ВПЛИВ ЛЕГУВАННЯ ЦИРКОНІЄМ НА СТРУКТУРНО-ФАЗОВИЙ СТАН СПЛАВІВ НА ОСНОВІ Nd₂Fe₁₄B

І. І. БУЛИК¹, В. В. БУРХОВЕЦЬКИЙ², І. В. БОРУХ¹

¹ Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів; ² Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України

Методом сканівної електронної мікроскопії та елементного аналізу досліджено вплив легування цирконієм на мікроструктуру сплавів $Nd_{11,7}Fe_{82,3}B_6$ та $Nd_{16}Fe_{76}B_8$. У сплавах без цирконію виявлено фази $Nd_2Fe_{14}B$, Fe та багату неодимом, а в легованих – додатково фазу, близьку за складом до ZrFe₂. Встановлено, що легування цирконієм запобігає виділенню заліза у сплаві $Nd_{11,7}Fe_{81,1}Zr_{1,2}B_6$, а в сплаві $Nd_{16}Fe_{73,9}Zr_{2,1}B_8$ змінює морфологію.

Ключові слова: мікроструктура, сплав, зерно, фаза, легування, цирконій.

Феромагнетні матеріали на основі інтерметалідів рідкісноземельних та перехідних металів, зокрема Nd₂Fe₁₄B, SmCo₅ і Sm₂Co₁₇, широко використовують для виготовлення сталих магнетів, оскільки їм притаманні високі температура Кюрі, поле анізотропії та залишкова намагнеченість [1–3].

Одним із способів поліпшення властивостей сталих магнетів є наноструктурування [4–7]. Обмінна взаємодія між нанорозмірними кристалітами магнетотвердої та магнетом'якої фаз у феромагнетних матеріалах є фізичною основою для створення наступного покоління магнетів – нанокомпозитів. Зокрема, за високої коерцитивної сили їх залишкова індукція може досягати до ≈ 2 T, а максимальна питома магнетна енергія – до 90 MGOe [8]. Перепоною на шляху до впровадження у виробництво феромагнетних нанокомпозитів є проблеми, пов'язані з формуванням анізотропії.

Перспективним методом формування магнетної анізотропії є гідрування, диспропорціонування, десорбування, рекомбінування (ГДДР) [9]. Зокрема, якщо ГДДР реалізувати за параметрів, коли після диспропорціонування є залишки феромагнетної фази, то утворюється магнетно-анізотропний порошок зі здрібненою мікроструктурою. Це підтверджено на сплавах системи Sm–Co [10, 11]. Оброблення за таким режимом сплавів на основі Nd₂Fe₁₄B завершується їх частковим наноструктуруванням: нанорозмірні зерна є лише в окремих частинах об'єму сплаву. Для подальшого зменшення зерен мікроструктури пропонують легувати сплави малими кількостями інших елементів, зокрема цирконієм [12–14], які сповільнюють ріст зерен феромагнетної фази під час рекомбінування та здрібнюють їх мікроструктуру. Мета праці – дослідити вплив легування цирконієм на мікроструктуру литих сплавів на основі Nd₂Fe₁₄B.

Методика випроб. Зразки сплавів $Nd_{11,7}Fe_{82,3}B_6$, $Nd_{11,7}Fe_{81,1}Zr_{1,2}B_6$, $Nd_{16}Fe_{76}B_8$ та $Nd_{16}Fe_{73,9}Zr_{2,1}B_8$ отримали із шихти вихідних компонентів, з чистотою не нижче 99,5 mass.%, в електродуговій печі в аргоні. Мікроструктуру вивчали методом сканівної електронної мікроскопії на мікроскопі JSM-6490 LV, елементний склад аналізували за допомогою системи мікроаналізу INCA Penta FETx3. Невеликі куски вихідного матеріалу заливали в тримачі зразка сплавом Вуда й полірували

Контактна особа: І. І. БУЛИК, e-mail: bulyk@ipm.lviv.ua

алмазними пастами. Матеріали досліджували у полірованому та травленому станах. Для травлення використовували нітал – суміш азотної кислоти (2,5 та 5 vol.%) з етиловим спиртом.

Результати досліджень. Мікроструктура сплаву $Nd_{11,7}Fe_{82,3}B_6$. Мікроструктура литого сплаву складається з трьох фаз (рис. 1*a*). За результатами елементного аналізу, темно-сіра ділянка — це феромагнетна фаза $Nd_2Fe_{14}B$ (див. рис. 1b і таблицю), білі видовжені ділянки шириною $\approx 0,5 \ \mu\text{m}$ – багата неодимом, розташована межами зерен $Nd_2Fe_{14}B$, а чорна – залізо зі слідами неодиму. Середні розміри зерен заліза по ширині 2, а по довжині 3 μ m. Після травлення у мікроструктурі сплаву домінують чорні овальні ділянки заліза з окремими дендритами (рис. 1c і d, фаза 3), а між ними – фаза $Nd_2Fe_{14}B$ (рис. 1d, фаза 1) та сліди багатої неодимом фази (рис. 1d, фаза 2).

Рис. 1. Мікроструктура сплаву $Nd_{11,7}Fe_{82,3}B_6$: *а* і *b* – нетравлений шліф; *b* – схема аналізу елементного складу (див. таблицю); *с* і *d* – травлений шліф; *I* – фаза $Nd_2Fe_{14}B$; *2* – багата неодимом; *3* – Fe.

Fig. 1. Backscattered image of $Nd_{11.7}Fe_{82.3}B_6$: *a* and *b* – non-etched alloy surface; *b* – scheme of element analysis (see Table); *c* and *d* – surface of alloy after etching; $l - Nd_2Fe_{14}B$ phase; 2 – Nd-rich phase; 3 – Fe.

Вміст елементів (at.%) у різних фазах сплавів систем Nd-Fe-B та Nd-(Fe, Zr)-B

Область сканування	Fe	Zr	Nd	Фаза		
До рис. 1 <i>b</i>						
1–3	45,364,3	-	35,754,7	багата Nd		
4-6; 9-11	87,288,9	-	11,112,8	Nd ₂ Fe ₁₄ B		
7–8	94,298,9	—	1,15,8	Fe		

Продовження таблиці

Область сканування	Fe	Zr	Nd	Фаза		
До рис. 2а						
1, 2, 5, 6	87,490,0	0,11,4	9,911,6	$Nd_2(Fe, Zr)_{14}B$		
3, 4, 7	60,176,1	0,79,3	14,636,6	багата Nd		
8–10	50,464,9	23,439,8	9,812,7	(Zr, Nd)Fe ₂		
До рис. 3с						
1–3	9,615,4	-	84,690,4	багата Nd		
4–6	78,980,0	_	20,021,1	Nd _{1,1} Fe ₄ B ₄		
7–9	85,887,5	-	12,514,2	Nd ₂ (Fe, Zr) ₁₄ B		
До рис. 4е						
1–3	64,465,0	32,033,2	2,43,1	(Zr, Nd)Fe ₂		
4–6	41,752,6	1,57,4	40,056,3	багата Nd		
7–9	87,688,1	0,81,3	11,111,4	Nd ₂ (Fe, Zr) ₁₄ B		
До рис. 4g						
1–3	87,187,7	1,21,3	11,011,7	Nd ₂ (Fe, Zr) ₁₄ B		
4–6	11,831,6	0,10,4	68,388,0	багата Nd		
До рис. 4і						
1–3	63,363,7	33,433,9	2,43,3	(Zr, Nd)Fe ₂		
4–5; 7–10	86,489,1	0,51,3	10,313,0	$Nd_2(Fe, Zr)_{14}B$		
6	82,0	0,2	17,8	Nd _{1,1} Fe ₄ B ₄		
11–13	7,727,3	0,20,9	71,992,1	багата Nd		

Мікроструктура сплаву $Nd_{11,7}Fe_{81,1}Zr_{1,2}B_6$. За даними електронної мікроскопії та елементного аналізу, у литому легованому цирконієм сплаві є кілька фаз (рис. 2 і таблиця). Домінує феромагнетна $Nd_2(Fe, Zr)_{14}B$ (фази 1, 2, 5 і 6 на рис. 2*a*), яка містить 0,1...1,4 аt.% цирконію (табл. 2). На межах її зерен є невелика кількість багатої неодимом фази з кількома атомами цирконію (фази 3, 4, 7 на рис. 2*a* і таблиця). Крім того, сплав містить невеликі виділення, які за складом близькі до фаз Лавеса (Zr, Nd)Fe₂ з 10...12 аt.% неодиму (фази 8–10 на рис. 2*a*; таблиця).

Рис. 2. Мікроструктура сплаву $Nd_{11,7}Fe_{81,1}Zr_{1,2}B_6$: *а* – схема аналізу елементного складу (нетравлений шліф, див. таблицю); *b* – мікроструктура після травлення; *I* – фаза $Nd_2Fe_{14}B$; *2* – область з багатою неодимом фазою.

Fig. 2. Backscattered image of $Nd_{11.7}Fe_{81.1}Zr_{1.2}B_6$ alloy: a – scheme of element analysis (non-etched alloy surface, see Table); b – microphotograph of alloy after etching; l – $Nd_2Fe_{14}B$ phase; 2 – Nd-rich phase area.

Після травлення на мікроструктурі проявляються зерна фази $Nd_2Fe_{13,8}Zr_{0,2}B$ неправильної форми з розмірами від кількох до десятків мікрометрів (рис. 2*b*). Багату неодимом фазу витравлено з-поміж зерен феромагнетної фази.

Мікроструктура сплаву $Nd_{16}Fe_{76}B_8$. Литий сплав має традиційну для цього типу матеріалів морфологію: видовжені неправильної форми зерна феромагнетної фази Nd₂Fe₁₄B та примежові виділення — багата неодимом фаза (рис. 3*a*, *b* і таблиця) та фаза Nd_{1,1}Fe₄B₄ (рис. 3*b*, *c* і таблиця). Середні розміри зерен феромагнетної фази по довжині досягають приблизно 50, а по ширині — 10...20 µm.

Fig. 3. Backscattered image of Nd₁₆Fe₇₆B₈ alloy: a – non-etched alloy surface;
b – etched; c – scheme of element analysis
(etched surface, see Table); I – Nd₂Fe₁₄B phase;
2 – Nd-rich phase; 3 – Nd_{1.1}Fe₄B₄ phase.

Мікроструктура легованого цирконієм сплаву $Nd_{16}Fe_{73,9}Zr_{2,1}B_8$. Легування цирконієм змінює морфологію сплаву (рис. 4a і b) і, зокрема, призводить до утворення геометричного рисунка на мікроструктурі (рис. 4a). У ньому виявлено дві області з різною формою зерен феромагнетної фази $Nd_2(Fe, Zr)_{14}B$ (рис. 4a і b). В одній з них зерна є майже правильними видовженими прямокутниками з меншою стороною $\approx 10 \,\mu\text{m}$ і більшою 100 та більше мікрометрів (рис. 4a і c). В іншій області вони мають неправильну форму з поперечним розміром $\approx 10...15 \,\mu\text{m}$ (рис. 4b і d). В обох випадках межами її виділяється багата неодимом фаза шириною 2...3 μ m (рис. 4c і d).

За результатами елементного аналізу, цирконій розподілений у сплаві нерівномірно. Зокрема, у багатій неодимом фазі його 1,5...7,4 аt.%, а у фазі Nd₂(Fe, Zr)₁₄B – близько до 1 at.% (рис. 4*e* і таблиця). Чорні виділення межами зерен феромагнетної фази Nd₂(Fe, Zr)₁₄B за вмістом елементів близькі до складу (Zr, Nd)Fe₂ (рис. 4*e* і таблиця). В них виявлено 2,5...3 at.% неодиму. Після травлення продовгуваті (чотирикутні) зерна феромагнетної фази за формою нагадують видовжені дендрити з нерівними краями, розділені багатою неодимом фазою (рис. 4*f*, *g* і таблиця).

В області сплаву з зернами неправильної форми після травлення виявлено здрібнені дендрити феромагнетної фази $Nd_2(Fe, Zr)_{14}B$ (рис. 4*h* і *i*). За даними елементного аналізу, між її зернами є багата неодимом фаза, борид $Nd_{1,1}Fe_4B_4$ та фаза, близька за складом до (Zr, Nd)Fe₂ (рис. 4*i* і таблиця).

Рис. 4. Мікроструктура сплаву Nd₁₆Fe_{73,9}Zr_{2,1}B₈: *a*-*d* – нетравлений шліф; *e* – схема аналізу елементного складу (див. таблицю); *f*-*i* – травлений шліф; *g* і *i* – схема аналізу елементного складу; *I* – фаза Nd₂(Fe, Zr)₁₄B; *2* – багата неодимом фаза; *3* – (Zr, Nd)Fe₂.

Fig. 4. Micrographs (backscattered mode) of $Nd_{16}Fe_{73,9}Zr_{2,1}B_8$ alloy; a-d – non-etched alloy surface; e – schema of element analysis (see Table); f-i – surface after etching; g and i – schemes of element analysis; $I - Nd_2(Fe, Zr)_{14}B$ phase; 2 - Nd-rich phase; $3 - (Zr, Nd)Fe_2$ phase.

Обговорення результатів. Внаслідок заміни в сплавах $Nd_{11,7}Fe_{82,3}B_6$ та $Nd_{16}Fe_{76}B_8$ частини заліза на цирконій міняються їх морфологія та фазовий склад. Литий сплав $Nd_{11,7}Fe_{82,3}B_6$ складається з трьох фаз: феромагнетної $Nd_2Fe_{14}B$, заліза та багатої неодимом фази. Після введення 0,2 at./f.un. цирконію, заліза у ньому не зафіксували. Є лише невеликі області, де його концентрація дещо вища, ніж у фазі $Nd_2Fe_{14}B$.

У мікроструктурі сплаву Nd₁₆Fe_{73,9}Zr_{2,1}B₈ виявили яскравий геометричний рисунок, відсутній у сплаві Nd₁₆Fe₇₆B₈. Тобто цирконій спричиняє направлений ріст кристалів під час кристалізації з розплаву. В сплавах Nd_{11,7}Fe_{81,1}Zr_{1,2}B₆ і Nd₁₆Fe_{73,9}Zr_{2,1}B₈ цирконій розподіляється нерівномірно, що призводить до утворення фази (Zr, Nd)Fe₂, близької за складом до фази Лавеса.

Здрібнення мікроструктури сплавів на основі Nd₂Fe₁₄B, легованих цирконієм, експериментально підтверджено, зокрема, після ГДДР [12–14]. Після комбінованого водневого оброблення феромагнетних матеріалів – помелу в водні та ГДДР – отримують дисперснішу мікроструктуру, ніж після ГДДР. А ще дисперснішу очікують одержати після комбінованого водневого оброблення у легованих цирконієм сплавах.

У сплаві стехіометричного складу $Nd_{11,7}Fe_{82,3}B_6$ утворюються дві фази: $Nd_2Fe_{14}B$ та залізо, причому виділення заліза крупнокристалічні. Для сплавів з надлишком заліза (до стехіометричного складу $Nd_2Fe_{14}B$) результат аналогічний. Тобто мікроструктура литого двофазного сплаву $Nd_2Fe_{14}B$ /Fe занадто крупнокристалічна, щоб сформувати в ньому нанокристалічну суміш цих фаз, зокрема, методом ГДДР. Внаслідок легування цирконієм взаємодія у системах $Nd_{-}Fe_{-}Zr_{-}B$

та Nd–Fe–B завершується утворенням різних фаз, але залізо у сплаві з цирконієм не виділяється. Двофазні сплави Nd₂(Fe, Zr)₁₄B/Fe варті уваги дослідників нанокомпозитних матеріалів, оскільки тут можна отримати високодисперсну мікроструктуру шляхом водневого оброблення через сповільнення росту зерен цирконієм.

ВИСНОВКИ

Встановлено, що легування сплавів на основі $Nd_2Fe_{14}B$ невеликою кількістю цирконію змінює їх мікроструктуру та фазовий склад. У литому сплаві з цирконієм стехіометричного складу $Nd_2(Fe, Zr)_{14}B$ виділень заліза немає, що дає підстави прогнозувати можливість отримання двофазного ($Nd_2(Fe, Zr)_{14}B/Fe$) матеріалу з високодисперсною мікроструктурою після водневої обробки методом диспропорціонування, рекомбінування. Цирконій спричиняє напрямлену кристалізацію, що є додатковим чинником формування анізотропії.

РЕЗЮМЕ. Методами сканирующей электронной металлографии и элементного анализа исследовано влияние легирования цирконием на микроструктуру сплавов $Nd_{11,7}Fe_{82,3}B_6$ и $Nd_{16}Fe_{76}B_8$. В сплавах без циркония обнаружены фазы $Nd_2Fe_{14}B$, Fe и богатую на неодим фазу, а в легированных – дополнительно фазу, близкую по составу к ZrFe₂. Выявлено, что легирование цирконием предотвращает выделение железа в сплаве $Nd_{11,7}Fe_{81,1}Zr_{1,2}B_6$, а в сплаве $Nd_{16}Fe_{73,9}Zr_{2,1}B_8$ приводит к изменению морфологии.

SUMMARY. The influence of alloying with addition of Zr on Nd_{11.7}Fe_{82.3}B₆ and Nd₁₆Fe₇₆B₈ alloys microstructure was investigated by means of scanning electron microscopy and energy dispersive X-ray analysis (EDX). Nd₂Fe₁₄B, Fe and Nd-rich phases were revealed in alloys without Zr. Besides these phases ZrFe₂ phase was found in Zr-dopped alloys. It was found that alloying with Zr prevented the appearance of iron phase in Nd_{11.7}Fe_{81.1}Zr_{1.2}B₆ alloy. The morphology of Nd₁₆Fe_{73.9}Zr_{2.1}B₈ alloy differed from Nd₁₆Fe₇₆B₈ alloy.

- Goll D. and Kronmuller H. High-performance permanent magnets // Naturwissenschaften. 2000. – 87. – P. 423–438.
- 2. *Gutfleisch O*. Controlling the properties of high energy density permanent magnetic materials by different processing routes // J. Phys. D: Appl.Phys. 2000. **33**. P. R157–R172.
- 3. Sugimoto S. Current status and recent topics of rare-earth permanent magnets // Ibid. 2011. 44. P. 1–11.
- 4. *Coehoorn R., de Mooij D. B., and de Waard C.* Melt-spun permanent magnet materials containing Fe3B as the main phase // Ibid. 1989. **80**. P. 101–104.
- 5. *Kneller E. F. and Hawig R.* The exchange-spring magnet: A new material principle for permanent magnets // IEEE Trans. Magn. – 1991. – **27**. – P. 3588–3600.
- Liu J. P. Exchange-coupled nanocomposite permanent magnets // Nanoscale Magnetic Materials and Applications. – New York: Springer, 2009. – P. 309–332.
- 7. *Effect* of Dy additions on microstructure and magnetic properties of Fe–Nd–B magnets / M. Sagava, S. Fujimura, N. Togawa et al. // J. Appl. Phys. 1984. **55**. P. 2083–2092.
- Skomski R. and Coey J. M. D. Giant energy product in nano-structured two-phase magnets // J. Physical Rev. – 1993. – 48. – P. 15812–15816.
- Cannesan N. and Harris I. R. Aspects of NdFeB powders: fundamentals and processing // Bonded magnets, NATO Science series: 2. Mathematics, Physics and Chemistry / Ed. by G. C. Haddjipanayis. – 2002. – 118. – P. 13–36.
- Патент 96810, Україна. Н 01 F 1/053; Н 01 F 1/055; В 82 В 3/00. Спосіб формування анізотропної дрібнозернистої структури порошків сплавів системи Sm–Co водневовакуумним термічним оброблянням / І. І. Булик, В. В. Панасюк, А. М. Тростянчин. – Опубл. 12.12.2011; Бюл. № 23.
- 11. Патент 96811, Україна. Н 01 F 1/053; Н 01 F 1/055; В 82 В 3/00. Спосіб формування анізотропної дрібнозеренної структури порошків сплавів системи Sm–Co помелом їх у водні / І. І. Булик, В. В. Панасюк, А. М. Тростянчин. Опубл. 12.12.2011; Бюл. № 23.
- 12. Coercivity variations with Pr- and Zr-substituted NdDyFeB-based HDDR powders / P. J. McGuiness, S. Kobe, I. Skulj et al. // JMMM. 2001. 237. P. 267–275.
- NdDyFeBZr high-coercivity powders prepared by intensive milling and the HDDR process / A. Bollero, B. Gebel, O. Gutfleisch et al. // JAllCom. – 2001. – 315. – P. 243–250.
- 14. A comparison of the micromagnetic and microstructural properties of four NdFeB-type materials processed by the HDDR route / P. Thompson, O. Gutfleisch, J. N. Chapman, I. R. Harris // JMMM. 1999. **202**. P. 53–61.

Одержано 15.05.2014