АЭРО- И ГИДРОМЕХАНИКА В ЭНЕРГЕТИЧЕСКИХ МАШИНАХ

- Венедиктов В. Д. Атлас экспериментальных характеристик плоских решеток охлаждаемых газовых турбин / В. Д. Венедиктов, А. В. Грановский, А. М. Карелин, А. Н. Колесов, М. Х. Мухтаров М.: Центр. ин-т аэрогидромеханики, 1990. 393 с.
- 5. *Локай В. И.* Газовые турбины двигателей летательных аппаратов / В. И. Локай, В. А. Максутова, В. А. Стрункин– М.: Машиностроение, 1979. 447 с.
- 6. *Аронов Б. М.* Профилирование лопаток авиационных газовых турбин / Б. М. Аронов, М. И. Жуковский, В. А. Журавлев. М.: Машиностроение, 1978. 168 с.
- 7. *Ершов С. В.* Численный метод расчета течений невязкого и вязкого газа в решетках профилей / Ин-т пробл. машиностроения АН Украины. Харьков, 1992. 83 с. Деп. в ВИНИТИ 29.12.92, № 3696-В92.
- 8. *Menter F. R.* Two-equation eddy viscosity turbulence models for engineering applications // AIAA J. 1994. **32**, № 11. P. 1299–1310.

Поступила в редакцию 01.09.09

УДК 519.63

А. В. Русанов, д-р. техн. наук Д. Ю. Косьянов

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (г. Харьков, E-mail: rusanov@ipmach.kharkov.ua)

НЕЯВНАЯ СХЕМА ДЛЯ ЧИСЛЕННОГО ИНТЕГРИРОВАНИЯ УРАВНЕНИЙ ГИПЕРБОЛИЧЕСКОГО ТИПА НА НЕСТРУКТУРИРОВАННЫХ СЕТКАХ

Разработана неявная безытерационная схема для численного интегрирования дифференциальных уравнений в частных производных гиперболического типа на неструктурированных сетках. Предложено оригинальное расщепление по пространственным переменным и собственным значениям. Приведены решения ряда тестовых задач.

Розроблено неявну безітераційну схему для чисельного інтегрування диференціальних рівнянь у частинних похідних гіперболічного типу на неструктурованих сітках. Запропоновано оригінальне розщеплення просторовими невідомими та власними числами. Наведено розв'язки низки тестових задач.

1. Введение

При моделировании различных физических процессов с помощью численного интегрирования дифференциальных уравнений в частных производных (ДУЧП) гиперболического типа всё чаще применяются неструктурированные сетки [1–3]. Ускорение сходимости и повышение устойчивости [1, 4] может быть обеспечено с помощью неявных схем, однако их применение требует решения системы линейных алгебраических уравнений (СЛАУ) с большой несимметрической матрицей на каждом временном слое.

Среди существующих подходов обращения СЛАУ неявных операторов можно выделить прямые методы, стандартные итерационные, LU факторизации и методы подпространств Крылова (GMRES, BiCGSTAB, GMRES+LU-SGS) в сочетании с процедурой предобуславливания [5 - 8], а также методы выделения линий [9]. Большинство современных подходов опираются на итерационное обращение неявного оператора. В этом случае возникает ряд сложностей (учёт обусловленности матрицы и др.), в связи с чем актуальным становится развитие методов расщепления, широко применяемых для структурированных сеток [10].

В статье представлена безытерационная неявная схема численного интегрирования дифференциальных уравнений в частных производных гиперболического типа на неструк-

турированных сетках. Для построения неявного оператора предложено оригинальное расщепление по пространственным координатам и собственным значениям. В качестве явного оператора применены метод Годунова первого порядка точности [11] и метод MUSCL [12], имеющий второй порядок точности на гладких монотонных решениях и переходящий на первый в областях локальных экстремумов. Приведены решения ряда тестовых задач.

2. Основные уравнения

Система ДУЧП, записанная в дивергентной форме, имеет вид

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial G}{\partial z} = 0, \qquad (1)$$

где Q – вектор консервативных переменных; E, F, G – потоки; x, y, z – декартовы координаты в пространстве; t – координата по времени.

Система уравнений в недивергентной форме записывается следующим образом:

$$\begin{aligned} &\frac{\partial q}{\partial t} + \hat{A} \frac{\partial q}{\partial x} + \hat{B} \frac{\partial q}{\partial y} + \hat{C} \frac{\partial q}{\partial z} = 0, \\ &dq = TdQ, \qquad \hat{A} = TAT^{-1}, \qquad \hat{B} = TBT^{-1}, \qquad \hat{C} = TCT^{-1}, \\ &A = \partial E/\partial Q, \qquad B = \partial F/\partial Q, \qquad C = \partial G/\partial Q, \end{aligned}$$

где q – вектор примитивных переменных; T – матрица перехода от примитивных к консервативным переменным.

3. Пространственно-временная дискретизация основных уравнений. Численная схема

В наиболее общем случае физическая область отображается на расчётную с помощью неструктурированной сетки, ячейками (элементами) которой в плоском случае являются выпуклые многоугольники (треугольники, четырёхугольники и т. д.), а в пространственном случае – выпуклые многогранники (пирамиды, параллепипеды и т.д.). Система уравнений (1) решается маршевыми методами по времени, для чего на временной оси задаётся равномерная сетка узлов вида $t_n = \tau \cdot n, \tau > 0, n \in N \cup \{0\}$ Здесь τ – шаг временной сетки.

Система уравнений (1), проинтегрированная по ячейке (контрольному объёму), имеет вид

$$\frac{\partial Q_0}{\partial t} + \frac{1}{|V_0|} \iint_{S} \left(E \cdot n_x + F \cdot n_y + G \cdot n_z \right) ds = 0, \tag{2}$$

где $Q_0 = \frac{1}{|V_0|} \iiint_V Q dx dy dz$ – осреднение вектора переменных Q по ячейке $V, |V_0|$ – объём ячей-

ки V; S – поверхность, ограничивающая ячейку. Ориентация поверхности S задаётся единичным вектором внешней нормали $\vec{n} = (n_x, n_y, n_z)^t$.

Линеаризация потоков выполнена следующим образом:

$$P_{i} = \beta \cdot P^{n+1} + (1-\beta) \cdot P^{n} = P^{n} + \beta \cdot M^{n} \delta Q^{n+1}, \qquad t \in [t_{n}, t_{n+1}], \quad \beta \in [0, 1],$$

где $P = [R, F, G], M = [A, B, C], \delta Q^n = Q^n - Q^{n-1}$. Введенные сокращения означают, что линеаризация для потока E получается в случае P = E и M = A, для потока F при P = F и M = B, а для потока G, если P = G и M = C. Верхним индексом обозначается временной слой.

Аппроксимация производной по времени от вектора консервативных переменных определяется выражением

$$\frac{\partial Q_0}{\partial t} \approx \frac{(1+\gamma)\delta Q_0^{n+1} - \gamma\delta Q_0^n}{\tau}.$$

Используемые выше β , γ являются коэффициентами схемы.

Система уравнений (2) после линеаризации потоков и замены производной по времени на соответствующее аппроксимирующее выражение имеет вид

$$\delta Q_0^{n+1} + \frac{\beta \cdot \tau}{(1+\gamma)|V_0|} \sum_{k=1}^{N_0} \left[A_k^n \delta Q_k^{n+1}(n_x S)_k + B_k^n \delta Q_k^{n+1}(n_y S)_k + C_k^n \delta Q_k^{n+1}(n_z S)_k \right] = R_0^{(n)},$$

$$R_0^{(n)} = \frac{\gamma}{1+\gamma} \delta Q_0^n - \frac{\tau}{(1+\gamma)|V_0|} \sum_{k=1}^{N_0} \left[E_k^n (n_x S)_k + F_k^n (n_y S)_k + G_k^n (n_z S)_k \right],$$
(3)

где N_0 – число граней ячейки; S_k – площадь k-й грани ячейки; E_k^n , F_k^n , G_k^n – значения потоков в центре масс k-й грани; $M_k^n \delta Q_k^{n+1}$ – значение линеаризованного потока в центре масс k-й грани.

Разностная аппроксимация исходных уравнений в форме (3) в общем случае соответствует неявной трёхслойной схеме. Правая часть $R_0^{(n)}$ определяет явный оператор, а левая – неявный. При $\gamma = 0$ схема является двухслойной по времени, а при $\beta = 0$ – явной схемой. В статье применяется трёхслойная полностью неявная схема с коэффициентами $\gamma = 1/2$ и $\beta = 1$.

Явный оператор. В работе для определения явного оператора использовались схемы Годунова [11] и MUSCL [12]. Явная схема Годунова имеет первый порядок аппроксимации по пространству (кусочно-постоянное распределение переменных внутри ячейки). Применяемая схема MUSCL имеет второй порядок аппроксимации по пространству на гладких монотонных решениях и первый порядок в местах локальных экстремумов (кусочнолинейное распределение переменных в ячейке).

Неявный оператор. Значение линеаризованного потока в центре масс грани текущей ячейки вычисляется следующим образом:

$$M_k^n \delta Q_k^{n+1} = \left(L_{\psi}^{-1} \Lambda_{\psi} \left(I - \delta_{\Lambda_{\psi}} \right) L_{\psi} \right)_0^n \delta Q_0^{n+1} + \left(L_{\psi}^{-1} \Lambda_{\psi} \delta_{\Lambda_{\psi}} L_{\psi} \right)_{0k}^n \delta Q_{0k}^{n+1},$$

$$\delta_{\Lambda_{\psi}} = \operatorname{diag} \left(\delta_{\Lambda_{\psi}^{(1)}}, \dots, \delta_{\Lambda_{\psi}^{(m)}} \right), \qquad \Lambda_{\psi} = \operatorname{diag} \left(\Lambda_{\psi}^{(1)}, \dots, \Lambda_{\psi}^{(m)} \right), \qquad I = \operatorname{diag}(1, \dots, 1),$$

$$M = [A, B, C], \qquad \psi = [x, y, z],$$

где $L_{\psi}, L_{\psi}^{-1}, \Lambda_{\psi}$ – матрицы, полученные при диагонализации матрицы M; ψ – декартова координата, соответствующая определённому M ($\psi = x$ для $M = A, \psi = y$ для M = B и $\psi = z$ для M = C); δQ_{0k}^n – значение приращений вектора консервативных переменных в центре масс ячейки, смежной к текущему контрольному объёму по k-й грани; m – число уравнений системы (1); $\delta_{\Lambda_{\psi}^{(r)}}$ – переключатель, обеспечивающий выполнение условия "разности против потока". Значение $\delta_{\Lambda_{\psi}^{(r)}}$ определяется выражением

$$\delta_{\Lambda_{\psi}^{(r)}} = \begin{cases} 0, \left(n_{\psi}\Lambda_{\psi}^{(r)}\right)_{k}^{n} \ge 0, \\ 1, \left(n_{\psi}\Lambda_{\psi}^{(r)}\right)_{k}^{n} < 0, \quad r = 1, \dots, m. \end{cases}$$

Для упрощения дальнейших записей будем использовать

$$\delta^{\Lambda_{\Psi}} = I - \delta_{\Lambda_{\Psi}} = \operatorname{diag}\left(1 - \delta_{\Lambda_{\Psi}^{(1)}}, \dots, 1 - \delta_{\Lambda_{\Psi}^{(m)}}\right).$$

Введём пространственные переключатели для каждого декартова направления ψ

$$\delta_{\psi,k}^{+} = \begin{cases} 1, \psi_{0k} - \psi_{0} > 0, \\ 0, \psi_{0k} - \psi_{0} \le 0, \end{cases}$$
$$\delta_{\psi,k}^{-} = 1 - \delta_{\psi,k}^{+}, \qquad \psi = [x, y, z]$$

где ψ_{0k} , ψ_0 – значения координат центров масс двух контрольных объёмов, смежных по *k*-му ребру рассматриваемого направления. С учётом введенных обозначений значение линеаризованного потока определяется выражением

$$M_{k}^{n} \delta Q_{k}^{n+1} = \left(L_{\psi}^{-1} \Lambda_{\psi} \delta^{\Lambda_{\psi}} \delta^{+}_{\psi,k} L_{\psi} \right)_{0}^{n} \delta Q_{0}^{n+1} + \left(L_{\psi}^{-1} \Lambda_{\psi} \delta^{\Lambda_{\psi}} \delta^{-}_{\psi,k} L_{\psi} \right)_{0}^{n} \delta Q_{0}^{n+1} + \left(L_{\psi}^{-1} \Lambda_{\psi} \delta_{\Lambda_{\psi}} \delta^{-}_{\psi,k} L_{\psi} \right)_{0}^{n} \delta Q_{0k}^{n+1}.$$

Тогда

$$\sum_{k=1}^{N_0} M_k^n \delta Q_k^{n+1} (n_{\psi} S)_k = \left(K_{\psi,0}^+ + K_{\psi,0}^- + K_{\psi,\bar{0}}^+ + K_{\psi,\bar{0}}^- \right) \delta Q^{n+1},$$

где

$$\begin{split} K^{+}_{\psi,0} \delta Q^{n+1} &= \left(L^{-1}_{\psi} \Lambda_{\psi} \right)^{n}_{0} \left(\sum_{k=1}^{N_{0}} \left(n_{\psi} S \right)_{k} \delta^{+}_{\psi,\kappa} \delta^{\Lambda_{\psi}} \right) \left(L_{\psi} \right)^{n}_{0} \delta Q^{n+1}_{0}; \\ K^{+}_{\psi,\bar{0}} \delta Q^{n+1} &= \sum_{k=1}^{N_{0}} \left(n_{\psi} S \right)_{k} \left(L^{-1}_{\psi} \Lambda_{\psi} \right)^{n}_{0_{k}} \delta^{-}_{\psi,\kappa} \delta_{\Lambda_{\psi}} \left(L_{\psi} \right)^{n}_{0_{k}} \delta Q^{n+1}_{0_{k}}; \\ K^{-}_{\psi,0} \delta Q^{n+1} &= \left(L^{-1}_{\psi} \Lambda_{\psi} \right)^{n}_{0} \left(\sum_{k=1}^{N_{0}} \left(n_{\psi} S \right)_{k} \delta^{-}_{\psi,\kappa} \delta^{\Lambda_{\psi}} \right) \left(L_{\psi} \right)^{n}_{0} \delta Q^{n+1}_{0}; \\ K^{-}_{\psi,\bar{0}} \delta Q^{n+1} &= \sum_{k=1}^{N_{0}} \left(n_{\psi} S \right)_{k} \left(L^{-1}_{\psi} \Lambda_{\psi} \right)^{n}_{0_{k}} \delta^{+}_{\psi,\kappa} \delta_{\Lambda_{\psi}} \left(L_{\psi} \right)^{n}_{0_{k}} \delta Q^{n+1}_{0_{k}}. \end{split}$$

С учётом выполненных преобразований уравнение (3) записывается следующим образом:

$$\left\{I + \frac{\tau \cdot \beta}{(1+\gamma)} \sum_{\psi = [x,y,z]} \left(K_{\psi,0}^{+} + K_{\psi,0}^{-} + K_{\psi,\bar{0}}^{+} + K_{\psi,\bar{0}}^{-}\right)\right\} \delta Q^{n+1} = R_{0}^{(n)} .$$
(4)

После факторизации по пространственным переменным и по направлениям, (4) примет вид

$$\prod_{\psi=[x,y,z]} \prod_{i=+,-} \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma) V_0} \left(K^i_{\psi,0} + K^i_{\psi,\overline{0}} \right) \right\} \delta Q^{n+1} = R_0^{(n)}$$
(5)

Последовательность шагов интегрирования уравнения (5) следующая:

$$\begin{cases} I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{x,0}^+ + K_{x,\bar{0}}^+ \right) \right\} \delta Q^{n+\frac{1}{6}} = R_0^{(n)}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{x,0}^- + K_{x,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{3}{6}} = \delta Q^{n+\frac{2}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{y,0}^- + K_{y,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{3}{6}} = \delta Q^{n+\frac{2}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{y,0}^- + K_{y,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{3}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{4}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{5}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{5}{6}}; \\ \left\{ I + \frac{\tau \cdot \beta}{(1+\gamma)V_0} \left(K_{z,0}^- + K_{z,\bar{0}}^- \right) \right\} \delta Q^{n+\frac{5}{6}} = \delta Q^{n+\frac{5}{6}}; \\ \left\{ I + \frac{\tau \cdot$$

На каждом шаге обращается двухдиагональная матрица. Операторы $I, K_{\psi,0}^+, K_{\psi,0}^-$ содержат элементы главной диагонали, а $K_{\psi,\bar{0}}^+, K_{\psi,\bar{0}}^-$ – элементы над- (под-) диагонали. Для реализации процедур прогонки вперёд / назад все ячейки области отсортированы по каждому декартову направлению ψ .

АЭРО- И ГИДРОМЕХАНИКА В ЭНЕРГЕТИЧЕСКИХ МАШИНАХ

4. Численные результаты

Тестирование схемы выполнялось на модельной двухмерной (по пространству) задаче для линейного уравнения переноса $u_t + u_x + u_y = H$, $(x, y) \in \Omega$, где Ω – расчётная область, u = u(t, x, y) – искомое решение задачи. Начальные условия определяются выражением $u(0, x, y) = \varphi(x, y), (x, y) \in \Omega$. Расчётная область $\Omega = \{(x, y) : x \in [0,1], y \in [0,1]\}$ и разностная сетка представлены на рис. 1. На участках границы AD и AB расчётной области заданы граничные условия в виде значений точного решения задачи.

Рассмотрены два варианта задачи с *H*, для которых существует стационарное решение

- Test1. $H(x, y) = 2\pi \cos(\pi(x+y)), u(t, x, y) = \sin(\pi(x+y));$
- Test2. $H(x, y) = \pi \sin(\pi(x+y)), u(t, x, y) = \sin(\pi \cdot x) \cdot \sin(\pi \cdot y).$

Расчеты выполнены для пяти размерностей (уровней) сетки. При увеличении номера уровня сетки число ячеек сетки увеличивается в 4 раза, а диаметр сетки уменьшается в 2 раза. Параметры сеток для первого уровня приведены в табл. 1.

Тип сетки	Число ячеек	Диаметр сетки
Структурированная (SG)	256	0,0625
Неструктурированная (UG)	448	0,1148

Таблица 1. Параметры сеток первого уровня

Скорость сходимости численного решения к точному при переходе с уровня на уровень (уменьшении диаметра сетки) оценивалась по трём стандартным сеточным нормам L_1 , L_2 и C_{\max}

$$k_i^{i+1} = \frac{\ln(N_i/N_{i+1})}{\ln(2)},$$

где N_i – значение сеточной нормы на *i*-м уровне сетки.

Расчёты по явной схеме Годунова выполнены с числом Куранта v = 0,5, а по явной схеме MUSCL – при v = 0,25. Для неявной схемы выбрано число Куранта v = 10,0. Итерации по времени проводились до получения стационарного решения.

Результаты решения тестовых задач приведены в табл. 2–5 и на рис. 2–3. В таблицах верхние значения порядка сходимости соответствуют результатам, полученным по явным схемам, а нижние – по неявным. На рис. 2 и 3 сплошной линией показаны расчёты на структурированной сетке, а пунктирной – на неструктурированной, треугольником – результаты, полученные по явной и неявной схемам Годунова, крестиком – по явной схеме MUSCL, а точкой – по неявной схеме MUSCL.

АЭРО- И ГИДРОМЕХАНИКА В ЭНЕРГЕТИЧЕСКИХ МАШИНАХ

№ слоя	Явный оператор Годунова			Явный оператор MUSCL		
(предыдущий – следующий)	K_{L_1}	K_{L_2}	$K_{C_{\max}}$	K_{L_1}	K_{L_2}	$K_{C_{\max}}$
1.2	1,005	1,008	1,015	2,332	2,204	0,969
1-2	1,005	1,008	1,015	2,389	2,240	0,953
2-3	1,002	1,004	1,009	2,272	2,177	1,033
	1,002	1,004	1,009	2,320	2,247	1,033
3-4	1,002	1,002	1,005	2,136	2,104	0,994
	1,002	1,002	1,005	2,089	2,126	0,939
4-5	1,000	1,000	1,003	2,067	2,056	0,998
	1,000	1,000	1,003	2,070	1,967	0,998

Таблица 2. Оценка порядка сходимости для Test 1 (SG)

Таблица 3. Оценка порядка сходимости для Test 1 (UG)

№ слоя	Явный оператор Годунова			Явный оператор MUSCL		
(предыдущий – следующий)	K_{L_1}	K_{L_2}	$K_{C_{\max}}$	K_{L_1}	K_{L_2}	$K_{C_{\max}}$
1_2	0,994	0,992	1,005	2,161	1,677	0,802
1 2	0,994	0,992	1,005	2,171	1,769	1,154
2_2	0,993	0,990	0,979	2,034	1,603	1,037
2-3	0,993	0,990	0,979	2,071	1,633	0,779
2_1	0,994	0,991	0,979	2,082	1,590	0,995
5-4	0,994	0,991	0,979	2,015	1,450	0,908
4-5	0,995	0,993	0,974	1,987	1,472	0,999
	0,995	0,993	0,974	2,018	1,523	0,992

Таблица 4. Оценка порядка сходимости для Test 2 (SG)

№ слоя	Явный оператор Годунова			Явный оператор MUSCL		
(предыдущий – следующий)	K_{L_1}	K_{L_2}	$K_{C_{\max}}$	K_{L_1}	K_{L_2}	$K_{C_{\max}}$
1_2	0,700	0,671	0,572	2,544	2,253	1,873
1 2	0,700	0,671	0,572	2,544	2,253	1,873
2_2	0,806	0,783	0,705	2,403	2,416	1,637
2-3	0,806	0,783	0,705	2,403	2,416	1,637
2 4	0,888	0,869	0,809	2,250	2,298	1,851
5-4	0,888	0,869	0,809	2,250	2,298	1,851
4-5	0,939	0,926	0,881	2,141	2,185	1,934
	0,939	0,926	0,881	2,141	2,185	1,934

,	,	1				
№ слоя	Явный оператор Годунова			Явный оператор MUSCL		
(предыдущий – следующий)	K_{L_1}	K_{L_2}	$K_{C_{\max}}$	K_{L_1}	K_{L_2}	$K_{C_{\max}}$
1.2	0,849	0,831	0,735	2,214	1,935	1,017
1-2	0,849	0,831	0,735	2,242	2,027	1,064
2.2	0,906	0,892	0,832	2,098	1,796	1,172
2-3	0,906	0,892	0,832	2,090	1,737	0,894
2 4	0,945	0,937	0,894	2,005	1,560	0,955
3-4	0,945	0,937	0,894	2,015	1,581	0,955
4-5	0,970	0,964	0,923	1,980	1,524	0,945
	0,970	0,964	0,923	1,987	1,551	0,945

Таблица 5. Оценка порядка сходимости для Test 2 (UG)

Из полученных результатов видно, что применение предложенного неявного оператора не ухудшает точности явного оператора на стационарном решении. Понижение численного порядка для MUSCL схем, по-видимому, объясняется наличием зон локальных экстремумов точного решения.

5. Выводы

Предложен безытерационный неявный оператор для численного интегрирования дифференциальных уравнений в частных производных гиперболического типа на неструктурированных сетках, построенный на основе оригинального способа расщепления по пространственным координатам и собственным значениям. Основным преимуществом такого оператора по сравнению с существующими безытерационными неявными схемами расщепления является то, что он применим к сеткам, для которых невозможно выполнить структуризацию по локальным сеточным направлениям. Кроме того, предложенный оператор записывается не в конечно-разностной, а в конечно-объёмной форме, что обеспечивает его консервативность.

Выполнены тестовые расчёты двухмерных модельных задач по схемам с явными операторами Годунова первого порядка аппроксимации и MUSCL второго порядка на гладких монотонных решениях. Полученные результаты показывают, что предложенный неявный оператор увеличивает скорость сходимости и устойчивость схемы, а также обеспечивает порядок точности стационарного решения, близкий к порядку точности явного оператора.

Литература

- 1. Venkatakrishnan V. A perspective on unstructured grid flow solvers // AIAA. Aerospace Sci. Meeting. 1996. **34**, № 33. P. 533–547.
- 2. *Елизарова Т. Г.* Аппроксимация уравнений квазигазодинамики на треугольных сетках / Т. Г. Елизарова, В. В. Серёгин // Вестн. Моск. ун-та. Сер. 3. Физика. Астрономия. 2005. № 4. С. 15–18.
- 3. *Фирсов Д. К.* Метод контрольного объёма на неструктурированной сетке в вычислительной механике: [Учеб. пособие]. Томск. ун-т. 2007. 72 с.
- 4. *Venkatakrishnan V*. Implicit schemes and parallel computing in unstructured grid CFD. ICASE Report 1995. –№ 28. P. 1–63.
- Sharov D. Implementation of unstructured grid GMRES+LU-SGS method on shared-memory, cachebased parallel computers / D. Sharov, H. Luo, J. D. Baum, R. Löhner // AIAA Paper. -2000. - № 0927. -P. 1-17.
- 6. *Kim J. S.* Implicit efficient implementation of implicit operator for block LU-SGS method / J. S. Kim, O. J. Kwon // Comp. Fluid Dynamics J. 2005. № 20. P. 154–159.
- Bramkamp F. D. Matrix-free second-order methods in implicit time integration for compressible flows using automatic differentiation / F. D. Bramkamp, B. Pollul, A. Rasch, G. Schieffer // Preprint of the Institute for Scientific Computing RWTH-CS-SC-08-08, RWTH Aachen University, Aachen, 2008. – 24 p.
- Fernandez G. Implicit conservative upwind scheme for strongly transient flows // INRIA, France, 2004. P. 1–18.
- Hassan O. An implicit finite element method for high speed flows / O. Hassan, K. Morgan, J. Peraire // AIAA Paper. - 1990. - № 0402. - P. 1-11.
- 10. Русанов А. В. Математическое моделирование нестационарных газодинамических процессов в проточных частях турбомашин / А. В. Русанов, С. В. Ершов. Харьков: Ин-т пробл. машиностроен. НАН Украины, 2008. – 275 с.
- 11. Годунов С. К. Численное решение многомерных задач газовой динамики / С. К. Годунов, А. В. Забродин, М. Я. Иванов, А. Н. Крайко, Г. П. Прокопов. М.: Наука, 1976. 400 с.
- 12. Barth T. J. The design and application of upwind scheme on unstructured meshes // T. J. Barth, D. C. Jespersen // AIAA Paper. 1989. № 0366. P. 1–13.

Поступила в редакцию 10.03.10