ПОЛУЧЕНИЕ И ОБРАБОТКА РАСПЛАВОВ

УДК 621.746.58

Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий, Я. П. Карликова*, О. Е. Полозюк*, И. В. Рябчиков**

Институт проблем материаловедения НАН Украины, Киев *ГВУЗ «ПГТУ», Мариуполь **НПО «Перспектива», Запорожье

АНАЛИЗ СТРУКТУРНО-ХИМИЧЕСКОГО СОСТОЯНИЯ И КЛАССИФИКАЦИЯ ОКСИДНЫХ И МЕТАЛЛИЧЕСКИХ ФАЗ СИСТЕМЫ КАЛЬЦИЙ-КРЕМНИЙ-ТИТАН-КИСЛОРОД. ДУПЛЕКС-СИСТЕМА СаО-ТіО,/Са-Ті. Сообщение 1

Проведён анализ структурно-химического состояния дуплекс-системы CaO-TiO₂/Ca-Ti, представлена классификация оксидных и металлических фаз, исследованы механизмы получения углетермических сплавов кальция с титаном и образования неметаллических включений (титанаты кальция) – продуктов раскисления стали.

Ключевые слова: структурно-химический анализ, полигональные диаграммы, дуплекссистемы, металлические фазы, кальций, титан, оксиды, сплавы.

Проведено аналіз структурно-хімічного стану дуплекс-системи CaO-TiO₂/Ca-Ti, представлено класифікацію оксидних і металевих фаз, досліджено механізми одержання вуглетермічних сплавів кальцію з титаном і утворення неметалевих включень (титанати кальцію) – продуктів розкислення сталі.

Ключові слова: структурно-хімічний аналіз, полігональні діаграми, дуплекс-системи, металеві фази, кальцій, титан, оксиди, сплави.

The structurally-chemical condition of duplex-system CaO-TiO₂/Ca-Ti state was analyzed; classification of oxide and metal phases is presented; formation mechanisms of carbothermic alloys of calcium with titanium and formations of nonmetallic inclusion (calcium titanate) – deoxidation products was studied.

Keywords: structurally-chemical analysis, polygonal diagrams, duplexes-systems, metal phases, calcium, titan, oxides, alloys.

Дуплекс-система силикаты-силициды кальций-титан включает базовые бинарные оксид-металл термодинамические системы Ca-Si-Ti-O, структурно-химическое состояние которых во всём интервале концентраций твёрдых и жидких исходных компонентов исследуется с помощью полигональных диаграмм систем

Получение и обработка расплавов

CaO-SiO₂/Ca-Si, SiO₂-TiO₂/Si-Ti, CaO-TiO₂/Ca-Ti, CaO-SiO₂-TiO₂/Ca-Si-Ti, построенных разработанным авторами графо-аналитическим методом [1, 2]. Дуплекс-системы CaO-SiO₂/Ca-Si и SiO₂-TiO₂/Si-Ti исследованы нами ранее [3, 4], анализ дуплекс-системы CaO-TiO₂/Ca-Ti представлен в настоящем сообщении.

Полигональная диаграмма системы (ПДС) CaO-TiO₂ (рис. 1) является классификатором титанатов кальция, служащих основными шихтовыми компонентами для руднотермического процесса получения сплавов кальция с титаном и являющихся

Получение и обработка расплавов

продуктами раскисления и десульфурации при ковшовой обработке стали этими сплавами. ПДС CaO-TiO₂ включает семь промежуточных фаз: CaO→4CaOTiO₂→ \rightarrow 3CaOTiO₂(\ni_1)→2CaOTiO₂(ППФ)→CaOTiO₂(перовскит)→CaO2TiO₂→CaO3TiO₂(\ni_2)→ \rightarrow CaO4TiO₂ \rightarrow TiO₂. Первичная промежуточная фаза 2CaOTiO₂(ППФ) условно разделяет диаграмму на две подсистемы: CaO-2CaOTiO₂ и TiO₂-2CaOTiO₂, в которых образуются вторичные промежуточные, включая две эвтектические фазы: 3CaOTiO₂($\ni_1, T_9 = 1650$ °C) и CaO3TiO₂($\ni_2, T_9 = 1460$ °C), которые существуют на классической диаграмме (вставка на рис. 1 [5]) между исходными компонентами и перовскитом (CaOTiO₂).

В табл. 1 приведена классификация титанатов кальция, включающая реакции их образования в линейных системах, температуры образования и плавления, химический состав. В табл. 2 представлена структуризация исходных компонентов и промежуточных фаз – структурные ионно-молекулярные комплексы (СИМ-комплексы) в виде полигональных (ПГЯ) и полиэдрических (ПДЯ) ячеек. ПГЯ представляют собой полимерные сетки конечного размера, центрально-симметричные относительно рутила (TiO₂), в котором титан является сеткообразователем, кальций и кислород замыкают ячейку. ПДЯ – трёхмерные образования из двойных ПГЯ, связанных между собой ионными связями [6]. Параметры полигональной ячейки: N – число частиц, $L_{
m nrg}$ – длина, $S_{
m nrg}$ – площадь. Плотность упаковки (рассчитанная из приведённых площади ПГЯ (S_0) и объёма ПДЯ (V_0), где $S_0 = S_{nrs} / N$; $V_0 = V_{nrs} / N$) характеризует термодинамическую прочность оксидных фаз. Первичная фаза обладает максимальной плотностью и минимальным количеством частиц её образующих, при этом плотность рутила больше оксидов кальция, что указывает на высокую термодинамическую прочность оксидов титана. СИМ-комплексы определяют структурно-химический механизм руднотермического восстановления минерального сырья до образования металлических фаз и неметаллических включений.

Системным классификатором титанидов кальция, на базе которых образуются сплавы кальция с титаном, является полигональная диаграмма системы Ca-Ti, представленная на рис 2. ПДС Ca-Ti включает последовательный ряд промежуточных фаз – интерметаллидов: Ca→Ca₁₂Ti(Э₁)→Ca₄Ti→Ca₃Ti→Ca₂Ti→CaTi→CaTi₂→CaTi₃→ →CaTi₄→Ti, повторяющий адекватно оксидный ряд промежуточных фаз системы CaO-TiO₂. Следует отметить, что на классической диаграмме (вставка на рис. 2 из работы [7]) не обнаружены интерметаллиды, но показан купол несмешиваемости исходных компонентов на коноде 850 °C. В таблице 3 представлена классификация интерметаллидов системы Ca-Ti и привёден марочный состав сплавов кальция с титаном, обладающих плотностью 1,8-4,0 г/см³ и содержащих 10-85 % Ti.

Механизм получения углетермических сплавов кальция и титана сопровождается образованием промежуточных комплексных карбидных фаз при восстановлении титанатов кальция (шихтовых материалов) последовательно через структурно-химические реакции:

$$2\text{CaO} + \text{TiO}_{2} \rightarrow 2\text{CaOTiO}_{2}(\text{Ca}\left\langle \substack{O\\O}\right\rangle \text{Ti}\left\langle \substack{O\\O}\right\rangle \text{Ca}) + 8\text{C} \rightarrow$$
$$\rightarrow \text{Ca}_{2}\text{TiC}_{4}(\text{Ca}\left\langle \substack{C\\C}\right\rangle \text{Ti}\left\langle \substack{C\\C}\right\rangle \text{Ca}) + 4\text{CO}\uparrow \rightarrow 4\text{C}_{2}\text{O}\uparrow + 2\text{Ca} + \text{Ti} \rightarrow \text{Ca}_{2}\text{Ti},$$

приводящие к металлизации карбидной фазы в атмосфере окиси углерода (CO) и выделении газовой фазы – закиси углерода (C₂O)¹. В частности, механизм раскисления стали сплавами кальций-титан, например марки К60Ти40, сопровождается образованием оксидных фаз – продуктов раскисления (2CaOTiO₂).

ISSN 0235-5884. Процессы литья. 2016. № 3 (117)

	rypa, *	плавления	<u>1800</u> н.д.	<u></u> Н.Д.	$\frac{1650}{1695}$	<u></u> Н.Д.	$\frac{2000}{1970}$	$\frac{1460}{1460}$	<u>1620</u> н.д.
Промежуточные фазы	темпера ОС	образова- ния	<u>1200</u> н.д.	<u>1500</u> н.д.	$\frac{1650}{1695}$	<u>1300</u> н.д.	<u>1400</u> н.д.	$\frac{1460}{1460}$	<u>1620</u> н.д.
	CaO/TiO2		1,4	2,8	2,1	0,175	0,70	0,23	0,35
	химический состав, %	TiO_2	41,7	26,3	32,3	85,1 58,8		81,1	70,0
		Ca0	CaO 58,3		67,7	14,9 41,2		18,9	30,0
	условные обо- значения		2.1 (ППФ)	4.1(4C)	$3.1(\Im_1)$	1.4(4Т) 1.1 (перовскит)		$1.3(\mathfrak{D}_2)$	1.2(2T)
	стехиоме- трический состав		2CaOTiO ₂	4CaOTiO ₂	$3CaOTiO_2$	CaO4TiO ₂ CaOTiO ₂		$CaO3TiO_2$	CaO2TiO ₂
	химические реакции		2CaOTiO₂↔2CaOTiO₂ 2(2CaOTiO₂)↔3CaOTiO₂+ +CaOTiO₂	2CaO+2CaOTiO ₂ ↔4CaOTiO ₂ 4CaOTiO ₂ ↔CaO+3CaOTiO ₂	$2CaOTIO_2 + 4CaOTIO_2 \leftrightarrow 2(3CaOTIO_2)$	$7\text{TiO}_2^+2\text{CaOTiO}_2\leftrightarrow \\\leftrightarrow 2(\text{CaO4TiO}_3)$	$\begin{array}{c} 3(2\operatorname{CaOTiO}_2) + \operatorname{CaO4TiO}_2 \leftrightarrow \\ \leftrightarrow 7(\operatorname{CaOTiO}_2) \\ 3(\operatorname{CaOTiO}_2) \leftrightarrow 2\operatorname{CaOTiO}_2 + \\ + \operatorname{CaO2TiO}_2 \end{array}$	$(CaOTiO_2)+2CaO4TiO_2\leftrightarrow \\ \leftrightarrow 3(CaO3TiO_2)$	$CaOTiO_2+CaO3TiO_2\leftrightarrow$ $\leftrightarrow 2(CaO2TiO_2)$
Линейные системы			CaO-TiO ₂	CaO-2CaOTiO ₂	2CaOTiO ₂ - -4CaOTiO ₂	TiO ₂ - -2CaOTiO ₂	2CaOTiO ₂ - -CaO4TiO ₂	CaOTiO ₂ - -CaO4TiO ₂	CaOTiO ₂ - -CaO3TiO ₂

Таблица 1. Классификация промежуточных фаз системы CaO-TiO $_2$

н.д. – нет данных, « - » – инконгруэнтное плавление

*

Фо	рмульный состав	СИМ-комплексы (0 – кислород, 🌑 – кальций, 🐼 – титан)					
стехио- метриче- ский	структурный	структурные ячейки полигональные / полиэдрические					
CaO	$(Ca_4 0_4)^0, N = 8,$ $S_{nrs} = 0,094 \text{HM}^2$ $S_0 = 0,0117$ $(Ca_8 0_8)^0, N = 16,$ $V = 0,0225 \text{HM}^3$ $V_0 = 0,0014$	a = 0,153 нм, b = 0,240 нм О - Ca - O Са Ca О - Ca - O a Ca - O a Ca - O a Ca - O a Ca - O					
TiO ₂	(TiO ₄) ⁴⁻ , N = 5, S _{пгя} = 0,054нм ² S ₀ = 0,0108	c = 0,232 нм, $k = 0,202$ нм					
	(Ti ₂ 0 ₈) ⁰ , <i>N</i> = 10, <i>V</i> = 0,011нм ³ <i>V</i> ₀ = 0,0011						
2CaOTiO.	(Ca ₂ TiO ₄) ⁰ , N =7, <i>L</i> _{пгя} = 0,418 нм <i>S</i> _{пгя} =0,0844нм ² <i>S</i> ₀ = 0,0120	h = 0,108 нм, k =0,202 нм Са Ті Са k					
	(Ca ₄ Ti ₂ 0 ₈) ⁰ , N = 14, V = 0,0125нм ³ V ₀ = 0,0010						
	Ca ₂ Ti ₄ 0 ₁₀ , <i>N</i> =16, <i>L</i> _{пгя} = 1,024 нм <i>S</i> _{пгя} = 0,207нм ² <i>S</i> ₀ = 0,0129	$C_{a} \overset{O}{} T_{1} \overset{O}{} T_{1} \overset{O}{} T_{1} \overset{O}{} T_{1} \overset{O}{} T_{1} \overset{O}{} C_{a}$					
CaO2110 ₂	Са ₄ Ti ₈ 0 ₂₀ , <i>N</i> = 32, <i>V</i> = 0,050 нм ³ <i>V</i> ₀ = 0,0016						
CaOTiO ₂	Ca ₂ Ti ₂ O ₆ , $N = 10$, $L_{rrrs} = 0,620 \text{ HM}$ $S_{rrrs} = 0,125 \text{ HM}^2$ $S_0 = 0,0125$	Ca O Ti O Ti Ca A k k C Ca O Ti O Ca					
	Са ₄ Ti ₄ 0 ₁₂ , N = 20, V = 0,025 нм ³ V ₀ = 0,0013						
3CaOTiO ₂ (Ə ₁)	Ca ₆ Ti ₂ O ₁₀ , $N = 10$, $L_{nrs} = 1,228 \text{ HM}$ $S_{nrs} = 0,123 \text{ HM}^2$ $S_0 = 0,068$	Ca ^{0-Ca-0} , 0, 0-Ca-0 Ca ^{0-Ca-0} , Ti ^{0-Ca-0} , Ca 0-Ca-0 ⁰ , 0 ⁻ 0-Ca-0 ⁻					

Таблица 2. Структуризация исходных компонентов и промежуточных фаз системы CaO-TiO₂

Рис. 2. Полигональная диаграмма системы Са-Ті (вставка из работы [6])

Промежуточные фазы	марочный состав		К60Ти40	К70Ти30	К90Ти10	К75Ти25	К50Ти50	К20Ти80	К15Ти85	К30Ти70
	$\rho, \Gamma/cm^3$		2,65	2,39	1,80	2,88	3,15	3,86	4,00	3,63
	температура, ⁰ С [*]	плавления	<u>1100</u> н.д.	<u></u> Н.Д.	<u>710</u> н.д.	<u>940</u> н.д.	<u>1300</u> н.д.	<u></u> . Н.Д.	 Н.Д.	<u>1100</u> н.д.
		образова- ния	<u>450</u> н.д.	<u>640</u> н.д.	<u>710</u> н.д.	<u>940</u> н.д.	<u>700</u> н.д.	<u>860</u> н.д.	<u>980</u> н.д.	<u>1100</u> н.д.
	условные обозна- чения		2.1 (ППФ)	3.1	12.1 (Э)	4.1	1.1	1.3	1.4	1.2
	химический состав, %	Ţ	37,5	28,6	9,1	23,1	54,5	78,3	82,8	70,6
		Ca	62,5	71,4	90,9	76,9	45,5	21,7	17,2	29,4
	стехиоме- трический состав		Ca_2Ti	$Ca_{3}Ti$	$\mathrm{Ca}_{12}\mathrm{Ti}$	$\mathrm{Ca}_4\mathrm{Ti}$	CaTi	CaTi ₃	$\mathrm{CaTi}_{_4}$	$CaTi_2$
	химические реакции		2Ca+Ti⇔Ca₂Ti 2Ca₂Ti⇔Ca₃Ti+CaTi	Ca+Ca₂Ti↔Ca₃Ti	9Ca+Ca₃Ti⇔Ca ₁₂ Ti	$ \begin{array}{c} 8(\mathrm{Ca}_{3}\mathrm{Ti}){+}\mathrm{Ca}_{12}\mathrm{Ti}{\leftrightarrow} \\ \leftrightarrow 9(\mathrm{Ca}_{4}\mathrm{Ti}) \end{array} $	Ti+Ca₂Ti↔2(CaTi)	2Ti+CaTi↔CaTi ₃	Ti+CaTi₃↔CaTi₄	$CaTi+CaTi_3 \leftrightarrow \leftrightarrow 2(CaTi_2)$
	Линейные системы		Ca-Ti	$Ca-Ca_2Ti$	Ca-Ca ₃ Ti	Ca ₃ Ti- -Ca ₁₂ Ti	$Ti-Ca_2Ti$	Ti-CaTi	Ti-CaTi ₃	CaTi- -CaTi ₃

Таблица З. Классификация сплавов титан-кальций (тикаль)

Получение и обработка расплавов

* н.д. – нет данных, «-» – инконгруэнтное плавление, ППФ – первичная промежуточная фаза, Э – эвтектика

Выводы

На базе построенных во всём интервале концентраций твёрдых и жидких исходных компонентов полигональных диаграмм состояния оксидных CaO-TiO₂ и металлических Ca-Ti систем выполнен анализ структурно-химического состояния оксидных и металлических фаз дуплекс-системы CaO-TiO₂/Ca-Ti. Исследованы механизмы получения углетермических сплавов кальций-титан и образования неметаллических включений при раскислении стали сплавами кальция с титаном.

- Методика построения полигональных диаграмм состояния бинарных металлургических систем / Б. Ф. Белов, А. И. Троцан, П. С. Харлашин, Ф. С. Крейденко // Свідоцтво про державну реєстрацію прав автора на твір. – ПА №2825 від 29.02.2000 р.
- 2. Метод побудови полігональних діаграм стану потрійних металургійних систем / Б. Ф. Белов, И. Д. Буга, А. І. Троцан та ін. // Свідоцтво про реєстрацію авторського права на твір №48344 від 18.03.2013.
- 3. Белов Б. Ф. Структурно-химическое состояние и классификация оксидных и металлических фаз системы железо-кремний-титан-кислород. Сообщение 1. Анализ структурно-химического состояния дуплекс-системы титанаты-титаниды железа / Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий и др. // Процессы литья. – 2015. – № 2 (110). – С. 10-17.
- 4. *Белов Б. Ф.* Структурно-химическое состояние и классификация оксидных и металлических фаз системы железо-кремний-титан-кислород. Сообщение 2. Структурно-химическое состояние дуплекс-системы силикаты-силициды титана / Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий и др. // Процессы литья. 2015. № 5 (113). С. 8-15.
- 5. Атлас шлаков. Справочник, пер. с нем. М.: Металлургия. 1985. 208 с.
- 6. *Троцан А. И*. О природе химической связи элементов в металлургических фазах / А. И. Троцан, Б. Ф. Белов, П. С. Харлашин // Изв. ВУЗов, ЧМ. 2002. № 4. С. 60-64.
- 7. Хансен М. Структура двойных сплавов / М. Хансен, К. Андерко. М.: Металлургиздат. 1962. 1608 с.

- 1. Belov B. F., Trocan A. I., Harlashin P. S., Kreidenko F. S. Metodika postroieniia poligonal'nyh diagramm sostoianiia binarnyh metallurgicheskih system [*The method of constructing polygonal diagrams of a binary metallurgical systems state*] Svidoctvo pro derzhavnu reiestraciiu prav avtora na tvir. PA № 2825, 29.02.2000 [in Russian].
- 2. Belov B. F., Buga I. D., Trocan A. I. et al. Metod pobudovy poligonal'nyh diagram stanu potriinyh metalurgiinyh system [Method of constructing polygonal diagrams of a binary metallurgical systems state] Svidoctvo pro reiestraciiu avtors'kogo prava na tvir. № 48344, 18.03.2013 [in Ukrainian].
- 3. Belov B. F., Trocan A. I., Brodeckii I. L. et al. (2015). Strukturno-himicheskoe sostoianie i klassifikaciia oksidnyh i metallicheskih faz sistemy zhelezo-kremnii-titan-kislorod. Soobshheniie 1. Analiz strukturno-himicheskogo sostoianiia dupleks-sistemy titanaty-titanidy zheleza [*Structural and chemical status and classification of oxide and metallic phases of the iron-titanium-silicon-oxygen. Report 1. Analysis of the structural and chemical state of the duplex system titanates-titanides iron*]. Protsessy lit'ia, № 2 (110), pp. 10-17 [in Russian].

Получение и обработка расплавов

- 4. Belov B. F., Trocan A. I., Brodeckii I. L. et al. (2015). Strukturno-himicheskoe sostoianiie i klassifikaciia oksidnyh i metallicheskih faz sistemy zhelezo-kremnii-titan-kislorod. Soobshhenie 2. Strukturno-himicheskoe sostoianie dupleks-sistemy silikaty-silicidy titana [Structural and chemical status and classification of oxide and metallic phases of the iron-titanium-silicon-oxygen. Report 2. Structural and chemical status of a duplex system silicates, titanium silicide]. Protsessy lit'ia, № 5 (113), pp. 8-15 [in Russian].
- 5. Atlas shlakov. (1985). Spravochnik (Translated from German). Moscow: Metallurgiia, 208 p. [in Russian].
- 6. *Trocan A. I., Belov B. F., Harlashin P. S.* (2002). O prirode himicheskoi sviazi elementov v metallurgicheskih fazah [*On the nature of chemical bonding of elements in the metallurgical phases*]. Izv. VUZov, ChM, № 4, pp. 60-64 [in Russian].
- 7. Hansen M., Anderko K. (1962). Struktura dvoinyh splavov [*The structure of the binary alloys*]. Moscow: Metallurgizdat, 1608 p. [in Russian].

Поступила 18.01.2016

