ПОЛУЧЕНИЕ И ОБРАБОТКА РАСПЛАВОВ

УДК 621.746.58

Б.Ф. Белов, канд. техн. наук, ведущ. науч. сотр., e-mail: ipmm@mail.ru

А. И. Троцан, д-р техн. наук, проф., гл. науч. сотр., e-mail: don1945@ukr.net

Я.П. Карликова*, канд. техн. наук, доцент, e-mail: yanakpt@gmail.com

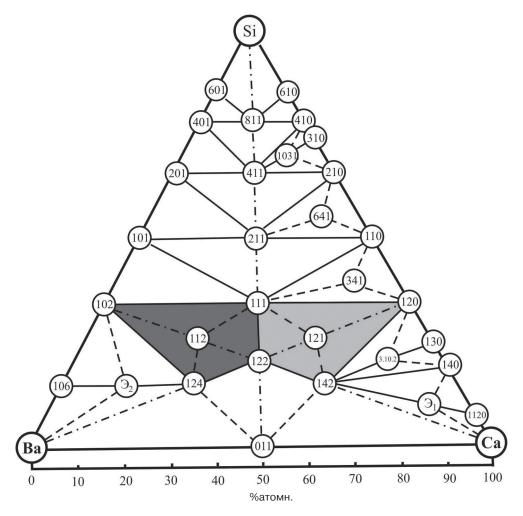
И.В. Рябчиков,** д-р техн. наук, науч. консультант

Институт проблем материаловедения НАН Украины, Киев *ГВУЗ «Приазовский государственный технический университет», Мариуполь **НПО «Перспектива», Запорожье

АНАЛИЗ СТРУКТУРНО-ХИМИЧЕСКОГО СОСТОЯНИЯ И КЛАССИФИКАЦИЯ ОКСИДНЫХ И МЕТАЛЛИЧЕСКИХ ФАЗ СИСТЕМЫ КРЕМНИЙ-КАЛЬЦИЙ-БАРИЙ-КИСЛОРОД. СПЛАВЫ СИЛИКОКАЛЬЦИЙБАРИЯ. Сообщение 2

Построена неизвестная ранее полигональная диаграмма системы Si–Ca–Ba, служащая системным классификатором сплавов силикокальцийбария. Предложен механизм перевода стекловидных слитков, образующих хрупкие неметаллические включения, в глобулярные за счет присадок извести при заданном соотношении масс силикатного стекла и извести.

Ключевые слова: полигональные диаграммы, силикаты, кремний, кальций, барий.


Побудовано невідому раніше полігональну діаграму системи Si–Ca–Ba, що служить системним класифікаторам сплавів силікокальційбарія. Запропоновано механізм переведення склоподібних силікатів, що утворюють крихкі неметалеві включення, в глобулярні за рахунок присадок вапна при заданому співвідношенні мас силікатного скла і вапна.

Ключові слова: полігональні діаграми, силікати, кремній, кальцій, барій.

A polygonal diagram of the Si–Ca–Ba system, which is not known before, serves as a system classifier for silicocalcium-barium alloys. A mechanism is proposed for transferring vitreous silicates forming brittle nonmetallic inclusions into globular ones due to additives of lime at a given ratio of silicate glass and lime mass.

Keywords: polygonal diagrams, silicates, silicon, calcium, barium

Внастоящее время тройная система кремний-кальций-барий еще не изучена и не построена диаграмма ее состояния. Системным классификатором сплавов силикокальцийбария является полигональная диаграмма состояния (ПДС) системы Si-Ca-Ba, построенная ПДС-методом [1] на базе бинарных систем (рисунок).

ПДС-системы Si-Ca-Ba

В бинарной системе Ca–Ba не образуются твердые растворы, однако в жидком состоянии компоненты взаимно растворяются [2]. Максимальная взаимная растворимость кальция и бария определена на ПДС Si–Ca–Ba в точке пересечения лучевой системы из Si-вершины треугольника и бинарной системы Ca–Ba, в которой существует жидкий раствор при $605\,^{\circ}$ C, отвечающей интерметаллиду стехиометрического состава CaBa (22,6 / 77,4) [3], на базе которого образуются метастабильные сплавы марки K20Ба80, полученные при сверхбыстрой закалке [4].

ПДС Si–Ca–Ba включает 15 промежуточных фаз: 6 первичных, 2 эвтектических и 7 базовых. Первичные фазы расположены в зоне центрального треугольника, образованного линейными системами бинарных первичных промежуточных фаз. Зона первичных промежуточных фаз SiBa $_2$ -SiCa $_2$ -CaBa разделяет концентрационное поле общего треугольника на три зоны у каждой его вершины. Зона сплавов на базе кремния: SiBa $_2$ (102)–Si–SiCa $_2$ (120), зона кальция: SiBa $_2$ (102)–Ca–CaBa(011) и зона бария: CaBa(011)–Ba–SiBa $_2$ (102). В этих зонах находятся вторичные промежуточные фазы – базовые и эвтектические сплавы. Здесь трехзначные цифры обозначают стехиометрические коэффициенты интерметаллидов: первые цифры – Si, вторые – Ca, третьи – Ba.

Базовые сплавы на основе кремния [7] регламентируют содержание бария по ТУ 0823000-006-311780390-2001 до 30,0 %. К таким сплавам относятся сплавы в триангуляционных зонах системы Si–Ca, отвечающие стехиометрическому составу

Получение и обработка расплавов

интерметаллидов $Si_{10}Ca_3Ba$, Si_6Ca_4Ba , Si_3Ca_4Ba и других, на базе которых образуются твердые растворы переменного состава, определяющие марку сплава C50K25Бa25, C35K30Бa35.

Классификация сплавов силикокальцийбария приведена в таблице, которая включает химические реакции образования промежуточных фаз в линейных и триангуляционных системах, химический и стехиометрический состав интерметаллидов, плотность, температуры ликвидуса, рассчитанные аддитивно по температурам плавления исходных компонентов в химических реакциях, марочный состав. Марочный состав сплавов содержит (%мас.): (5–75) кремния + (5–65) кальция + (20–90) бария, плотность изменяется в пределах 1,71–3,45 г/см³, температура ликвидуса – 600–1250 °С. Компоненты рудного сырья задаются в пропорциях, отвечающих марочному составу сплавов.

Механизм углетермического процесса получения сплавов силикокальцийбария марки C55K10Бa35 описывается рядом структурно-химических реакций восстановления рудного сырья углеродом в пересчете на оксидные фазы:

$$4(8SiO2 + CaO + BaO) \rightarrow 4(8SiO2CaOBaO);$$
 (1)

$$4(8SiO2CaOBaO) + 120(C) \rightarrow 72CO\uparrow + 4CaC2 + 4BaC2 + 32SiC;$$
 (2)

$$4CaC_2 + 8CO\uparrow \rightarrow 4Ca + 8C_2O\uparrow;$$
 (3)

$$4BaC2 + 8CO\uparrow \rightarrow 4Ba + 8C2O\uparrow;$$
 (4)

$$32SiC + 32CO\uparrow \rightarrow 32Si + 32C_2O\uparrow;$$
 (5)

$$4Ca + 4Ba + 32Si \rightarrow 4(Si_{8}CaBa);$$
 (6)

$$\Sigma$$
: 32SiO₂ + 4CaO + 4BaO + 120C \rightarrow 24CO↑ + 48C₂O + 4(Si₈CaBa). (7)

Структурно-химическая реакция восстановления силиката $8SiO_2$ CaOBaO углеродом имеет вид (сокращенная форма записи):

$$4(8 \text{SiO}_2 \text{CaOBaO}) \rightarrow \text{Si}_{32} \text{Ca}_4 \text{Ba}_4 \text{O}_{72} \rightarrow 0 \\ \text{Ba-0-Ca-0} \\ \text{Si} \\ \text{O...0} \\ \text{Si} \\ \text{O...0} \\ \text{Si} \\ \text{O-Ca-0-Ba} \\ \text{O-Ca-0-$$

Реакция (2) сопровождается образованием ионно-ковалентных промежуточных фаз карбидов бария, кальция и кремния [5], которые в атмосфере окиси углерода (CO) металлизируются с выделением закиси углерода (C_2O). Балансовая реакция (7) позволяет определить состав колоши (8 мас.): 45,8 SiO $_2+5,3$ CaO + 14,6 BaO + 34,3 C. Выход годного металла – 38,2 и горючих газов ($CO+C_2O$) = 61,8 % – оборотных теплоносителей, при соотношении $M_{OK}: M_{ME} = (1,5-2,0):1$.

Механизм образования неметаллических включений (HMB) при раскислении стали сплавами марки C5К10Бф35 описывается реакцией с образованием силикатной фазы:

$$(Si_8CaBa)_{Me} + 18[O]_{Me} \rightarrow (8SiO_2CaOBaO)_{HMB}.$$
 (8)

Силикатная фаза основностью \leq 0,5 является стекловидным образованием типа кварцевого стекла с высокой вязкостью, которая в присутствии извести переходит

Классификация сплавов силикокальцийбария

но-	Линейные и триангуляцион-	Химические реакции	Стехиометри- ческий состав	Условные обозна- попия*	Хими	Химический состав, %мас./атом.	остав,	Плот- ность р,	Темпе- ратура ликви-	Марочный состав,
11/11				ТСПИЯ	Si	\mathbf{Ca}	Ba	Γ/cM^3	AyC 1 J,	/omac.
1	2	3	4	2	9	<i>L</i>	8	6	10	11
			первич	первичные сплавы						
—	${ m SiBa_2-SiCa_2}$	SiBa₂+SiCa₂↔Si₂Ca₂Ba	SiCaBa	1.1.1	13,7 33,3	19,5 33,3	66,8 33,3	3,13	1145	C15K20Ba65
2	SiBa ₂ –CaBa	$SiBa_2+2(CaBa)\leftrightarrow SiCa_2Ba_4$	$\mathrm{SiCa_{2}Ba_{4}}$	1.2.4	<u>4,3</u> 14,4	12,2 28,6	83,5 57,0	3,43	875	C5K10Ba85
3	${ m CaBa-SiCa}_2$	$2(CaBa)+SiCa_2\leftrightarrow SiCa_4Ba_2$	$\mathrm{SiCa_{_4}Ba_{_2}}$	1.4.2	$\frac{6,0}{14,1}$	$\frac{34,6}{57,2}$	$\frac{59.4}{28.7}$	2,91	069	C5K35Ba60
4	$\mathrm{Ca-SiBa}_2$	Ca+SiBa₂↔SiCaBa₂	SiCaBa_2	1.1.2	8.2 25,0	$\frac{11.7}{25.0}$	80,1 50,0	3,38	1160	C10K10Ba80
5	$\mathrm{Ba-SiCa}_2$	Ba+SiCa₂↔SiCa₂Ba	SiCa ₂ Ba	1.2.1	$\frac{11,4}{25,0}$	$\frac{32.7}{50.0}$	55,9 25,0	2,87	840	C10K35Ba55
9	$\mathrm{SiBa_2}$ – $\mathrm{SiCa_2}$ – CaBa	SiBa ₂ +SiCa ₂ +CaBa↔ ↔SiCa ₂ Ba ₂	${ m SiCa_2Ba_2}$	1.2.2	$\frac{7.4}{20.0}$	$\frac{20.9}{40.0}$	$\frac{71.7}{20.0}$	3,19	098	C10K20Ba70
			сплавы на	сплавы на основе кремния	ния					
1	SiBa–SiCa	SiBa+SiCa↔Si₂CaBa	$\mathrm{Si}_{2}\mathrm{CaBa}$	2.1.1	$\frac{24.0}{50.0}$	$\frac{17.2}{25.0}$	<u>58,8</u> 25,0	3,03	1070	C25K15Ba60
2	$\mathrm{Si_{2}Ba-Si_{2}Ca}$	$\mathrm{Si_{2}Ba+Si_{2}Ca}{\leftrightarrow}\mathrm{Si_{4}CaBa}$	$\mathrm{Si}_{_4}\mathrm{CaBa}$	4.1.1	38 <u>.8</u> 66,7	$\frac{13.8}{16.7}$	$\frac{47,4}{16,7}$	2,89	1130	C40K15Ba45
3	Si ₄ Ba–Si ₄ Ca	Si₄Ba+Si₄Ca↔Si₃CaBa	Si _s CaBa	8.1.1	55,9 80,0	$\frac{10,0}{10,0}$	$\frac{34.1}{10.0}$	2,74	1120	C55K10Ba35
4	Si ₄ CaBa–Si ₃ Ca	$Si_{4}CaBa+2(Si_{3}Ca)\leftrightarrow$ $\leftrightarrow Si_{10}Ca_{3}Ba$	$\mathrm{Si}_{10}\mathrm{Ca}_3\mathrm{Ba}$	10.3.1	52, <u>2</u> 71,6	22,3 21,3	25,5	2,51	1100	C50K25Ba25

Продолжение таблицы

			сплавы на основе кремния	тове кремни						
1	2	က	7	ນ	9	7	∞	6	10	111
5	Si ₂ CaBa–Si ₂ Ca– –SiCa	$Si_2CaBa+Si_2Ca+2(SiCa)\leftrightarrow$ $\leftrightarrow Si_6Ca_4Ba$	$\mathrm{Si_{6}Ca_{4}Ba}$	6.4.1	36.1 54.5	34,5 36,4	29,4 9,1	2,48	1050	C35K35Ba30
9	SiCaBa–SiCa– –SiCa ₂	$SiCaBa+SiCa+SiCa_2 \leftrightarrow \leftrightarrow Si_3Ca_4Ba$	$\mathrm{Si_{3}Ca_{4}Ba}$	3.4.1	22,0 37,5	$\frac{42.0}{50.0}$	$\frac{36,0}{12,5}$	2,51	1120	C20K45Ba35
			сплавы на основе кальция	нове кальци	ы					
	SiCa ₄ Ba ₂ –SiCa ₃	$SiCa_4Ba_2 + 2(SiCa_3) \leftrightarrow \leftrightarrow Si_3Ca_{10}Ba_2$	$\mathrm{Si_{3}Ca_{10}Ba_{2}}$	3.10.2	11,0 20,0	52,8 66,8	36.2 13,2	2,43	850	C10K50Ba40
2	$\mathrm{SiCa_4Ba_2}$ $-\mathrm{SiCa_{12}}$	$SiCa_4Ba_2 + SiCa_{12} \leftrightarrow \leftrightarrow Si_2Ca_{16}Ba_2$	$\mathrm{SiCa_{_8}Ba}$	(3_1)	<u>5,8</u> 11,1	66,0 88,9	28,2 11,1	2,21	650	C5K65Ba30
			сплавы на о	сплавы на основе бария						
1	$\mathrm{SiCa_{2}Ba_{4}}\mathrm{-SiBa_{6}}$	$SiCa_2Ba_4 + SiBa_6 \leftrightarrow \leftrightarrow Si_2Ca_2Ba_{10}$	${ m SiCaBa}_5$	$\begin{array}{c} 1.1.5 \\ (\mathfrak{I}_2) \end{array}$	3.7 14,0	$\frac{5.3}{14.0}$	91,0 72,0	3,59	250	C5K5Ba90

Примечания: *трехзначные числа – стехиометрические коэффициенты тройных интерметаллидов: первые цифры – кремний, вторые – кальций, третьи – барий; **С – кремний, К – кальций, Ба – барий

Получение и обработка расплавов

в жидкотекучее состояние с образованием модифицированных глобулярных неметаллических включений (МНВ):

$$4(8SiO_{2}CaOBaO)_{HMB} + 40(CaO)_{TUIC} \rightarrow (32SiO_{2}44CaO4BaO)_{MHB},$$
 (9)

содержащих (%мас.): 38,4 SiO_2 + 49,4 CaO + 12,2 BaO при основности 1,60 и температуре плавления 1400 $^{\circ}$ C. При модифицировании 1,0 кг/т силикатного стекла требуется 0,8 кг/т извести.

Раскислительная способность кремния в сплаве C55K10Бф35 повышается на 10–15 % при использовании ферросилиция ФС65 (FeSi₁) в соответствии с реакцией:

$$2(FeSi_4)_{Me} + 16[O]_{Me} \rightarrow 2Fe_{Me} + 8(SiO_2)_{HMR},$$
 (10)

или на модифицирование 1,0 кг/т кварцевого стекла по реакции (11) требуется 1,4 кг/т CO:

$$8(SiO_2)_{HMB} + 12(CaO)_{TUIC} \rightarrow (8SiO_2 12CaO)_{MHB}.$$
 (11)

Выводы

- Построена неизвестная ранее полигональная диаграмма системы Si-Ca-Ba, служащая системным классификатором сплавов силикокальцийбария.
- Установлено, что кальций и барий взаимно растворяются в жидком состоянии при температуре 750 °С с образованием интерметаллида стехиометрического состава СаВа (22,6/77,4), на базе которого образуются метастабильные сплавы кальцийбария.
- Представлен механизм получения углетермических сплавов силикокальцийбария через последовательный ряд структурно-химических реакций восстановления углеродом компонентов рудного сырья с образованием промежуточных фаз карбидов бария, кальция, кремния и газовой смеси: закись-окись углерода (С₀О + СО).
- Показан механизм образования неметаллических включений при раскислении стали сплавами силикобария с образованием стекловидных продуктов типа кварцевого стекла.
- Предложен механизм перевода стекловидных силикатов, образующих хрупкие неметаллические включения, в глобулярные за счет присадок извести при заданном соотношении стекло:известь как 1: (1,5–2,0).

Список литературы

- 1. *Белов Б. Ф.* Метод побудови полігональних діаграм стану потрійних металургійних систем / Б. Ф. Белов, И. Д. Буга, А. І. Троцан та ін. // Свідоцтво про реєстрацію авторського права на твір 48344 від 18.03.2013.
- 2. Вахабов А. В. Систематизация видов взаимодействия в двойных системах на основе кальция, стронция, бария / А. В. Вахабов, В. Н. Вигдорович, Т. Д. Джураев // Общие закономерности в строении диаграмм состояния металлических систем. М.: Наука, 1973. С. 121–124.
- 3. Структуры двойных сплавов. Справочник / М. Хансен и К. Андерко. М., 1962. Т. 1. С. 291–292.
- 4. *Мирошниченко И. С.* Кристаллизация метастабильных фаз и метастабильные диаграммы состояния / Общие закономерности в строении диаграмм состояния металлических систем. М.: Наука, 1973. С. 130–135.

Получение и обработка расплавов

- 5. Сплав кремнію з кальцієм. ПУ № 89504, С21С7/06, опубл. 25.04.2014, Бюл. № 8.
- 6. Сплав кремнію з барієм. ПУ № 93964, С21С7/06, опубл. 27.10.2016, Бюл. № 20.
- 7. *Рябчиков И. В.* Кремнистые ферросплавы и модификаторы нового поколения. Производство и применение / И. В. Рябчиков, В. С. Мизин, В. В. Андреев. Челябинск: ЮурГу, 2013. 295 с.

References

- 1. *Belov, B. F., Buha, Y. D., Trotsan A. I.* et al. Metod pobudovy polihonalnykh diahram stanu potrinykh metalurhiinykh system [*The method of motivating the polygonal dyagrams will become the post-production metal systems*]. Svidotstvo pro reiestratsiiu avtorskoho prava na tvir 48344 vid 18.03.2013 [in Ukrainian].
- 2. Vakhabov, A. V., Vigdorovich, V. N., Dzhuraev, T. D. (1973) Sistematizatsiya vidov vzaimodeystviya v dvoynykh sistemakh na osnove kaltsiya, strontsiya, bariya [Systematization of types of interaction in binary systems based on calcium, strontium, barium]. Obshchie zakonomernosti v stroenii diagramm sostoyaniya metallicheskikh sistem. Moscow: Nauka, pp. 121–124 [in Russian].
- 3. Khansen, M. & Anderko, K. (eds) (1962) Struktury dvoynykh splavov. Spravochnik [The structures of binary alloys. Directory]. Moscow, T. 1, pp. 291–292 [in Russian].
- 4. *Miroshnichenko, I. S.* (1973) Kristallizatsiya metastabilnykh faz i metastabilnye diagrammy sostoyaniya [*Crystallization of metastable phases and metastable state diagrams*]. Obshchie zakonomernosti v stroenii diagramm sostoyaniya metallicheskikh sistem. Moscow: Nauka, pp. 130–135. [in Russian].
- 5. Splav kremniyu z kal'tsiyem [*Alloy silicon with calcium*]. PU № 89504, S21S7/06, opubl. 25.04.2014, Byul. № 8 [in Ukrainian].
- Splav kremniyu z bariyem [Alloy silicon in barium]. PU № 93964, S21S7/06, opubl. 27.10.2016, Byul. № 20 [in Ukrainian].
- 7. Ryabchikov, I. V., Mizin, V. S., Andreev, V. V. (2013) Kremnistye ferrosplavy i modifikatory novogo pokoleniya. Proizvodstvo i primenenie [Siliceous ferroalloys and modifiers of a new generation. Production and application]. Chelyabinsk: YuurGu, 295 p. [in Ukrainian].

Поступила 25.10.2017

ПОЗДРАВЛЯЕМ

директора Физико-технологического института металлов и сплавов НАН Украины, доктора технических наук

АНАТОЛИЯ ВАСИЛЬЕВИЧА НАРИВСКОГО

с избранием член-корреспондентом НАН Украины и желаем новых творческих свершений!

Администрация и коллектив ФТИМС НАН Украины