УДК 621.746.58

Б.Ф. Белов, канд. техн. наук, ведущ. науч. сотр., e-mail:ipmm@mail.ru **А. И. Троцан,** д-р техн. наук, проф., гл. науч. сотр., e-mail:don1945@ukr.net **Я. П. Карликова^{*},** канд. техн. наук, доцент, e-mail: yanakpt@gmail.com **И. В. Рябчиков^{**},** д-р техн. наук, науч. консультант Институт проблем материаловедения НАН Украины, Киев

*ГВУЗ «Приазовский государственный технический университет», Мариуполь **НПО «Перспектива», Запорожье

АНАЛИЗ СТРУКТУРНО-ХИМИЧЕСКОГО СОСТОЯНИЯ И КЛАССИФИКАЦИЯ ОКСИДНЫХ И МЕТАЛЛИЧЕСКИХ ФАЗ СИСТЕМЫ КРЕМНИЙ-БАРИЙ-КИСЛОРОД. Полигональная диаграмма состояния системы SiO,-CaO-BaO. Сообщение 1

Оксидные и металлические фазы термодинамической системы Si–Ca–Ba–O относятся к дуплекс-системе силикаты-силициды кальций-бария, которые исследованы с помощью полигональных диаграмм состояния тройных систем, построенных ПДС-методом на базе бинарных диаграмм во всем интервале концентраций твердых и жидких исходных компонентов.

Ключевые слова: структурно-химический анализ, полигональные диаграммы, дуплекссистемы, металлические фазы, кремний, барий, кислород.

Оксидні та металеві фази термодинамічної системи Si–Ca–Ba–O відносяться до дуплекс-системи силікати-силіциди кальцій-барію, що досліджені за допомогою полігональних діаграм стану потрійних систем, побудованих ПДС-методом на базі бінарних діаграм у всьому інтервалі концентрацій твердих і рідких вихідних компонентів.

Ключові слова: структурно-хімічний аналіз, полігональні діаграми, дуплекс-системи, металеві фази, кремній, барій, кисень.

The oxide and metal phases of the Si-Ca-Ba-O thermodynamic system relate to the silicates-silicides duplex system of calcium-barium, which were studied using polygonal phase diagrams of ternary systems constructed by the PDS method on the basis of binary diagrams in the entire concentration range of solid and liquid initial components.

Keywords: structural chemical analysis, polygonal diagrams, duplex systems, metal phases, silicon, barium, oxygen.

Оксидные и металлические фазы термодинамической системы Si–Ca–Ba–O относятся к дуплекс-системе силикаты-силициды кальций-бария, которые исследованы с помощью полигональных диаграмм состояния тройных систем, построенных ПДС-методом [1] на базе бинарных диаграмм во всем интервале концентраций твердых и жидких исходных компонентов.

Дуплекс система SiO₂–CaO–BaO/Si–Ca-Ba включает бинарные SiO₂–CaO/Si–Ca, SiO₂–BaO /Si–Ba и CaO–BaO/Ca–Ba.

Две первые системы рассмотрены нами ранее [2, 3], последняя не изучена и отсутствует в справочных пособиях [4, 5].

Полигональная диаграмма бинарной системы CaO–BaO, построенная ПДСметодом [1], представляет собой простую эвтектическую диаграмму с точкой эвтектики при 1650 °C, отвечающей стехиометрическому составу CaOBaO (26,8/73,2), существующую в жидком состоянии до температур плавления исходных компонентов.

Полигональная диаграмма состояния тройной системы SiO₂–CaO–BaO, представ-

Получение и обработка расплавов

ленная на рисунке, включает 17 промежуточных фаз, в т. ч. 6 первичных, 5 эвтектических и 6 базовых, классификация которых приведена в табл. 1. Первичные фазы находятся в зоне центрального треугольника 102–120–011, образованного квазибинарными линейными системами между бинарными первичными промежуточными фазами. Зона первичных тройных промежуточных фаз разделяет концентрационное поле общего треугольника на три области: область «SiO₂» (102–SiO₂–120), область «CaO» (011–CaO–120) и область «BaO» (011–BaO–102). В этих зонах находятся вторичные промежуточные фазы – эвтетические и базовые. Стехиометрический состав бинарных и тройных промежуточных фаз условно обозначен трехзначными цифрами: первые цифры – SiO₂, вторые – CaO, третьи – BaO.

Полигональная диаграмма состояний системы SiO₂-CaO-BaO

В зоне «SiO₂» существуют несмешивающиеся жидкие фазы на базе SiO₂ (310–SiO₂–611) и (301–SiO₂–611), которые разделяют купол тройной жидкости по лучевой системе SiO₂–CaO–BaO в области 310–301–SiO₂.

В табл. 2 приведены инвариантные точки системы SiO₂-CaO-BaO [2], которые идентифицированы по стехиометрическому составу на представленной полигональной диаграмме.

Сопоставительный анализ показывает, что 7 промежуточных фаз полигональной диаграммы обнаружены экспериментально, что свидетельствует о высокой точности и надежности ПДС-метода. Кроме того, в квазибинарных системах CaO–SiO₂– BaOSiO₂ и 2CaOSiO₂–2BaOSiO₂ обнаружены тройные силикаты, состав которых Таблица 1

Классификация системы SiO₂-CaO-BaO

Ho-	Линейные		Промеж	уточные фазы					
мер п/п	и триангуляционные системы	химические реакции	условные обозна-	стехиометри-) БИШИХ	еский сс (%мас.)	став	, β	T ⁰ C
			чения	ческий состав	SiO_2	CaO	BaO	г/см ³	~ /l/ -
1	2	3	4	5	9	7	8	6	10
		первич	ные фазы						
1	$SiO_2 2CaO - SiO_2 2BaO$	$SiO_2 2CaO + SiO_2 2BaO \rightarrow 2(SiO_2 CaOBaO)$	111	$SiO_2CaOBaO$	22,3	20,8	56,9	4,58	1500
2	$SiO_2 2CaO - CaOBaO$	$2(SiO_2 CaO) + 2(CaOBaO) \rightarrow SiO_2 4CaO2BaO$	142	$SiO_24CaO2BaO$	10,1	38,0	51,8	4,48	1550
c,	CaOBaO – SiO ₂ 2BaO	2(CaOBaO) + SiO ₂ 2BaO→ SiO ₂ 2CaO4BaO	124	SiO ₂ 2CaO4BaO	7,7	14,3	78,0	5,13	1700
4	SiO ₂ 2CaO – CaOBaO– – SiO ₂ 2BaO	$\begin{array}{l} \mathrm{SiO}_2\mathrm{2CaO} + 2(\mathrm{CaOBaO}) + \mathrm{SiO}_2\mathrm{2BaO} \rightarrow \\ 2(\mathrm{SiO}_2\mathrm{2CaO2BaO}) \end{array}$	122	SiO ₂ 2CaO2BaO	12,6	23,4	64,0	4,76	1750
2	$SiO_2 2BaO - SiO_2 2CaO2BaO$	SiO ₂ 2BaO + SiO ₂ 2CaO2BaO→ 2(SiO ₂ CaO2BaO)	112	SiO ₂ CaO2BaO	14,2	13,3	72,5	4,94	1600
9	$SiO_2 CaO - SiO_2 CaO 2BaO$	SiO ₂ 2CaO + SiO ₂ 2CaO2BaO→ 2(SiO ₂ 2CaOBaO)	121	SiO ₂ 2CaOBaO	18,5	34,5	47,0	4,31	1680
		эвтектич	ческие фазы						
1	$2\mathrm{SiO}_23\mathrm{BaO} - \mathrm{SiO}_2\mathrm{CaOBaO}$	2SiO ₂ 3BaO + SiO ₂ CaOBaO→ 3SiO ₂ CaO4BaO	$314(\Theta_1)$	3SiO ₂ CaO4BaO	21,8	6,6	72,2	4,91	1500
2	$3SiO_22BaO - 2SiO_2CaOBaO$	3SiO ₂ 2BaO + 2SiO ₂ CaOBaO→ 5SiO ₂ CaO3BaO	$513 \left(\varTheta_2 \right)$	5SiO ₂ CaO3BaO	36,8	6,9	56,3	4,52	1480
က	3SiO ₂ 2CaO-2SiO ₂ CaOBaO	3SiO ₂ 2CaO + 2SiO ₂ CaOBaO→ 5SiO ₂ 3CaOBaO	531 (\Im_3)	5SiO ₂ 3CaOBaO	48,3	27,1	24,6	3,57	1450

Получение и обработка расплавов

ISSN 0235-5884. Процессы литья. 2018. № 1 (127)

⊓po≀	должение таблицы 1								
-	2	e	4	5	9	7	×	6	10
		эвтектическ	ие фазы						
4	2SiO ₂ 3CaO – SiO ₂ CaOBaO	2SiO₂3CaO + SiO₂CaOBaO→ 3SiO₂4CaOBaO	341 (Э4)	3SiO ₂ 4CaOBaO	32,3	40,2	27,5	3,74	1450
5	SiO ₂ 4CaO – SiO ₂ 4CaO2BaO	SiO ₂ 4CaO + SiO ₂ 4CaO2BaO→ 2(SiO ₂ 4CaOBaO)	141 (Э5)	SiO ₂ 4CaOBaO	13,7	51,3	35,0	4,60	1470
		базовые фаз	ßI						
1	SiO ₂ CaO-SiO ₂ BaO	$SiO_2CaO + SiO_2BaO \rightarrow 2SiO_2CaOBaO$	211	2SiO ₂ CaOBaO	36,5	17,0	46,5	4,18	1580
2	SiO ₂ CaO- SiO ₂ BaO –SiO ₂ - CaOBaO	SiO ₂ CaO+ SiO ₂ BaO + SiO ₂ CaOBaO → 3SiO ₂ 2CaO2BaO 3SiO ₂ 2CaO2BaO	322	3SiO ₂ 2CaO- 2BaO	30,1	18,7	51,2	4,34	1540
3	2SiO ₂ CaO - 2SiO ₂ CaOBaO- 2SiO ₂ BaO	$\begin{array}{c} 2\text{SiO}_{2}\text{CaO} + 2\text{SiO}_{2}\text{CaOBaO} + 2\text{SiO}_{2}\text{BaO} \rightarrow \\ 2(3\text{SiO}_{2}\text{2CaOBaO}) \end{array}$	311	3SiO ₂ 2CaOBaO	46,3	14,4	39,3	3,95	1525
4	$2SiO_22CaO - 2SiO_2BaO$	$SiO_2CaO + 2SiO_2BaO \rightarrow 4SiO_2CaOBaO$	411	4SiO ₂ CaOBaO	53,5	12,5	34,0	3,77	1485
5	$3\mathrm{SiO}_2\mathrm{CaO} - 3\mathrm{SiO}_2\mathrm{BaO}$	$3SiO_2CaO + 3SiO_2BaO \rightarrow 6SiO_2CaO2BaO$	611	6SiO ₂ CaO2BaO	63,3	9,8	26,9	3,50	1470
9	$6SiO_2CaO - 6SiO_2BaO$	$6SiO_{2}CaO + 6SiO_{2}BaO \rightarrow 12SiO_{2}CaOBaO$	12,11	12SiO ₂ CaOBaO	77,5	6,0	16,5	3,10	1420

Получение и обработка расплавов

Химический состав (%мас.)		T °C	Стехиометрический		
SiO ₂	CaO	BaO	л, с	состав	
47,5	14,5	38,0	1150	3SiO ₂ CaOBaO (311)	
46,5	14,0	39,5	1190	3SiO ₂ CaOBaO (311)	
36,0	29,5	34,5	1300	3SiO ₂ 2CaOBaO (321)	
36,0	31,0	33,0	1310	$3SiO_24CaOBaO(341-\Theta_4)$	
33,0	15,5	51,5	1255	3SiO ₂ CaO2BaO (312)	
36,0	11,5	52,3	1235	$5SiO_2CaO3BaO(513-\Theta_2)$	
41,0	11,0	48,0	1210	2SiO ₂ CaOBaO (211)	
13,0	15,0	72,0	-	SiO ₂ CaO2BaO (112)	

				Таблица 2
Инвариантные точки	диагр	раммы	SiOC	aO-BaO

идентифицируется на полигональной диаграмме стехиометрическими формулами 3SiO₂CaO2BaO (322) и 3SiO₂CaOBaO (311), 4SiO₂CaOBaO (411).

Силикаты барий-кальция отличаются сравнительно высокой плотностью сталеплавильных шлаков (≤ 3,0 г/см³). Температура ликвидуса, рассчитанная аддитивно из температур плавления исходных компонентов в реакциях образования промежуточных фаз, достигает 1750–1850 °C, эвтектические фазы плавятся при температурах ≥ 1300 °C, тогда как экспериментальные данные (1150–1310 °C) значительно ниже (см. табл. 2).

Структурный анализ исходных компонентов и промежуточных фаз, включающий определение стехиометрического состава и геометрических параметров ионно-молекулярных комплексов в виде полигональных и полиэдрических ячеек, представлен в табл. 3. В табл. 3 показаны типовые структуры СИМ-комплексов для первичных и эвтектических фаз, геометрические параметры которых вычислены по радиальноорбитальной модели электронного строения атомов (теория РОМ-атома [3]).

Относительная плотность упаковки, рассчитанная из приведенной площади полигональных ячеек (S_o) и приведенного объема (V_o) полиэдрических ячеек, характеризует относительную термодинамическую прочность структурных фаз. Термодинамическая стабильность исходных компонентов располагается в последовательном ряду (убывающий): SiO₂ \rightarrow CaO \rightarrow BaO, где S_o и V_o min для SiO₂ и max для BaO.

Первичная промежуточная фаза – SiO₂2CaO2BaO обладает максимально плотной упаковкой среди тройных фаз и минимальным числом образующих частиц, СИМкомплексы эвтектических фаз имеют одну структурную форму – полигональную.

Полигональные ячейки представляют собой полимерные сетки центральносимметричные относительно кварцита с ионным типом межатомных связей. Кремний выступает в качестве сеткообразователя, кислород является связующим элементом катионов, расположенных в сетке последовательно в зависимости от энергии связи катион-анион, убывающей от кремния к барию. Полиэдрические ячейки относятся к трехмерным образованиям из сдвоенных полигональных ячеек, связанных между собой ионно-ковалентными силами.

СИМ-комплексы оксидных фаз определяют механизм руднотермического процесса получения сплавов силикокальцийбария и образования неметаллических включений при обработке стального расплава.

Выводы

• ПДС-методом на базе бинарных систем построена полигональная диаграмма состояния тройной системы SiO₂–CaO–BaO, которая является системным клас-

Таблица З

Структуризация исходных компонентов и промежуточных фаз системы SiO₂-CaO-BaO

Формул	іьный состав	СИМ-комплексы (о – кислород, ● – кальций, ⊗ – кремний, □ – барий)		
стехиометричес- кий	структурный	полигональные / полиэдрические ячейки		
	$(SiO_4)^{4-}$	<i>с</i> = 0,23 нм, <i>a</i> = 0,20 нм		
SiO	$N = 5, S_0 = 0,0106$	a		
	$(Si_4O_8)^0$ N = 12, V ₀ = 0,0007	-0 Si 0^{-1} a ∞		
	Ca_4O_4	<i>b</i> = 0,153 нм, <i>d</i> = 0,24 нм		
CaO	$N = 8, S_0 = 0,0117$	$\begin{array}{c} Ca-0-Ca \\ b \stackrel{0}{0} 0 \\ Ca \stackrel{0}{c} 0-Ca \end{array} \xrightarrow{d} 0 \xrightarrow{0} 0$		
	Ca_8O_8 N = 16, V ₀ = 0,0014			
	$\operatorname{Ba}_4\operatorname{O}_4$	<i>f</i> = 0,33 нм		
PaO	$N = 8, S_0 = 0.0545$	Ba. 0- Ba d 0-0-0		
БаО	$Ba_{8}O_{8}$ $N = 16, V_{0} = 0.0545$	Ba-0-Ba Ba-0-Ba		
S'O 1C-01D-0	$\begin{array}{c} {\rm Si_2Ca_4Ba_4O_{12}}\\ L_{\rm IIFR} = 2,144~{\rm HM}\\ N = 22,~S_0 = 0,0195 \end{array}$	$\begin{array}{c} & Ba - 0 - Ca - 0 \\ 0 \\ Ba - 0 - Ca - 0 \\ h + b + f + f + a \\ \end{array} $		
510 ₂ 2CaO2BaO (ΠΠΦ)	$Si_4Ca_8Ba_8O_{24}$ $N = 44, V_0 = 0,0035$			
SiO,CaOBaO	$\begin{array}{c} {\rm Si_4Ca_4Ba_4O_{16}}\\ {L_{_{\rm IITS}}}=2,544~{\rm Hm}\\ N=28,S_0=0,0182 \end{array}$	$0 \xrightarrow{\text{Ba-0-Ca-0}}_{\text{Ba-0-Ca-0}} Si \xrightarrow{0}_{0} Si \xrightarrow{0}_{0} Si \xrightarrow{0}_{0} Si \xrightarrow{0-\text{Ca-0-Ba}}_{0-\text{Ca-0-Ba}} O$		
	$Si_4Ca_8Ba_8O_{24}$ $N = 56, V_0 = 0.0276$			
$3SiO_{2}CaO4BaO \\ (\Theta_{1})$	$\begin{array}{c} {\rm Si_{12}Ca_4Ba_{16}O_{44}} \\ {L_{\rm III78}} = 8,104 \ {\rm Hm} \\ N = 76, \ S_0 = 0,0213 \end{array}$	$ \begin{array}{c} & Ba - 0 \dots Ba - 0 \cdot Ca - 0 \\ & 0 \\ & Ba - 0 \dots Ba - 0 - Ca - 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \begin{array}{c} & 0 \\ & & \\ & 0 \\ & & \\ & 0 \\ & & \\ \end{array} \end{array}$		
$5\mathrm{SiO}_{2}3\mathrm{CaO4BaO}$ (\Im_{3})	$\overline{ \begin{array}{c} {\rm Si}_{20}{\rm Ca}_{12}{\rm Ba}_{4}{\rm O}_{56} \\ {L}_{\Pi\Gamma\Pi} = 6,968 \ {\rm HM} \\ N = 92, \ S_{0} = 0,0151 \end{array} }$	$ \begin{smallmatrix} & Ba0 \cdot Ca0 \cdots Ca \cdot 0 & & & & & & & & & & & & & & & & & &$		

Получение и обработка расплавов

сификатором шихтовых материалов для руднотермического процесса получения сплавов силикокальцийбария и неметаллических включений при раскислении стали.

 Система SiO₂-CaO-BaO содержит 17 промежуточных фаз (6 – первичных, 5 – эвтектических и 6 – базовых), из которых половина установлена экспериментально в литературных источниках, что свидетельствует о высокой надежности и информативности разработанного графоаналитического метода построения диаграмм состояния металлургических систем.

Список литературы

- 11. Белов Б. Ф. Метод побудови полігональних діаграм стану потрійних металургійних систем /Б.Ф.Белов, И.Д.Буга, А.І. Троцан та ін. // Свідоцтво про реєстрацію авторського права на твір № 48344 від 18.03.2013.
- 2. Белов Б. Ф. О строении силикатных шлакових расплавов / Б. Ф. Белов, П. П. Харлашин, А. И. Троцан, П. С. Харлашин // Процессы литья. – 2003. – № 2. – С. 18–22.
- 3. Белов Б. Ф. Анализ структурно-химического состояния и классификация оксидних и неметаллических фаз системы железо-кремний-барий-кислород. Дуплекс система SiO2-BaO/Si-Ba. Сообщение 1 / Б. Ф. Белов, А. И. Троцан, И. Л. Бродецкий и др. // Процессы литья. - 2016. - № 5. - С. 3-12.
- 4. Торопов Н. А. Диаграммы состояния силикатных систем / Н. А. Торопов, В. П. Борзаковский, В. В. Лапин и др. // Справочник. – Ленинград: Наука, 1972. – Т. 3. – 448 с.
- 5. Диаграммы состояния двойных металлических систем / Под ред. РАН Н. П. Лякишев. М.: Машиностроение, 1997. – Т. 2. – С. 549–550.
- 6. Троцан А. И. О природе химической связи элементов в металлургических фазах / А. И. Троцан, П. С. Харлашин, Б. Ф. Белов // Изв. ВУЗов. ЧМ. – 2002. – № 4. – С. 60–64.

- 1. Belov, B. F., Buga, Y. D., Trotsan, A. I. et al. Metod pobudovy polihonalnykh diahram stanu potriinykh metalurhiinykh system [Method of construction of polygon diagrams of the state of triple metallurgical systems]. Svidotstvo pro reiestratsiiu avtorskoho prava na tvir no. 48344 vid 18.03.2013. [in Ukrainian].
- 2. Belov, B. F. Kharlashin, P. P., Trotsan, A. I., Kharlashin, P. S. (2003) O stroenii silikatnykh shlakovikh rasplavov [On the structure of silicate slag melts]. Protsessy litya, no. 2, pp. 18–22. [in Russian].
- 3. Belov, B. F., Trotsan, A. I., Brodetskiy, I. L. et al. (2016) Analiz strukturno-khimicheskogo sostoyaniya i klassifikatsiya oksidnikh i nemetallicheskikh faz sistemy zhelezo-kremniy-bariykislorod. Dupleks sistema SiO2-BaO/Si-Ba. Soobshchenie 1 [Analysis of the structural-chemical state and classification of oxide and non-metallic phases of the iron-silicon-barium-oxygen system. Duplex system SiO2-BaO/Si-Ba. Message 1]. Protsessy litya, no. 5, pp. 3–12. [in Russian].
- 4. Toropov, N. A., Borzakovskiy, V. P., Lapin, V. V. et al. (1972) Diagrammy sostoyaniya silikatnykh system. Spravochnik. [Diagrams of the state of silicate systems. Directory]. Leningrad: Nauka, T. 3, 448 p. [in Russian].
- 5. Lyakishev, N. P. (1997) Diagrammy sostoyaniya dvoynykh metallicheskikh sistem [Diagrams of the state of double metal systems]. Moscow: Mashinostroenie, T. 2, pp. 549–550. [in Russian].
- 6. Trotsan, A. I. Kharlashin, P. S., Belov, B. F. (2002) O prirode khimicheskoy svyazi elementov v metallurgicheskikh fazakh [On the nature of the chemical bonding of elements in metallurgical phases]. Izv. VUZov, ChM, no. 4, pp. 60–64. [in Russian].

Поступила18.10.2017

ISSN 0235-5884. Процессы литья. 2018. № 1 (127)