ДОСЛІДЖЕННЯ СОРБЦІЇ ТА ДЕСОРБЦІЇ ВОДНЮ ЛИТИМИ ТА ШВИДКОЗАГАРТОВАНИМИ СПЛАВАМИ Zr–V

Д. В. ВИНОГРАДОВ¹, М. А. ТИХОНОВСЬКИЙ², І. В. КОЛОДІЙ², Ю. П. БОБРОВ², Т. Ю. РУДИЧЕВА²

¹ Науково-виробничий комплекс "Відновлювальні джерела енергії та ресурсозберігальні технології" Національного наукового центру Харківського фізико-технічного інституту НАНУ; ² Інститут фізики твердого тіла, матеріалознавства та технологій Національного наукового центру Харківського фізико-технічного інституту НАНУ

Досліджено процеси поглинання та виділення водню сплавами Zr–V різного складу в литому і швидкозагартованому з розплаву станах. Виявлено, що за характеристиками сорбції-десорбції сплави в литому стані перевершують швидкозагартовані.

Ключові слова: розплав, водень, сорбція-десорбція, спінінгування, фази Лавеса, мікроструктура, гідрид.

Сплави Zr–V, головно сполука ZrV₂ (т.зв. фази Лавеса складу AB₂), відомі як сплави-накопичувачі водню (CHB) [1]. До їх переваг можна віднести високий атомарний вміст водню [2–4], відносно низькі значення температури і тиску початку утворення гідриду [3, 4], високі об'ємний (до 125 kg H₂ на m³ сплаву) та масовий (від 1,5 до 2,5 mass.%) вміст водню [3]. До недоліків зазвичай відносять підвищену температуру розкладання гідридів на їх основі [5]. Сплави Zr–V можна використати для зберігання водню [6], виготовлення електродів паливних елементів [6], а також як джерела чистого і активного водню [7]. Для цього, як правило, вживають сполуку ZrV₂, що отримана методом дугового плавлення і має крупнозернисту кристалічну структуру. Відомо [8], що на взаємодію матеріалу з воднем може істотно впливати як його склад, так і структурний стан. Нижче вивчено процеси поглинання і виділення водню сплавами Zr–V різного складу, які перебувають у звичайному крупно- та субмікрокристалічному або нанокристалічному станах і отримані швидким гартуванням з розплаву.

Методика випроб. Досліджували чотири склади сплаву: стехіометричний ZrV₂, сплави, що відрізняються від стехіометрії (Zr_{0,29}V_{0,71} і Zr_{0,38}V_{0,62}), а також евтектичний Zr_{0,6}V_{0,4}. Вихідні сплави виплавляли в дуговій печі в чистому аргоні, використовуючи невитратний вольфрамовий електрод. Щоб досягти гомогенності, їх переплавляли 3–5 разів, перевертаючи під час кожного переплаву. Отримані зразки важили ~20 g. Загартовували з розплаву методом спінінгування на установці "Лента-2M" [9]; лінійна швидкість обертання мідного барабана 25 m/s, товщина швидкозагартованих стрічок біля 200 µm, швидкість охолодження розплаву ~10⁶ grad/s. Мікроструктуру сплавів вивчали металографічним методом на мікроскопі MMP-4 (збільшення до ×1500). Для виявлення структури шліфи травили розчином: 5 g FeCl₃ + 15 ml HCl + 50 ml H₂O). Мікротвердість зразків вимірювали приладом ПМТ-3 за навантаження 50 g.

Водневу ємність сплавів досліджували волюмометричним методом за відомою методикою [10]. У робочу камеру зі зразком напускали водень, нагрівали її і вимірювали залежність тиску H_2 від температури ($P_{max} = 3 \cdot 10^5$ Pa). Швидкозагар-

Контактна особа: Д. В. ВИНОГРАДОВ, e-mail: vinogradov@kipt.kharkov.ua

товані зразки наводнювали при температурі до 350°С, щоб уникнути істотних змін у їх структурі, зокрема, запобігти кристалізації аморфного складника. Литі зразки наводнювали за температур до 400...450°С. Кількість поглинутого водню визначали як різницю між вмістом напущеного та вільного в газовій фазі після охолодження до кімнатної температури.

Фазовий склад зразків і кристалічну структуру фаз до і після наводнювання вивчали на дифрактометрі ДРОН-2.0 у мідному та залізному випромінюванні. Масову частку фаз і параметри кристалічної структури визначали методом Рітвельда, а десорбцію водню з наводнених сплавів у вакуумі за підвищення температури – мас-спектрометром МХ7203.

Структура і фазовий склад вихідних сплавів. За результатами металографічних досліджень (рис. 1) всі зразки мали двофазну структуру. Розмір зерен для сплаву ZrV_2 , $Zr_{0,29}V_{0,71}$ і $Zr_{0,38}V_{0,62}$ становив ~5...10 µm. Сплав $Zr_{0,6}V_{0,4}$ – високодисперсна евтектика з невеликою кількістю первинних кристалів. Мікротвердість сплавів $Zr_{0,6}V_{0,4}$, ZrV_2 , $Zr_{0,29}V_{0,71}$, $Zr_{0,38}V_{0,62}$ рівна відповідно 3,30 GPa; 2,68; 2,32 і 2,79 GPa.

Рис. 1. Мікроструктура литих сплавів: $a - Zr_{0,6}V_{0,4}$; $b - ZrV_2$; $c - Zr_{0,29}V_{0,71}$; $d - Zr_{0,38}V_{0,62}$. Fig. 1. Microstructure of cast alloys: $a - Zr_{0.6}V_{0.4}$; $b - ZrV_2$; $c - Zr_{0.29}V_{0.71}$; $d - Zr_{0.38}V_{0.62}$.

Рис. 2. Дифрактограми сплаву ZrV_2 у литому (*a*) та швидкозагартованому (*b*) станах: * $-\alpha$ -Zr; • $-ZrV_2$ (C15); • -V; * $-\alpha$ -Zr'; • $-Zr_3V_3O$.

Fig. 2. Diffractograms of ZrV_2 alloy in cast (*a*) and fast quenched (*b*) states: * $-\alpha$ -Zr; $\blacklozenge - ZrV_2$ (C15); O - V; $\times -\alpha$ -Zr'; $\blacklozenge - Zr_3V_3O$.

Як бачимо, найбільшу мікротвердість має високодисперсний евтектичний сплав Zr_{0,6}V_{0,4}. На рис. 2 наведено дифрактограми сплаву ZrV₂ у різних станах, а в табл. 1 – фазовий склад сплавів за результатами дифрактометрії.

Сплав*	Фаза	Вміст фази, mass.%	Параметр гратки, Å	<i>V</i> , Å ³	Вміст ком- понентів сплаву, mass.%	
Zr _{0,6} V _{0,4} FQ	α-Zr	12,4	<i>a</i> = 3,232; <i>c</i> = 5,1493	46,58	71.9% Zr +	
	α-ZrO _{0,22} **	37	<i>a</i> = 3,252; <i>c</i> = 5,1804	47,44	+ 26,7% V +	
	ZrV ₂ (C15)	50,6	<i>a</i> = 7,449	413,33	+ 1,4% O	
Zr _{0,6} V _{0,4} cast	α-ZrO _{0,05} **	47,8	a = 3,238; c = 5,156	46,82	72,4% Zr +	
	ZrV ₂ (C15)	52,2	<i>a</i> = 7,475	417,67	+ 27,6% V	
Zr _{0,38} V _{0,62} FQ	ZrV ₂ (C15)	55,4	<i>a</i> = 7,450	413,49	53,22% Zr + + 46,52% V + + 0,26% O	
	ZrV ₂ (C14)	32,7	<i>a</i> = 5,2896; <i>c</i> = 8,659	209,81		
	α -ZrO _{0,13} **	11,9	a = 3,247; c = 5,171	47,21		
$Zr_{0.28}V_{0.62}$	ZrV ₂ (C15)	91,2	<i>a</i> = 7,4656	416,09	51,8% Zr + + 48,2% V	
cast	α -ZrO _{0,04} **	8,8	a = 3,236; c = 5,156	46,76		
	ZrV ₂ (C15)	64	<i>a</i> = 7,445	412,66		
	V	14,4	<i>a</i> = 3,0343	27,94		
ZrV ₂ FO	Zr ₃ V ₃ O _{0,67}	9,5	<i>a</i> = 12,1619	1798,89	47,86% Zr + + 51 52% V +	
	α-ZrO _{0,28} **	8,3	a = 3,262; c = 5,186	47,79	+ 0,62% O	
	α-Zr	3,9	a = 3,2324; c = 5,1488	46,58		
	ZrV ₂ (C15)	74,6	7,488	419,85		
ZrV_2 cast	V	14	3,042	28,15	46,6% Zr +	
	α -ZrO _{0,05} **	11,4	a = 3,237; c = 5,158	46,81	+ 53,4% V	
Zr _{0,29} V _{0,71} FQ	$ZrV_{2}(C15)$	49,9	<i>a</i> = 7,446	412,83	36,72% Zr +	
	V	36,8	<i>a</i> = 3,0354	27,97	+ 63,15% V +	
	α -ZrO _{0,06} **	13,3	a = 3,2408; c = 5,161	46,94	+ 0,13% O	
Zr _{0,29} V _{0,71} cast	ZrV_2 (C15)	62,4	<i>a</i> = 7,477	418,01	47.00/ 7*	
	V	19,8	<i>a</i> = 3,0357	27,98	4/,2% Zf + + 52 8% V	
	α -ZrO _{0,05} **	17,8	a = 3,239; c = 5,157	46,85	· 52,070 V	

Таблиця 1. Фазовий склад сплавів Zr-V

* FQ (fast quenched) – швидкозагартований стан, cast – литий;

** твердий розчин кисню в цирконії.

У результаті швидкого гартування у всіх сплавах, крім $Zr_{0,29}V_{0,71}$, присутній кисень у вигляді компонента фази Zr_3V_3O або як елемент втілення в твердому розчині (α -Zr'). Також, крім фази C15, характерної для литих сплавів, після швидкого гартування з'явилася і фаза C14 у сплавах $Zr_{0,6}V_{0,4}$, $Zr_{0,38}V_{0,62}$.

Поглинання водню. Під час першого нагрівання сплаву у водні до певної температури (температури активації) поглинання не виявили. Далі, після початку поглинання, процес пришвидшувався, досягаючи насичення. Максимальну кількість поглинутого водню зафіксували за кімнатної температури і максимального тиску. Кожний склад має свої температурні зони його активного поглинання. Як

правило, за повторного насичення температура початку активного поглинання зміщувалася в область високих значень. Визначено (табл. 2) параметри поглинання водню різними сплавами, розраховані за результатами волюметрії.

Сплав	$T_{\rm activ}$,	а	$V_{\rm rech}$	ΔT_1	ΔT_2
	K	m ³ /kg [1	K		
Zr _{0,6} V _{0,4} FQ	463	0,272 [2,42]	0,096,4 [0,858]	333373	363423
ZrV ₂ FQ	573	0,196 [1,74]	0,096,1 [0,855]	463533	473523
Zr _{0,38} V _{0,62} FQ	> 623	0,221 [1,97]	0,139 [1,24]	473623	473623
Zr _{0,29} V _{0,71} FQ	373	0,230 [2,05]	0,082,1 [0,73]	423303	483573
$Zr_{0,6}V_{0,4}$ cast	573	0,288 [2,56]	0,149 [1,33]	573623	423473
ZrV ₂ cast	623	0,275 [2,45]	0,027 [0,24]	523698	573623
Zr _{0,38} V _{0,62} cast	593	0,273 [2,43]	0,161 [1,43]	573673	-
Zr _{0,29} V _{0,71} cast	453	0,304 [2,70]	0,146 [1,30]	453303	423573

Таблиця 2. Параметри поглинання водню сплавами Zr-V

 T_{activ} – температура активації сплаву; a – кількість поглинутого сплавом водню; V_{rech} – кількість водню, поглинутого сплавом після регенерації впродовж 2 h при 623K; T_1 , T_2 – зони активного поглинання водню після першого наводнювання і регенерації.

Необхідно зауважити, що сплав $Zr_{0,38}V_{0,62}$ (швидкозагартований) активувався при T > 623 К, тобто його структура частково змінювалася порівняно з вихідним станом. Кількість поглинутого водню після регенерації менша, ніж за початкового напуску (табл. 2), що свідчить про те, що у першому випадку він десорбувався неповністю. Використовуючи криві сорбції-десорбції, розрахували ізотерми поглинання водню (рис. 3).

Fig. 3. Isotherms of hydrogen sorption of fast quenched (a) and cast (b) alloys $Zr_{0.6}V_{0.4}$, ZrV_2 , $Zr_{0.38}V_{0.62}$, $Zr_{0.29}V_{0.71}$: \blacksquare , \blacktriangle , \blacklozenge , \blacklozenge – initial hydrogen sorption ; \Box , \triangle , O, \diamondsuit – hydrogen sorption after regeneration under vacuum 2 h at 623 K.

Структура та фазовий склад наводнених сплавів. На рис. 4 наведені характерні дифрактограми сплаву після насичення воднем, а в табл. 3 наведено фазовий склад та характеристики кристалічної структури фаз (параметри кристалічної гратки *a*, *c* та об'єм елементарної комірки *V*). Крім того, вказано масову частку фаз та загальний вміст водню в сплаві після насичення.

Масовий вміст водню, отриманий за рентгенографічним аналізом, якісно збігається з результатами розрахунку за залишковим тиском (див. табл. 2). Кількісну відмінність можна пояснити тим, що у першому випадку вивчали тільки частину зразка, який може бути неоднорідним за складом. Крім того, в деяких випадках зразки подрібнювали на порошок, що може викликати часткову десорбцію водню.

Рис. 4. Дифрактограми зразків наводнених сплавів ZrV₂ у литому (*a*) та швидкозагартованому (*b*) станах (*a*: * – ZrH₂; ◆ – ZrV₂H_{4,4}; * – ZrH₂; *b*: ◆ – ZrV₂H_{3,5}; × – V₂H_{0,8}; ● – Zr₃V₃O_{0,67}H_{9,6}).

Fig. 4. Diffractograms of ZrV_2 alloys after hydrogen sorption in cast (*a*) and fast quenched (*b*) states (*a*: $* - ZrH_2$; $\blacklozenge - ZrV_2H_{4,4}$; $* - ZrH_2$; *b*: $\blacklozenge - ZrV_2H_{3.5}$; $\times - V_2H_{0.8}$; $\blacklozenge - Zr_3V_3O_{0.67}H_{9.6}$).

Сплав	Фаза	Вміст фаз, mass.%	Параметр гратки фаз, Å	<i>V</i> , Å ³	Вміст H ₂ , mass.%	
Zr _{0,6} V _{0,4} FQ	$ZrV_{2}H_{4.6}$	64,3	<i>a</i> = 7,9304	498,75		
	ZrH_2	22,2	a = 3,5187 c = 4,451	55,11	2,26	
	ZrH ₂ (3 киснем)	13,5	a = 3,578 c = 4,483	57,68		
	$ZrV_{2}H_{4,6}$	88,2	<i>a</i> = 7,957	503,79		
$Zr_{0,6}V_{0,4}$ cast	ZrH_2	11,8	a = 3,525 c = 4,494	55,84	2,32	
Zr _{0,38} V _{0,62} FQ	$ZrV_2H_{4,32}$	100	<i>a</i> = 7,835	480,97	1,97	
	$ZrV_{2}H_{4,6}$	84	<i>a</i> = 7,9473	501,95		
$Zr_{0,38}V_{0,62}$ cast	ZrH_2	16	a = 3,5197 c = 4,4511	55,14	2,32	
	$ZrV_2H_{3,5}$	74,4	<i>a</i> = 7,7911	472,93		
ZrV ₂ FQ	Zr ₃ V ₃ O _{0,6} H _{9,6}	9,5	<i>a</i> = 13,026	2210,21		
	$V_2H_{0,8}$	10,6	a = 6,005 c = 6,672	240,59	1,73	
	ZrH_2	5,5	a = 3,5202 c = 4,5288	56,14		
ZrV ₂ cast	$ZrV_2H_{4,4}$	67,5	<i>a</i> = 7,932	499,05		
	ZrH ₂	32,5	a = 3,521 c = 4,4511	55,18	2,2	
Zr _{0,29} V _{0,71} FQ	$ZrV_2H_{4,5}$	75,3	<i>a</i> = 7,9175	496,32		
	$V_{2}H_{0,85}$	18,5	a = 6,003 c = 6,8248	245,94	2,00	
	ZrH_2	6,2	a = 3,518 c = 4,454	55,12		
$Zr_{0,29}V_{0,71}$ cast	$ZrV_2H_{4,52}$	81,8	<i>a</i> = 7,947	501,89		
	ZrH ₂	11,4	a = 3,5187 c = 4,4509	55,11	2,18	
	V_2H	6,8	a = 6,035 c = 6.874	250,36		

Таблиця 3. Характеристики сплавів Zr-V після наводнювання

Порівнюючи табл. 1 та 3, можна зробити висновок, що фази C14 і C15 під час наводнювання повністю переходили у фазу ZrV_2H_x , фаза Zr_3V_3O перетворювалася на $Zr_3V_3O_{0,6}H_x$, а Zr та V частково утворювали бінарні гідриди ZrH₂ та V₂H, а частково переходили у фазу ZrV_2H_x . У всіх випадках литі сплави поглинали дещо більше водню, ніж швидкозагартовані. Це можна пояснити тим, що в останніх є більше кисню, який перешкоджає проникненню водню. Крім того, під час наводнювання у деяких швидкозагартованих сплавах виявили фазу V₂H_{0,8}, чого не спостерігали у литих сплавах.

Дослідження десорбції наводнених сплавів. Мас-спектрометричні дані (табл. 4) про кількість водню, що виділився під час нагрівання наводнених зразків у вакуумі до температури 900°С, якісно відповідають результатам оцінки вмісту поглинутого водню волюмометричним методом (див. табл. 2). Кількісну відмінність можна пояснити тим, що для масспектрометрії використовували близько 0,01 g наводненого спла-

Таблиця 4. Кількість водню, десорбованого під час нагрівання у вакуумі до температури 900°С

Сплав*	H ₂ , mass.%
Zr _{0,6} V _{0,4}	2,38 / 1,758
ZrV ₂	2,308 / 1,16
Zr _{0,38} V _{0,62}	2,86 / 2,4
$Zr_{0,29}V_{0,71}$	2,97 / 2,776

- у чисельнику - cast; у знаменнику - FQ.

ву, який може бути неоднорідним за складом.

На рис. 5 побудовано криві десорбції водню зі сплавів під час нагрівання у вакуумі. Як бачимо, в литих сплавах піки десорбції розташовані здебільш в порівняно низькому температурному інтервалі 573...723 К. Згідно з літературними даними [1], фаза ZrV_2H_x для x = 3...5 втрачає стабільність приблизно при тих самих температурах. Отже, можна вважати, що піки за низьких температур у литих сплавах, ймовірно, відповідають десорбції водню з фази ZrV_2H_x . У швидкозагартованих вони зміщені до вищих температури (623...823 К). Враховуючи близький фазовий склад, підвищення температури початку десорбції можна пояснити меншим вмістом водню у фазі ZrV_2H_x . Крім того, різницю у температурі початку десорбції може викликати кисень, присутній у швидкозагартованих сплавах, який може розташовуватися як межами зерен, блокуючи дифузію водню, так і в позиціях втілення, зменшуючи можливість його накопичення.

Рис. 5. Температурні криві десорбції водню зі швидкозагартованих (*a*) та литих (*b*) сплавів: $I - Zr_{0,6}V_{0,4}$; $2 - ZrV_2$; $3 - Zr_{0,38}V_{0,62}$; $4 - Zr_{0,29}V_{0,71}$; P - тиск водню; m - маса зразка.

Fig. 5. Temperature dependences of hydrogen desorption for fast quenched (*a*) and cast (*b*) alloys: $l - Zr_{0.6}V_{0.4}$; $2 - ZrV_2$; $3 - Zr_{0.38}V_{0.62}$; $4 - Zr_{0.29}V_{0.71}$; *P* - relative pressure; *m* - sample mass.

Звернемо увагу також на пік при 973 К у швидкозагартованих сплавах. Автори праці [11] близькі значення температури відносять до розпаду гідриду ZrH_2 , який є у більшості з цих сплавів після насичення воднем. Імовірно, що розпад фази ZrV_2H_x під час нагрівання також може призвести до формування фази ZrH_2 .

Зауважимо, що у литих зразках цей пік зміщений в область нижчих температур 823...923 К. Можливо, і тут це пов'язано з різним вмістом кисню. Піки при 723... 773 К присутні і в швидкозагартованих, і литих сплавах і можуть бути ознакою фазового переходу α→β, який згідно з результатами праці [5], відбувається при температурі ~743 К.

висновки

Сплави Zr-V активно поглинають водень за досить низького його тиску (0.05 МРа і нижче). Структурний стан, а точніше метол отримання, віліграє важливу роль у визначенні параметрів їхньої взаємодії з воднем. Як за загальною кількістю поглинутого водню, так і за температурними інтервалами його поглинання і виділення швидкозагартовані з розплаву сплави поступаються литим. Це досить несподіваний результат, враховуючи існуючі уявлення про вплив дисперсності структури на взаємодію матеріалу з воднем [8], а також експериментальні дані про вплив розміру зерен на поглинання водню цирконієм [12]. Причиною цього, на наш погляд, є досить високий вміст кисню в швидкозагартованих сплавах, який поглинається з атмосфери камери під час спінінгування. Серед литих сплавів стехіометричний склад ZrV₂, що найчастіше використовують як накопичувач водню, за різними параметрами не є оптимальним. Дещо кращі характеристики мають сплави до- і застехіометричного складу Zr_{0.38}V_{0.62} та Zr_{0.29}V_{0.71}, які можна рекомендувати для використання у водневих технологіях.

РЕЗЮМЕ. Исследованы процессы поглощения и выделения водорода сплавами Zr-V различного состава, которые находятся в литом и быстрозакаленном из расплава состояниях. Выявлено, что по характеристикам сорбции-десорбции сплавы в литом состоянии превосходят быстрозакаленные.

SUMMARY. The processes of hydrogen absorption and desorption by cast and fast quenched Zr-V alloys are investigated. It is shown that the characteristics of sorption-desorption-cast alloys are better than such for fast quenched Zr-V alloys.

- 1. Богданова А. Н. Фазовые превращения в концентрированных твердых растворах водорода на основе ZrV₂ и HfV₂: Автореф. дисс. к.ф.- м.н. – М., 2006. 2. *Сивов Р., Зотов Т., Вербецкий В.* Новые сплавы-накопители водорода на основе ZrFe₂
- с высоким давлением диссоциации гидридов // ISJAEE. 2010. № 5(85). С. 13–20.
- 3. Вербецкий В., Митрохин С. Гидриды интерметаллических соединений синтез, свойства и применение для аккумуляторов водорода // Там же. – 2005. – № 10(30). – С. 41–61. 4. Воденьсорбційні властивості сплавів на перетинах ZrV₂–ZrAl₂ та ZrV₂–ZrGa₂ / О. Ку-
- рило, Ю. Вербовицький, О. Мякуш та ін. // Вісник Львівськ, ун-ту. Сер. хім. 2009. - Вип. 50. – С. 126–132.
- 5. Колачев Б. А., Шалин Р. Е., Ильин А. А. Сплавы-накопители водорода: Справ. М.: Металлургия, 1995. – 384 с.
- 6. Гапонцев А., Кондратьев В. Диффузия водорода в неупорядоченных металлах и сплавах // Успехи физ. наук. – 2003. – 173, № 10. – С. 1107–1129.
- 7. Applications of Zr-V hydrogen getters in vacuum-plasma devices: Phase-structural and hydrogen sorption characteristics / M. Lototsky, V. Yartys, Ye. Klochko et al. // J. of Alloys and Compounds. - 2005. - Vol. 404-406. - P. 724-727.
- 8. Материалы для хранения водорода: анализ тенденций развития на основе данных об информационных потоках "ВАНТ" / В. М. Ажажа, М. А. Тихоновский, А. Г. Шепелев и др. // Сер.: Вакуум, чистые материалы, сверхпроводники. – 2006. – № 1(15). – С. 145–152.
- 9. Структура и свойства быстрозакаленных циркониевых сплавов "ВАНТ" / А. Бовда, А. Дмитренко, Д. Малыхин и др. // Там же. – 2007. – № 4. – С. 173–178.
- Поглощение и выделение водорода сплавом Zr_{0.8}Ti_{0.2}Mn_{0.74}Fe_{1.26} "BAHT" / В. М. Ажажа, Д. В. Виноградов, В. Г. Колобродов, М. А. Тихоновский // Там же. 2007. № 6. С. 156–160.
- 11. Гидрирование титана и разложение их гидридов / П. Бережко, И. Тарасова и др. http: //www.sjaee.hydrogen.ru/pdf/11 06 Berezhko.pdf ISJAEE. - 2006. - №11(43). - C. 47-56.
- 12. Вплив структурного стану цирконію на параметри сорбції-десорбції водню / В. М. Воєводін, Д. В. Виноградов, М. А. Тихоновський, І. В. Колодій, О. М. Бовда // Фіз.-хім. механіка матеріалів. – 2013. – 49, № 1. – С. 66–71.

Одержано 09.07.2013