Фізико-хімічна механіка матеріалів. – 2015. – № 1. – Physicochemical Mechanics of Materials

УДК 629.3:667.64

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ТРЕЩИН В УСЛОВИЯХ СТАТИЧЕСКОГО И МАЛОЦИКЛОВОГО НАГРУЖЕНИЙ

В. А. СКАЧКОВ, О. Р. БЕРЕЖНАЯ

Запорожская государственная инженерная академия

Исследовано влияние усталостных эллиптических трещин на вязкость разрушения высокопрочной стали, а также статического и малоциклового нагружений на их рост.

Ключевые слова: усталостная трещина, вязкость разрушения, коэффициент интенсивности напряжений.

Преждевременное разрушение уникальных конструкций из высокопрочных сталей, обусловленное поверхностными дефектами типа подрезов, закатов и трещин, приводит к катастрофическим последствиям. Поэтому очень актуально исследовать их влияние на хрупкое разрушение таких сталей.

Изучая хрупкое разрушение высокопрочных сталей [1–3], обнаружили, что основная его причина – поверхностные и подповерхностные дефекты в виде закатов, образующиеся в процессе прокатки, а также трещины, возникающие в области сварочных швов. Для его оценки используют коэффициент интенсивности напряжений (КИН) (вязкость разрушения) в условиях плоского деформированного K_{IC} и плоского напряженного K_C состояний [4, 5].

Цель работы – определить КИН K_{IC} высокопрочной стали СП-53 и построить методику оценки хрупкого разрушения в условиях длительного статического и малоциклового нагружений. Для этого использовали образцы с усталостными эллиптическими трещинами, полученными в режиме резонансных колебаний (рис. 1) с амплитудой 10 mm. С появлением начальной трещины снижаются их частота и до 5 mm – амплитуда. Подстраивая частоту генератора под смещенный резонанс, амплитуду колебаний увеличивали до 10 mm. При этом появлялась возможность выращивать трещины заданного размера (рис. 2*a*): длиной 2*C* и глубиной *l*.

Fig. 1. Chart of installation for forming the surface elliptic fatigue crack on the specimens:
I – specimens; 2 – magnetic wire; 3 – exciting coil; 4 – supportive magnet coil;
5 – power amplifier; 6 – voltage stabilizer; 7 – variable signals generator.

Вязкость разрушения определяли по формуле Ирвина:

$$K_{\rm IC} = 1, 1\sqrt{\pi} \cdot \sigma_p \cdot \sqrt{l/Q} \,. \tag{1}$$

Контактная особа: В. А. СКАЧКОВ, e-mail: skachkov.48@mail.ru

Рис. 2. Поверхностные усталостные эллиптические трещины: *а* – начальная; *b* – начальная и выращенная.

Fig. 2. Elliptic surface fatigue cracks: a – initial crack; b – initial and grown crack.

Здесь l – глубина трещины, mm; σ_p – разрушающее напряжение образца с трещиной, kN/mm²; Q – параметр формы для эллиптической трещины:

$$Q = \Phi^2 - 0.212 (\sigma_p / \sigma_{0,2})^2, \qquad (2)$$

где $\sigma_{0,2}$ – условный предел текучести; $\Phi = \int_{0}^{\pi/2} \sqrt{1 - (C^2 - l^2/)C^2 \sin^2 \varphi} d\varphi$; C – по-

лудлина трещины. Чтобы упростить формулу (2), построили зависимость параметра Q от отношения l/2C для различных значений $\sigma_p/\sigma_{0,2}$ (рис. 3). Для оценки зависимости вязкости разрушения от глубины трещины испытывали образцы с глубиной трещины от 0,4 до 1,00 mm (рис. 4).

Рис. 3. Fig. 3.

Рис. 4. Fig. 4.

Рис. 3. Зависимость параметра формы от отношения глубины трещины к ее длине для значений $\sigma_p/\sigma_{0,2}$: I - 1,0; 2 - 0,8; 3 - 0,6; 4 - 0,4.

Fig. 3. Dependence of the parameter form on the ratio of the crack depth to it length for $\sigma_p/\sigma_{0.2}$: l - 1.0; 2 - 0.8; 3 - 0.6; 4 - 0.4.

Рис. 4. Зависимость коэффициента K_{IC} от глубины эллиптической трещины. Fig. 4. Dependence of coefficient K_{IC} on the elliptic crack depth.

Для оценки влияния длительности нагружения образцов на параметры трещины использовали метод окисления ее берегов путем нагревания от 483 до 573 К. Обнаружили, что нагрев до 573 К не изменяет значение K_{IC} , а также упругие и прочностные характеристики стали. Степень окраски зависит от температуры окисления: с ее изменением на 30 градусов она заметно меняется. В диапазоне 483... 573 К выявили три зоны окраски, четко различимые по цвету (см. рис. 2*b*).

Fig. 5. Crack growth under static loading.

Текущее значение КИН K_1 определяли по формуле (1), в которой под σ понимали не разрушающее, а действующее в образце напряжение. Образец с окисленной начальной трещиной нагружали до напряжения σ и выдерживали до разрушения. В изломе четко видны начальная трещина и ее прирост за время нагружения (рис. 5).

При малоцикловом нагружении скорость увеличения КИН K_I по числу циклов

$$\frac{dK_{\rm I}}{dn} = \sigma_{\rm cycle} \left(\sqrt{\frac{3,77(l+\beta[\gamma+\ln(1-\gamma)])}{Q(l)+\delta\beta[\gamma+\ln(1-\gamma)]}} - \sqrt{\frac{3,77l}{Q(l)}} \right),\tag{3}$$

где $\beta = \frac{\Delta l}{[\gamma + \ln(1 - \gamma)] \cdot n}$; $\gamma = (K_{\rm I} / K_{\rm IC})^2$; $\sigma_{\rm cycle}$ – амплитуда напряжений при цикли-

ческом нагружении; n – число циклов нагружения. После интегрирования уравнения (3) получили простое соотношение, устанавливающее связь числа циклов до разрушения с коэффициентом K_I . В таблице приведены экспериментальные данные, полученные при циклическом нагружении образцов с эллиптическими трещинами разного размера.

l_0	$2C_0$	l_k	$2C_k$	$K_{\rm I}^0$	K_{I}^{k}	K_{IC}	naur	ncalc
mm				kN/mm ^{3/2}			rexp	care
0,85	3,55	1,05	3,60	1,86	1,98	2,04	5	6
0,63	3,00	0,67	3,01	1,71	1,82	1,94	6	6
0,45	2,30	0,70	2,32	1,82	1,97	1,97	3	4
0,40	1,90	0,60	2,00	1,39	1,47	1,90	10	12
0,70	3,10	0,90	3,15	1,86	1,97	1,97	4	4
0,70	3,50	0,78	3,75	1,78	1,83	1,92	2	2
0,60	2,70	0,75	2,75	1,88	1,98	2,02	3	3
0,65	2,60	0,78	2,63	1,89	1,98	1,98	2	3

Прирост трещин при циклическом нагружении

Примечание: l_0 , $2C_0$ – размеры начальной трещины, а l_k , $2C_k$ – конечной; K_I^0 , K_I^k – КИН для начальной и конечной трещин. Расчетное число циклов нагружения n_{calc} достаточно точно совпадает с экспериментальным n_{exp} для измеренного прироста трещины.

выводы

Предложена установка для выращивания на плоских образцах поверхностных эллиптических трещин. Для стали СП-53 определены значения КИН K_{IC} в условиях плоского деформированного состояния, получены зависимости времени до разрушения при длительном статическом нагружении образцов с усталостными трещинами. Построено уравнение, определяющее скорость изменения КИН в зависимости от числа циклов нагружения.

РЕЗЮМЕ. Досліджено вплив втомних еліптичних тріщин на в'язкість руйнування високоміцної сталі, а також вплив статичного і малоциклового навантаження на їх ріст.

SUMMARY. The influence of fatigue elliptic cracks on fracture toughness of high-strength steel as well as the influence of static and low-cycle loading on their growth are investigated.

- 1. *Черепанов Г. П.* О росте трещин при циклическом нагружении // Прикл. механика и техн. физика. 1968. № 6. С. 1271–1278.
- 2. Панасюк В. В. Предельное равновесие хрупких тел с трещинами. К.: Наук. думка, 1968. 232 с.
- 3. *Койтер В. Т.* Бесконечный ряд параллельных трещин в упругой плоскости // Проблемы механики сплошной среды. М.: Наука, 1961. С. 202–221.
- 4. Дроздовский Б. А., Фридман Я. Б. Влияние трещин на механические свойства конструкционных сталей. М.: Металлургиздат, 1960. 176 с.
- 5. Черепанов Г. П. Механика хрупкого разрушения. М.: Наука, 1974. 640 с.