dx \int_{a-2a^{*}}^{a} T(x, \xi) du,$$

де u – переміщення від зміни напружень і тисків відповідно на величини $\sigma(x) - \sigma_2(x), \ \sigma(a^*) - \sigma_2(a^*)$ і $p(x) - p_2(x), \ p(a^*) - p_2(a^*)$, коли $\sigma_{\xi_2} \le \sigma_{\xi} \le \overline{\sigma}$, визначають так:

$$u = \int_{a^{*}}^{x} \varepsilon(x) dx + \varepsilon(a^{*}) a^{*} = \frac{1}{\eta E} \left(\frac{q}{\eta} - 2\mu\alpha p_{0} \right) \left[\left(e^{\eta x} - e^{\eta a^{*}} \right) \left(e^{\eta \left(\xi - \frac{a}{2} \right)} - e^{\eta \left(\frac{a}{2} - 2a^{*} \right)} \right) + \left(e^{\eta \left(\xi - \frac{a}{2} + a^{*} \right)} - e^{\eta \left(\frac{a}{2} - a^{*} \right)} \right) a^{*} \right],$$

а напруження і тиск – так:

$$\sigma_2(x) = \sigma(x)|_{\xi=a-2a^*}; \qquad p_2(x) = p(x)|_{\xi=a-2a^*}.$$

Підставивши в $\Delta \Im_2$ значення $T(x, \xi)$ і du, одержимо:

$$\Delta \mathfrak{B}_{2} = D \int_{a^{*}}^{a/2} dx \int_{a-2a^{*}}^{a} \left(e^{\eta(2x-a)} - \left(1 - \eta a^{*}\right) e^{\eta(a^{*}-a)} e^{\eta x} \right) e^{\eta 2\xi} d\xi.$$

Отже, тут розсіяння енергії буде:

$$\Delta \Im = D(I_1 + I_2),$$

$$\text{de } I_1 = \frac{1}{12\eta^2} \left[3e^{\eta^2(a - 2a^*)} + 6e^{\eta(a - 2a^*)} - 8e^{\eta^3\left(\frac{a}{2} - a^*\right)} - 1 \right],$$

$$I_2 = \frac{1}{4\eta^2} \left(e^{\eta^2 a} - e^{\eta^2(a - 2a^*)} \right) \left[1 - e^{\eta(2a^* - a)} - 2(1 - \eta a^*) \left(e^{\eta\left(\frac{a^* - a}{2}\right)} - e^{\eta(2a^* - a)} \right) \right].$$

Числовий приклад. Візьмемо такі характеристики композита: $d = 0,2 \cdot 10^{-3}$ m; $\mu = 0,33$; f = 0,2; $\alpha = 0,1$; $p_0 = 2,943$ MPa; $\overline{\sigma} = 39,24$ MPa. За таких значень довжина ділянки ковзання $a = 15,7 \cdot 10^{-3}$ m. Як видно (рис. 4), сумарне розсіяння енергії істотно залежить від відносної довжини $\beta = 2a^*/a$, причому існує оптимальне значення $\beta^* \approx 0,5$, за якого розсіяння енергії максимальне. Отже, щоб збільшити розсіяння енергії, слід усунути тертя між матрицею і волокном на центральній ділянці завдовжки $\approx 0,5a$.

ВИСНОВКИ

Розриви волокна, тріщини поперечного зсуву і непроклеї на межі поділу підвищують конструкційне демпфування волокнистих композитів. Щоб збільшити демпфування композитів, армованих короткими волокнами, слід усунути тертя на серединних ділянках волокон.

РЕЗЮМЕ. Исследовано конструкционное демпфирование в характерном элементе структуры однонаправленно армированных композитов с недостаточной адгезией на поверхностях раздела. Показано, что непроклеи вблизи разрывов волокон увеличивают демпфирование, а чтобы увеличить демпфирования композитов, армированных короткими волокнами, следует устранить трение на центральных участках волокон.

SUMMARY. Structural damping in unidirectionally reinforced composities with insufficient adhesion on the interface has been investigated. It is shown that the poorly glued sites near fibre fracture increase damping; in the composites reinforced by short fibres one should exclude friction on the middl part of the fibre to increase composite damping.

- 1. Болотин В. В., Тамуж В. П. О распределении длин разорванных волокон в однонаправленных композитах // Механика композит. материалов. 1982. № 6. С. 1107–1110.
- Разрушение конструкций из композитных материалов / И. В. Грушецкий, И. П. Димитриенко, А. Ф. Ермоленко и др.; Под ред. В. П. Тамужа, В. Д. Протасова. – Рига: Зинатне, 1986. – 264 с.
- 3. *Розен Б.* Разрушение составных армированных материалов при растяжении // Ракетная техника и космонавтика. 1964. № 11. С. 121–129.
- 4. *Уманский* Э. С. Некоторые вопросы взаимодействия элементов составного материала, армированного волокном // Порошковая металлургия. 1969. **73**, № 1. С. 101–107.
- 5. Напряженное состояние в зоне передачи нагрузки в композитном образце при одноосном растяжении / В. Л. Кулаков, Ю. М. Тарнопольский, А. К. Арнаутов, Я. Рюттер // Механика композит. материалов. – 2004. – 40, № 2. – С. 145–160.
- Холистер Г., Томас К. Материалы, упрочненные волокнами / Под ред. В. С. Ивановой. – М.: Металлургия, 1969. – 149 с.
- Уманский Э. С. К оценке конструкционных демфирующих свойств композиционных материалов, армированных однонаправленными волокнами // Рассеяние энергии при колебаниях механических систем: Сб. научн. тр. – К.: Наук. думка, 1970. – С. 110–127.
- Наполнители для полимерных композиционных материалов: Справ. пос. / Под ред. П. Г. Бабаевского. – М.: Химия, 1981. – 736 с.

Одержано 03.09.2010