УДК 593.3

Н. А. Гук, канд. физ.-мат. наук

Днепропетровский национальный университет им. О. Гончара, (E-mail: nguk@farlep.dp.ua)

ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ ЗАДАЧИ ТЕРМОУПРУГОСТИ ТОНКОСТЕННЫХ СИСТЕМ ПРИ НЕОДНОРОДНОМ НАПРЯЖЕННО-ДЕФОРМИРОВАННОМ СОСТОЯНИИ

Рассматривается метод и алгоритм идентификации физических и теплофизических параметров тонкостенных систем при неоднородном внешнем воздействии. Предлагается определять неизвестные характеристики материала из решения обратной задачи термоупругости с использованием различных способов аппроксимации параметров. Декомпозиция вектора параметров приводит к необходимости решения параллельных задач существенно меньшей размерности. Предложенный подход позволяет определять указанные параметры в условиях их существенной неоднородности.

Розглядається метод і алгоритм ідентифікації фізичних і теплофізичних параметрів тонкостінних систем при неоднорідній зовнішній дії. Пропонується визначати невідомі характеристики матеріалу з розв'язку оберненої задачі термопружності з використанням різних способів апроксимації параметрів. Декомпозиція вектора параметрів приводить до необхідності розв'язання паралельних задач істотно меншої розмірності. Запропонований підхід дозволяє визначати вказані параметри в умовах їх істотної неоднорідності.

Введение

При исследовании тепловых процессов в энергетике, металлургии и других областях техники часто возникает проблема идентификации внутренних параметров тепловых систем. Для идентификации характеристик материалов могут быть применены как экспериментальные методы [1, 2], так и теоретические, основанные на решении коэффициентных обратных задач механики деформируемого твердого тела [3–6].

Аппарат обратных задач, в соответствии с общей стратегией экстремальных методов, позволяет осуществлять идентификацию параметров в результате численного моделирования рассматриваемого процесса и поиска минимума функционала-невязки. Главной проблемой применения такого подхода является необходимость формулирования операторной связи между искомыми коэффициентами дифференциальных операторов и измеряемыми величинами.

В работе [4] получены явные выражения градиентов функционалов-невязок для широкого множества многокомпонентных распределенных систем различных параметров и параметров различных внешних воздействий, используемые в градиентных методах идентификации. Между тем, известные решения коэффициентных обратных задач [5, 6] включают, как правило, малое число определяемых параметров и базируются на решении стационарных задач теплопроводности при однородном нагреве. Однако известно, что диаграммы σ-ε, полученные при однородном и неоднородном нагружениях, существенно отличаются друг от друга. Можно предположить, что теплофизические и механические свойства материала в нестационарных неоднородных задачах являются не параметрами, а функциями температуры, что не позволяет определять их с помощью итерационных процессов [4] в силу их плохой обусловленности.

В настоящей работе предлагается подход, позволяющий идентифицировать изменение термомеханических и физических свойств материала в зависимости от температуры в

задачах термоупругости, когда поле температур существенно неоднородно по объему материала.

Постановка задачи

Пусть в трехмерной области $\Omega = \{X \mid X = (x_1, x_2, x_3) \in \mathbb{R}^3, 0 \le x_1 \le a; 0 \le x_2 \le b; 0 \le x_3 \le h\}$ определена система термоупругого деформирования

$$\sigma_{ij,j}(\alpha(T), T, u_i) = F_i, \quad i, j = 1, 2, 3,$$
 (1)

связь между компонентами тензора напряжений σ_{ij} и компонентами тензора деформаций ε_{ij} задается в таком виде:

$$\sigma_{ij}(\alpha(T), T, u_i) = 2\mu \varepsilon_{ij} + [\lambda \varepsilon_{kk} - (3\lambda + 2\mu)\alpha(T)(T - T_0)]\delta_{ij},$$

$$\varepsilon_{kk} = \frac{\sigma_{kk}}{3k} + 3\alpha(T)(T - T_0), \qquad \lambda = \frac{\nu E(T)}{(1 + \nu)(1 - 2\nu)}, \qquad \mu = \frac{E(T)}{2(1 + \nu)}, \qquad k = \lambda + \frac{2}{3}\mu,$$
(2)

а связь между деформациями ε_{ij} и перемещениями

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i}),$$

здесь F_i , u_i – проекции внешних сил и перемещений на оси Ox_i ; $\alpha(T)$ – коэффициент температурного расширения; λ , μ – коэффициенты Ляме; k – модуль объемного расширения; ν – коэффициент Пуассона; E(T) – модуль Юнга; T, T_0 – конечная и начальная температура тела.

В области Ω изменение температуры T удовлетворяет уравнению

$$\left(\lambda_T(T)T_i\right)_i + q = C(T)\dot{T}, \tag{3}$$

где $\lambda_T(T)$ — коэффициент теплопроводности; q — мощность теплового источника; C(T) — удельная теплоемкость.

В начальный момент тело не нагрето и не деформировано. На поверхностях $x_1 = 0$ и $x_1 = a$ заданы условия закрепления. На поверхностях $x_3 = 0$ и $x_3 = h$ сформулированы граничные условия 2-го и 3-го рода

$$\frac{\partial T(x_1, x_2, t)}{\partial x_3}\bigg|_{x_3 = 0} = 0, \qquad \lambda_T(T) \frac{\partial T(\overline{\Omega}, t)}{\partial x_3}\bigg|_{x_3 = h} = q(t), \qquad (4)$$

где $\overline{\Omega}$ – область воздействия теплового потока.

Будем предполагать, что тело нагрето настолько, что физические E(T) и теплофизические характеристики материала $\alpha(T)$, $\lambda_I(T)$, C(T) изменяются существенно, но при этом процесс деформирования остается упругим.

Считаем, что на поверхности $x_3 = 0$ в точках X_n , n = 1, 2, ..., N известны (измеряются) значения нормальных перемещений и температур

$$u_3(X_n) = u_3^*, (5)$$

$$T(X_n) = T^*. (6)$$

Решение обратной задачи предполагает восстановление вектор-функции параметров $H = \{E(T), \alpha(T), \lambda_T(T), C(T)\}$, компонентами которого являются функции, характеризующие физические и теплофизические характеристики материала по известным следам (5), (6) решения прямой задачи.

Функционал-невязка будет иметь вид аналогично [4]

$$J = \sum_{n=1}^{N} \left(u_3(X_n, H) - u_3^*(X_n) \right)^2 + \sum_{n=1}^{N} \left(T(X_n, H) - T^*(X_n) \right)^2.$$
 (7)

Метод решения

Для определения компонент вектора нормальных перемещений $u_3(X_n, H)$ и температур $T(X_n, H)$ необходимо построить решение прямой задачи (1)–(4). Совместно с заданными

(измеренными) векторами $u_3^*(X_n)$, $T^*(X_n)$ это позволяет сформировать вектора невязок $\varepsilon(u_{3_m}, H) = (u_3(X_n, H) - u_3^*(X_n))$, $\varepsilon(T_n, H) = (T(X_n, H) - T^*(X_n))$, необходимые для формирования функционала-невязки (7).

Параметризация всех неизвестных функций задачи осуществляется путем их аппроксимации с помощью метода конечных элементов (МКЭ).

Для построения системы уравнений МКЭ выполняется дискретизация области Ω следующим образом:

- для решения прямой задачи вводится сетка с координатами узлов X_s , где $X_s = \{x_{1s}, x_{2s}, x_{3s}\}$, s = 1, 2, ..., S и соответствующими узловыми значениями функции u_{i_s} в виде вектора $U(X_s) = \{u_{i_s}\}$;
- для представления условия (7) в дискретной форме вводится сетка с координатами узлов X_n , где $X_n = \{x_{1n}, x_{2n}, x_{3n}\}$, n = 1, 2, ..., N, все X_n из числа X_s , и заданными значениями функций $u_3(X_n) = \{u_{3n}^*\}$, $T(X_n) = \{T_n^*\}$;

При численном решении сведение поиска неизвестных функциональных зависимостей E(T), $\alpha(T)$, $\lambda_T(T)$, C(T) к конечномерной постановке осуществляется путем их параметризации. Так, для построения решения обратной задачи вводится сетка с координатами узлов X_k , где $X_k = \{x_{1k}, x_{2k}, x_{3k}\}$, на которой неизвестные функции $\{E(T), \alpha(T), \lambda_T(T), C(T)\}$ аппроксимируются таким образом, что вектор неизвестных параметров обратной задачи состоит из значений в узловых точках $H = \{E_1, \alpha_1, \lambda_{T1}, C_1, ..., E_k, \alpha_k, \lambda_{Tk}, C_k\}$, k = 1, 2, ..., K.

Рассматриваемая система представляется в виде ансамбля четырехузловых конечных элементов. Учитывая линейный закон изменения перемещений u_1 и u_2 по толщине, неизвестные функции на элементе e задаются для локальной системы координат (μ , η , θ) при помощи аппроксимаций вида

$$\begin{split} u_1(\mu,\eta,\vartheta) &= u_{10} \pm \vartheta \, \frac{\partial u_3(\mu,\eta)}{\partial \mu} \,, \quad u_2(\mu,\eta,\vartheta) = u_{20} \pm \vartheta \, \frac{\partial u_3(\mu,\eta)}{\partial \eta} \,, \quad u_3(\mu,\eta,\vartheta) = u_3(\mu,\eta), \\ u_3^e &= B^e(\mu,\eta) u_3 \,, \qquad T^{(e)} = B^{(e)}(\mu,\eta) \cdot T \,, \qquad \dot{T}^{(e)} = B^{(e)}(\mu,\eta) \cdot \dot{T} \,, \end{split}$$

где u_{10} , u_{20} – перемещения координатной поверхности $\vartheta = 0$; $u_3^T = \{u_{3_r}\} = \left\{u_3, \frac{\partial u_3}{\partial \mu}, \frac{\partial u_3}{\partial \eta}\right\}$,

 $T = \{T_r\}$ – векторы значений функций в узлах; $B^e(\mu, \eta)$ – функции формы.

После выполнения соответствующей процедуры интегрирования и суммирования матриц элементов получаем систему уравнений в виде

$$K_U(H)U = R_T \tag{8}$$

$$C_T(H)\dot{T} + K_T(H)T = Q; (9)$$

где $U^T = \{U_r\}$ — вектор узловых перемещений; Q — вектор теплового воздействия; T — вектор, учитывающий механическое и температурное нагружение; $K_U(H) = \sum_e \int\limits_{\Omega^{(e)}} D^{(e)T} C^{(e)}(H) D^{(e)} d\Omega^{(e)}$, $C_T(H) = \sum_e \int\limits_{\Omega^{(e)}} D^{(e)T} C^{(e)}_T(H) D^{(e)} d\Omega^{(e)}$,

$$K_T = \sum_e \int_{\Omega^{(e)}} D^{(e)T} k^{(e)}(H) D^{(e)} d\Omega^{(e)}$$
 — матрицы жесткости, теплоемкости, теплопроводности

конструкции; $C^{(e)}(H)$, $C_T^{(e)}(H)$, $k^{(e)}(H)$ — матрицы упругости, коэффициентов теплопроводности соответственно для всего ансамбля элементов; $D^{(e)T}$ — матрица функций формы.

В результате решения системы уравнений (8), (9) получаем векторы перемещений и температур $u_3(X_n, H)$, $T(X_n, H)$, которые вместе с заданными векторами $u_3^*(X)$, $T^*(X_n)$ позволяют сформировать функционал-невязку (7).

Для выполнения численной минимизации функционала (7) будем использовать метод Ньютона—Аффсона, тогда итерационный процесс отыскания вектора параметров будет иметь вид

$$H^{k+1} = H^k - h_k (J''(H^k))^{-1} J'(H^k), \tag{10}$$

где $J''(H^k)$ – гессиан функционала J в точке H^k ; $J'(H^k)$ – градиент функционала J в точке H^k ; h_k – величина шага, которую можно регулировать.

Компоненты градиента и гессиана функционала можно представить следующим образом:

$$J'(H^{k}) = \frac{\partial J(H^{k})}{\partial H_{j}} = 2\sum_{n=1}^{N} \left\{ \frac{\partial \varepsilon_{n}(H^{k})}{\partial H_{j}} \right\} \varepsilon_{n}(H^{k}),$$

$$J''(H^{k}) = 2\sum_{n=1}^{N} \left\{ \frac{\partial \varepsilon_{n}(H^{k})}{\partial H_{j}} \right\}^{T} \left\{ \frac{\partial \varepsilon_{n}(H^{k})}{\partial H_{p}} \right\} - 2\sum_{i=1}^{N} \left\{ \frac{\partial^{2} \varepsilon_{n}(H^{k})}{\partial H_{j} \partial H_{p}} \right\} \varepsilon_{n}(H^{k}).$$

Линеаризуя функцию $\varepsilon_n(H^k)$ в окрестности текущего значения вектора параметров H^k

в виде
$$\widetilde{\varepsilon}_n(H) = \varepsilon_n(H^k) + \sum_{j=1}^M \left\{ \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \right\}^T \bigg|_{H=H^k} (H_j - H_j^k)$$
 и сделав замену ее в гессиане на ли-

неаризованную, получим, что второе слагаемое можно положить равным 0. Вводя матричные обозначения, из (10) имеем разрешающее уравнение для определения вектора H^k неизвестных параметров задачи

$$R(H^k)\Delta H^k = -G(H^k)\varepsilon(H^k),\tag{11}$$

где
$$R(H^k) = \left\{ \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \right\}^T \left\{ \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \right\}; \ G(H^k) = \left\{ \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \right\}^T, \ n = 1, 2, ..., N, j = 1, 2, ..., M.$$

Введем предположение о существовании наиболее информативных компонент $\Delta H^1 = \{\Delta H_j^1\}$, $j=1,2,...,M_1$, $M_1 < M$ вектора параметров $\Delta H = \{\Delta H_j\}$, j=1,2,...,M, таких, что выполняется условие $\|\Delta H - \Delta H^1\|^2 \to \min$, и норма определяется $\|\Delta H - \Delta H^1\| = \sqrt{\left|\Delta H_1 - \Delta H_1^1\right|^2 + ... + \left|\Delta H_M - \Delta H_M^1\right|^2}$.

Тогда неизвестный вектор приращений параметров $\Delta H = \{\Delta H_j\}_{j=1,M}$ можно представить в виде двух независимых вектора ΔH^1 и ΔH^2 , имеющих размерности M_1 и M_2 соответственно $(M_1 + M_2 = M)$.

Зададим функции принадлежности u_j^p (j=1,2,...,M,p=1,2) компонент вектора ΔH векторам ΔH^1 и ΔH^2 в виде

$$u_{r_{1}}^{1}(X) = \delta(X - X_{r_{1}}); \qquad r_{1} \in I^{1}, \qquad I^{1} = \{r_{p_{1}}, \dots, r_{p_{M_{1}}}\};$$

$$u_{r_{2}}^{2}(X) = \delta(X - X_{r_{2}}); \qquad r_{2} \in I^{2}, \qquad I^{2} = \{r_{k_{1}}, \dots, r_{k_{M_{2}}}\};$$

$$I^{1} \cap I^{2} = \emptyset,$$

$$(12)$$

где $\delta(X-X_{r_n})$ – функция Дирака; M_1 – заданное число ненулевых компонент вектора ΔH^1 .

Используя функции (12), сформируем матрицы

$$[D]_{M \times M} = \operatorname{diag}\{\delta(X - X_r)\}; \quad r = 1, 2, \dots M; \quad [D_1]_{M \times M} = \operatorname{diag}\{u_n^1\}; \quad [D_2]_{M \times M} = [D] - [D_1],$$

тогда ΔH^1 и ΔH^2 можно представить в виде

$$\Delta \widetilde{H}^1 = \int\limits_{\Omega} D_1 \Delta H d\Omega, \qquad \quad \Delta \widetilde{H}^2 = \int\limits_{\Omega} D_2 \Delta H d\Omega$$

или в векторной форме

$$\Delta \widetilde{H}^{1} = \begin{bmatrix} \Delta H^{1} \\ 0 \end{bmatrix}_{M \times 1}; \qquad \Delta \widetilde{H}^{2} = \begin{bmatrix} 0 \\ \Delta H^{2} \end{bmatrix}_{M \times 1}; \qquad [\Delta \widetilde{H}^{1}] + [\Delta \widetilde{H}^{2}] = [\Delta H]$$

где $[\Delta \boldsymbol{H}^1]_{M_1 imes 1} = \{\Delta \boldsymbol{H}_{j_1}, \dots, \Delta \boldsymbol{H}_{j_{M_1}}\}^T$, $[\Delta \boldsymbol{H}^2]_{M_2 imes 1} = \{\Delta \boldsymbol{H}_{j_{M_1+1}}, \dots, \Delta \boldsymbol{H}_{j_{M}}\}^T$.

Векторы ΔH^1 и ΔH^2 будем определять независимо друг от друга в виде двух параллельных алгоритмов

$$\Delta H^{1(k)} = \int_{\Omega} Q_1(X) \sum_{n=1}^{N} \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \varepsilon_n(H^{(k)}) d\Omega; \qquad (13)$$

$$\Delta H^{2^{(k)}} = \int_{\Omega} Q_2(X) \sum_{n=1}^{N} \frac{\partial \varepsilon_n(H^k)}{\partial H_j} \varepsilon_n(H^{(k)}) d\Omega , \qquad (14)$$

где $Q_i(X) = [Q_{i_{mn}} \cdot \delta(X), m = 1, M_i, n = 1, M]$, i = 1, 2 – матрицы, в которые входят искомые коэффициенты; (k) – индекс, характеризующий номер итерации процесса (11), в дальнейшем будет опущен.

На каждом шаге итерационного процесса функционал для условия $\|\Delta H - \Delta H^1\|^2 \to \min$ будет иметь вид

$$J_{1}(Q_{1},Q_{2}) = \int_{\Omega} \left(\left[\frac{Q_{1}}{Q_{2}} \right] \sum_{n=1}^{N} \frac{\partial \varepsilon_{n}(H^{k})}{\partial H_{j}} \varepsilon_{n}(H^{k}) - \left[\frac{Q_{1}}{0} \right] \sum_{n=1}^{N} \frac{\partial \varepsilon_{n}^{1}(H^{k})}{\partial H_{j}} \varepsilon_{n}^{1}(H^{k}) \right)^{T} \times \left(\left[\frac{Q_{1}}{Q_{2}} \right] \sum_{n=1}^{N} \frac{\partial \varepsilon_{n}(H^{k})}{\partial H_{j}} \varepsilon_{n}(H^{k}) - \left[\frac{Q_{1}}{0} \right] \sum_{n=1}^{N} \frac{\partial \varepsilon_{n}^{1}(H^{k})}{\partial H_{j}} \varepsilon_{n}^{1}(H^{k}) \right) d\Omega \rightarrow \min,$$

$$(15)$$

где $\varepsilon_n(H^k)$ — невязка, полученная при фиксированных значениях вектора параметров H^k ; $\varepsilon_n^{-1}(H^k)$ — невязка, вычисленная для вектора параметров $H^k = H^1$, а интеграл рассматривается в смысле Т Стиптьеса

Требуется найти вид оптимальных матриц Q_1 , Q_2 , входящих в (13), (14) и обеспечивающих минимизацию функционала (15), при этом по аналогии с [7], необходимо выполнить условия несмещенности

$$Q_{i}R_{i} - [E]_{M,\times M_{i}} = [0]_{M,\times M_{i}}$$
(16)

и инвариантности оценивания

$$Q_i R_j = [0]_{M_i \times M_j}; \qquad i \neq j; \qquad i, j = 1, 2,$$
 (17)

где [E] и [0] — единичная и нулевая матрицы соответствующей размерности; $R_i = [R_i]_{M \times M_i}$ — матрицы с ненулевыми элементами, образованные из матриц $[R]_{M \times M}[D_i]_{M \times M}$.

Эти условия присоединяются к функционалу (15) с использованием множителей Лагранжа

$$J_2(Q_1, Q_2, \overline{\Psi}) = J_1(Q_1, Q_2) + \int_{\Omega} \sum_i \overline{\Psi}_i g_i d\Omega + \int_{\Omega} \sum_i \overline{\eta}_i f_i d\Omega, \qquad (18)$$

где $\overline{\psi}^T = {\{\overline{\psi}_i\}}$, $\overline{\eta}^T = {\{\overline{\eta}_i\}}$ – векторы множителей Лагранжа; $g_i = Q_i R_j, f_i = E_i - Q_i R_j; i \neq j; i \leftrightarrow j; i, j = 1, 2.$

Так как функции принадлежности компонент вектора ΔH векторам ΔH^i (i=1,2) u_m^i ограничены $0 \le u_m^i \le 1$, $m=1,2,...,M_i$ и множество U представляется в виде $U = \{u_m^1\} = \{(u_1^i,...,u_{M_i}^i): 0 \le u_m^i \le 1, \ m=1,2,...M_i\}$, то функция $L(u) = \sum_{m=1}^{M_i} J'_{2u_m}(u) u_m^i$ достигает

своей нижней грани на U в точке $\bar{u}^i = \{\bar{u}^i_1, \ldots, \bar{u}^i_{M_i}\}$, где

$$\bar{u}^{i} = \frac{1}{2} \left[1 - \text{sign}(\psi_{jm}^{T} R_{i}^{T} Q_{jm} - Q_{jm}^{T} R_{j} \eta_{jm}) \right].$$
 (19)

Необходимые условия оптимальности для определения матриц Q_1 , Q_2 , получим, дифференцируя (18) по аргументам Q_{im} , ψ_{im} , η_{im}

$$\begin{cases} \frac{\partial J_{2m}}{\partial Q_{im}} = 2PQ_{im} + R_{j}\Psi_{im} - R_{i}\eta_{im} = [0]_{M \times 1} \\ \frac{\partial J_{2m}}{\partial \eta_{im}} = E_{im} - R_{i}^{T}Q_{im} - E[0]_{M_{i} \times 1_{i}} \\ \frac{\partial J_{2m}}{\partial \psi_{im}} = R_{j}^{T}Q_{im} = [0]_{M_{j} \times 1} \end{cases}$$

$$i, j = 1, 2,$$

$$(20)$$

где матрица P имеет размерность $M \times M$ и в качестве компонент содержит величины вида $(\sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_j} \varepsilon_n - \sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_j} \varepsilon_i^1) (\sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_k} \varepsilon_n - \sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_k} \varepsilon_n^1)$, расположенные в j-й строке, k-м столбце

$$(j=1,\,2,\,...,\,M_1$$
 и $k=1,\,2,\,...,\,M_1)$ и величины вида $\sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_j} \varepsilon_n \sum_{n=1}^N \frac{\partial \varepsilon_n}{\partial H_k} \varepsilon_n^1$, расположенные в j -й

строке, k-м столбце ($j = 1, 2, ..., M_1$ и $k = M_1 + 1, ..., M$; $j = M_1 + 1, ..., M$ и $k = 1, 2, ..., M_1$).

Для сокращения записи дальнейших преобразований введем следующие обозначения: $Z_i = P^{-1}R_i$; $Z_j = P^{-1}R_j$; $\Phi_{ii} = R_i^T P^{-1}R_i$; $\Phi_{jj} = R_j^T P^{-1}R_j$; $\Phi_{ij} = R_i^T P^{-1}R_j$; $\Phi_{ji} = R_j^T P^{-1}R_i$, тогда из первого уравнения системы (20) находим

$$Q_{im} = 2^{-1}(Z_i \eta_{im} - Z_j \psi_{im}). \tag{21}$$

Умножая левую и правую части формулы (21) слева на матрицу R_j^T и учитывая условие инвариантности оценивания (17), получаем

$$\psi_{im} = \Phi_{ii}^{-1} \Phi_{ii} \eta_{im}. \tag{22}$$

Аналогично, умножая (21) слева на матрицу R_i^T и учитывая условие несмещенности оценивания (16), имеем

$$\eta_{im} = 2\Phi_{ii}^{-1} (E_{im} + 2^{-1}\Phi_{ii}\psi_{im}). \tag{23}$$

Разрешая уравнения (22) и (23) относительно ψ_{im} , η_{im} получим выражения для определения множителей Лагранжа в явном виде, что дает возможность произвести проверку выполнения условий (19). В случае, если эти условия не выполняются, необходимо сформировать новый вектор функций принадлежности компонент вектора ΔH векторам ΔH^i (i=1,2).

Затем из (21), (22), (23) получим выражение для Q_{im} в виде

$$Q_{im} = (Z_i - Z_j \Phi_{jj}^{-1} \Phi_{ji}) (E_{M_i \times M_i} - \Phi_{ii}^{-1} \Phi_{ij} \Phi_{jj}^{-1} \Phi_{ji})^{-1} \Phi_{ii}^{-1} E_{im}$$
(24)

или, преобразуя формулу (24), используя обозначения $Z_i - Z_j \Phi_{jj}^{-1} \Phi_{ji} = F_{jj} Z_i$; $(E_{M_i \times M_i} - \Phi_{ii}^{-1} \Phi_{jj} \Phi_{ji}^{-1} \Phi_{ji})^{-1} \Phi_{ii}^{-1} = (R_i^T F_{jj} Z_i)^{-1} ; \ F_{jj} = (E_{N \times N} - Z_j \Phi_{jj}^{-1} R_j^T) ,$

$$Q_{im} = F_{jj} Z_i (R_i^T F_{jj} Z_i)^{-1} E_{im} . (25)$$

Для искомых оптимальных матриц O_i , учитывая (25), имеем

$$Q_{i} = [F_{ii}Z_{i}(R_{i}^{T}F_{ii}Z_{i})^{-1}]_{M \times N}, i \neq j, i, j = 1, 2.$$
(26)

Окончательные выражения для вычисления компонент вектора приращений параметров ΔH^i , i=1,2

$$[\Delta H^i]_{M \times I} = [F_{ii}Z_i(R_i^T F_{ii}Z_i)^{-1}]_{M \times N}[\Delta]_{N \times I}. \tag{27}$$

Полученное выражение для определения вектора параметров (27) позволяет выделить доминирующие компоненты вектора H при его идентификации. Анализ полученных выражений (26), (27) показывает, что, применяя предложенный подход декомпозиции вектора параметров, при выполнении вычислений необходимо производить обращение матриц меньшей размерности в отличие от классического подхода, где происходит сведение к системе нормальных уравнений и выполняется обращение матриц размера $M \times M$. При больших размерах матриц и их плохой обусловленности предлагаемый подход является более эффективным в вычислительном плане.

Результаты вычислительного эксперимента

Предложенный подход был применен для восстановления теплофизических $\alpha(T)$, $\lambda_T(T)$, C(T) и физических E(T) характеристик деформируемой тонкостенной системы из решения обратной задачи термоупругости.

В качестве объекта исследования рассматривалась пластина толщины h = 0.2 м, изготовленная из стали 65С2ВА. Для описания материала использовались таблично представленные зависимости значений физических и теплофизических характеристик от температуры [8], для выполнения идентификации эти зависимости аппроксимированы полиномами

$$E(T) = 211,2091 - 0,0301 \cdot T - 0,0001 \cdot T^{2} (\Gamma \Pi a),$$

$$\lambda_{T}(T) = 26,7264 + 0,0052 \cdot T \left(\frac{B_{T}}{M \cdot K} \right),$$

$$\alpha(T) = 12,1335 + 0,0034 \cdot T \left(10^{-6} \cdot \frac{1}{K} \right),$$

$$C(T) = 484,5748 + 0,0326 \cdot T + 0,0003 \cdot T^{2} \left(\frac{\mathcal{I}_{XK}}{\kappa_{\Gamma} \cdot K} \right).$$
(28)

Для формирования полей заданных перемещений $u_3^*(X_n)$ и температур $T^*(X_n)$ использовались решения прямых задач термоупругости при заданных в виде (28) значениях искомых параметров.

Пластина испытывает неоднородный нагрев, на поверхности $x_3 = h$ задан тепловой поток q, действующий на некоторую ограниченную область $\overline{\Omega}$: $\lambda_T(T) \frac{\partial T(\overline{\Omega})}{\partial x_3} \bigg|_{x=h} = q$; по-

верхность $x_3 = 0$ теплоизолирована. Рассматривались варианты нагрева пластины, когда тепловой поток воздействует на область в центре пластины (рис. 1) и область, расположенную ближе к верхнему краю пластины (рис. 2).

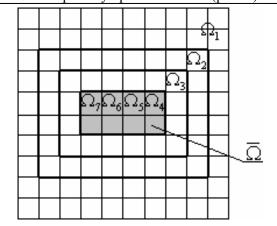


Рис. 1. Конечноэлементная модель пластины с областью нагрева в центре

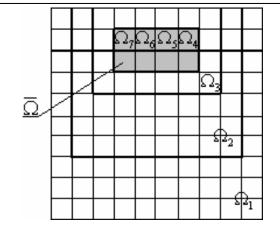


Рис. 2. Конечноэлементная модель пластины с областью нагрева смещенной относительно центра

Аппроксимация неизвестных характеристик материала выполнялась на сетке так, что компонентами вектора искомых параметров обратной задачи являются значения параметров в зафиксированных областях Ω_p (области Ω_p обозначены на рис. 1, рис. 2), а следовательно, вектор параметров может быть представлен в виде $H = \{E_1, \alpha_1, \lambda_{T_1}, C_1, \ldots, E_p, \alpha_p, \lambda_{T_p}, C_p\}$, $p = 1, 2, \ldots, P$. Для каждой выделенной области можно вычислить значение температуры T_p из решения задачи теплопроводности.

Далее проводилась идентификация вектора неизвестных параметров. В качестве начального приближения были выбраны постоянные значения теплофизических характери-

стик:
$$E = 210~\Gamma\Pi a;~\lambda_T = 27 \frac{\mathrm{BT}}{\mathrm{M} \cdot \mathrm{K}};~C = 475 \frac{\mathrm{Дж}}{\mathrm{\kappa} \Gamma \cdot \mathrm{K}};~\alpha = 11,7 \cdot 10^{-6} \frac{1}{\mathrm{K}}$$
 .

В табл. 1 представлены результаты выполнения процедуры декомпозиции, на первом шаге итерационного процесса разделение вектора параметров осуществлялось произвольно, далее – в соответствии с выполнением условия (19).

Результа	т 1	-й итерациі	И	Результа	т 2	-й итерациі	И	Результат 7-й итерации				
вектор H^1	u^1	вектор H^2	u^2	вектор H^1	u^1	вектор H^2	u^2	вектор H^1	u^1	вектор H^2	u^2	
E_1	0	C_4	1	E_2	0	E_1	1	E_3	1	E_1	1	
α_1	0	λ_{T4}	0	λ_{T_2}	1	α_1	1	α_3	1	α_1	1	
C_1	0	E_5	0	E_3	1	C_1	1	C_3	1	C_1	1	
λ_{T1}	0	α_5	0	α_3	1	λ_{T_1}	1	λ_{T3}	1	λ_{T1}	1	
E_2	1	C_5	1	C_3	1	α_2	1	E_4	1	E_2	1	
α_2	0	λ_{T5}	0	λ_{T3}	1	C_2	1	α_4	1	α_2	1	
C_2	0	E_6	1	E_4	1	C_5	0	C_4	1	C_2	1	
λ_{T_2}	1	α_6	0	α_4	0	E_6	0	λ_{T4}	1	λ_{T_2}	1	
E_3	1	C_6	0	λ_{T4}	0	C_4	0	E_5	1	_	-	
α_3	1	λ_{T_6}	0	E_5	1	_	-	α_5	1	_		
C_3	1	E_7	0	α_5	1	_	_	C_4	1	_	_	
λ_{T3}	1	α_7	0	λ_{T5}	1	_	_	λ_{T5}	1	_	_	
E_4	1	C_7	0	α_6	1	_	_	E_6	1	_	_	
α_4	1	λ_{T7}	0	C_6	1	_	_	α_6	1	_	_	
_		_		λ_{T_6}	1	_	_	C_6	1	_	_	
_		_		E_7	1	_	_	λ_{T_6}	1	_	_	
_		_		α_7	1	_	_	E_7	1	_	_	
_		_		C_7	1	_	_	α_7	1	_	_	
_		_		λ_{T7}	1	_	-	C_7	1	_	_	
_		_				_	_	λ_{T7}	1	_	_	

Таблица 1. Процедура декомпозиции вектора параметров на итерациях

После выполнения процедуры идентификации были получены значения компонент вектора неизвестных параметров, которые представлены в табл. 2. Анализируя полученные результаты, видим, что в вектор H^2 помещены параметры, значения которых практически совпадают с постоянными характеристикам материала, определенными для ненагретого тела.

Аналогичные результаты получены для случая, когда нагреваемая область была расположена ближе к краю пластины (рис. 2), здесь процесс декомпозиции был выполнен за 11 итераций.

		, ,	•	<u> </u>	-	, ,	
Вектор <i>H</i> ¹	u^1	Значение температуры в области Ω_p , К	Восстановленное значение параметра	Вектор <i>H</i> ²	u^2	Значение температуры в области Ω_p , К	Восстановленное значение параметра
E_3	1	410	198,1827	E_1	1	293	214,9684
α_3	1	410	13,1371	α_1	1	293	12,51638
C_3	1	410	544,8348	C_1	1	293	520,0917
λ_{T3}	1	410	28,7941	λ_{T1}	1	293	27,9381
E_4	1	550	172,5564	E_2	1	320	214,4121
α_4	1	550	13,7304	α_2	1	320	13,0357
C_4	1	550	577,1328	C_2	1	320	520,4381
λ_{T4}	1	550	29,1924	λ_{T_2}	1	320	28,0083
E_5	1	810	171,2324	_	_	_	_
α_4	1	810	14,4811	_	_	_	_
C_5	1	810	685,7409	_	_	_	_
λ_{T5}	1	810	30,5931	_	_	_	_
E_6	1	810	109,8971	_	_	_	_
α_5	1	810	14,4906	_	_	_	_
C_6	1	810	684,6951	_	_	_	_
λ_{T_6}	1	810	30,5380	_	_	-	_
E_7	1	550	108,1422	_	_	_	_
α_6	1	550	13,7074	_	_	_	_
C_7	1	550	576,4981	_	_	_	_
λ_{T7}	1	550	29,3046	_	_		

Tаблица 2. Pезультат идентификации векторов параметров H^1 и H^2

Далее предложенный подход был применен для идентификации теплофизических $\alpha(T)$, $\lambda_T(T)$, C(T) и физических E(T) характеристик этой же пластины с использованием общепринятой методики аппроксимации неизвестных функций, описанной в монографии [9]. Для выполнения процедуры идентификации все неизвестные функции задачи были представлены полиномами 2-й степени:

$$\varphi(T) = a \cdot T^2 + b \cdot T + c,$$

а вектор параметров составлен из полиномиальных коэффициентов: $H = \{a_E; b_E; c_E; a_C; b_C; c_C; a_{\lambda_T}; b_{\lambda_T}; c_{\lambda_T}; a_{\alpha}; b_{\alpha}; c_{\alpha}\}$. В качестве начального приближения были выбраны постоянные значения теплофизических характеристик. Результат декомпозиции вектора искомых параметров представлен в табл. 3.

Анализируя полученные результаты, видим, что в вектор H^2 помещены параметры, которые не присутствуют в аппроксимации зависимостей характеристик материала от температуры [8]. После выполнения процедуры идентификации были получены компоненты вектора параметров (коэффициенты полиномов), значения которых представлены в табл. 4.

 a_{λ_T}

 a_{α}

Результа	т 1	-й итерациі	И	Результа	т 2	-й итерациі			ат 5-й итерации		
вектор H^1	u^1	вектор H^2	u^2	вектор H^1	u^1	вектор H^2 u		вектор H^1	u^1	вектор H^2	u^2
c_C	1	a_E	0	c_C	1	b_E	0	a_E	1	a_{λ_T}	1
c_{λ_T}	1	a_C	0	c_{λ_T}	1	b_{λ_T}	0	a_C	1	a_{α}	1
c_{α}	1	b_E	1	c_{α}	1	a_{λ_T}	1	b_E	1	_	1
_	ı	b_C	0	a_E	1	a_{α}	1	b_C	1	-	-
_	_	b_{λ_T}	1	a_C	0	_	_	b_{λ_T}	1	_	-
_	_	b_{lpha}	0	b_C	1	_	_	B_{α}	1	_	_

 c_C

 c_{λ_T}

 c_{α}

1

1

 b_{α}

1

Таблица 3. Процедура декомпозиции вектора параметров, содержащего коэффициенты полиномиальной аппроксимации неизвестных функций, на итерациях

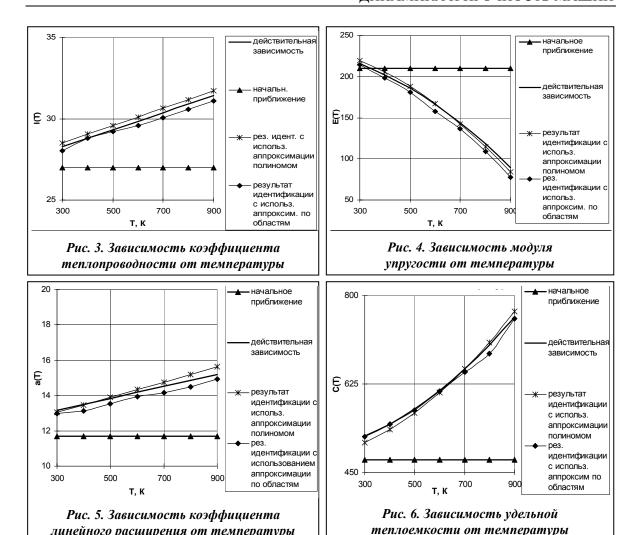
Таблица 4. Результат идентификации векторов параметров H^1 и H^2 , содержащих коэффициенты полиномов

Вектор		Действительное	Восстановленное	Вектор	U^2	Действительное	Восстановленное
H^{1}	u^1	значение	значение	H^2		значение	значение
11		коэффициента	коэффициента	11		коэффициента	коэффициента
a_E	1	-0,0001	-0,000168	a_{λ_T}	1	0	0,000000063
a_E	1	0,0003	0,0003368	a_{α}	1	0	0,000000081
b_E	1	-0,0301	-0,02418	_	_	ı	_
b_E	1	0,0326	0,0289590	_	_	ı	_
b_{λ_T}	1	0,0052	0,0052676	_	_	_	_
b_{lpha}	1	0,0034	0,0041830	_	_	_	_
c_C	1	484,57	469,15212	_	_	-	_
c_{λ_T}	1	26,72	26,92466	_	_	_	-
c_{α}	1	12,13	11,783	_	_	_	_
c_E	1	238,2091	241,9544	_	_	_	_

Результаты идентификации характеристик материала в зависимости от температуры для разных способов параметризации неизвестных функций представлены на рис. 3–6 (для случая идентификации с использованием аппроксимации по областям Ω_p зависимости были построены с использованием интерполяционных полиномов).

Для апробации предложенного подхода проводилось сравнение результатов с известными решениями. Рассматривалась задача идентификации теплофизических характеристик $\lambda_T(T)$, C(T) стальной пластины из решения задачи обратной задачи теплопроводности, представленная в монографии [9]. На поверхностях $x_3 = 0$ и $x_3 = h$ сформулированы граничные условия 2-го и 3-го рода

$$\left.\frac{\partial T(x_3,t)}{\partial x_3}\right|_{x_3=0}=0,\quad \lambda_T(T)\frac{\partial T}{\partial x_3}\bigg|_{x_3=h}=\alpha(T-T_c),\quad \text{где}\quad \alpha=11,7\cdot 10^{-6}\,\frac{1}{\text{K}},\quad T_c=1673\text{K}\;.$$



Теплофизические характеристики $\lambda_T(T)$, C(T) заданы в виде полиномов вида a+bT. Действительные значения коэффициентов $a_C=1,5\cdot 10^6;\ b_C=8\cdot 10^3;\ a_{\lambda_T}=45;$ $b_{\lambda_{\tau}} = 0{,}02$ использовались при решении прямых задач теплопроводности и термоупругости и получения поля температур $T^*(X_i)$ и поля перемещений $u_1^*(X_i)$ соответственно. В дальнейшем эти значения использовались при построении функционала-невязки.

Компонентами вектора восстанавливаемых параметров выбраны коэффициенты полиномов $\{a_C;b_C;a_{\lambda_T};b_{\lambda_T}\}$, которые впоследствии определялись в результате выполнения итерационной процедуры декомпозиции. В качестве начального приближения выбраны постоянные значения теплофизических характеристик $\lambda_T = 45 \frac{\mathrm{BT}}{\mathrm{M} \cdot \mathrm{K}}$; $C = 3 \cdot 10^6 \frac{\mathrm{Дж}}{\mathrm{M}^3 \cdot \mathrm{K}}$, вектор параметров представлялся в виде $H^0 = \{3.10^6; 0; 45; 0\}$.

Декомпозиция вектора параметров на первом шаге выполнялась произвольно, в табл. 5 представлены результаты выполнения итерационной процедуры декомпозиции и процедуры идентификации вектора параметров из решения обратной задачи теплопроводно-

Аналогичные результаты были получены, когда значения этих коэффициентов восстанавливались из решения обратной задачи термоупругости и для формирования функционала-невязки выбирались значения перемещений. На рис. 7 и 8 представлены результаты восстановления теплофизических характеристик $\lambda_T(T)$, C(T), полученные из решения обратных задач теплопроводности и соответствующей задачи термоупругости.

линейного расширения от температуры

Результат выполнения процедуры декомпозиции для идентификации значений коэффициентов полиномов								Результат процедуры идентификации вектора параметров для выполненной декомпозиции						
	Результат Результат								Результат декомпозиции и последующей					
1-й итерации 3-й итерации								идентификации для вектора H^1						
H^1	u^1	H^2	u^2	H^1	u^1	H^2	u^2	П и и и п						
a_C	0	a_{λ_T}	0	b_C	1	b_{λ_T}	1	a_C 1 1,5·10 ⁶ 1,434·10 ⁶						
b_C	1	b_{λ_T}	1	a_{λ_T}	1	a_C	0	b_C 1 8·10 ³ 7,648·10 ³						
_	-	_	_	_	_	_	_	a_{λ_T} 1 45 45,387						
_	_	_	_	_	_	_	_	$b_{\lambda_{\scriptscriptstyle T}}$	1	0,02	0,01726			

Таблица 5. Процедура декомпозиции вектора параметров на итерациях и результат идентификации

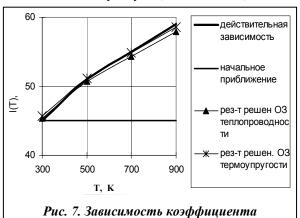
Выводы

На основании проведенных исследований можно сделать следующие выводы: 1) применение декомпозиционного подхода позволяет восстановить вектор параметров системы с использованием различных способов аппроксимации; 2) разработанный метод и алгоритм идентификации параметров, характеризующих теплофизические и механические свойства тонкостенных систем, дает возможность определять указанные параметры в условиях их существенной неоднородности; 3)предложенный подход декомпозиции с выбором наиболее информативных компонент вектора параметров позволяет понижать порядок разрешающих соотношений; 4) сравнительный анализ полученных с использованием различных аппроксимаций численных результатов восстановления вектора параметров с действительными значениями параметров реальной системы свидетельствует об их достоверности.

В перспективе предложенный подход может быть применен для идентификации характеристик материала из решения обратной задачи термопластичности.

Литература

- 1. *Измерение* импульсным методом теплофизических характеристик материалов с открытой поверхности / Л. Д. Загребин, В. А. Сипайлов, М. Г. Камашев, Е. А. Иванова // Тез докл. 8-й всесоюз. конф. по теплофизическим свойствам веществ. 1988. Ч. 2. С. 85.
- 2. *Талуц С. Г.* Измерение температуропроводности и теплоемкости динамическим методом плоских температурных волнс использованием электронного нагрева / С. Г. Талуц, Б. В. Власов, В. Ф. Полев // Тез докл. 8-й всесоюз. конф. по теплофизическим свойствам веществ. 1988. Ч. 2. С. 114—115.
- 3. *Мацевитый Ю. М.* Обратные задачи теплопроводности: В 2-х т. т. 1 Методология. т. 2 Приложения Киев: Наук. думка, 2003. 341 с., 392 с.



теплопроводности от температуры

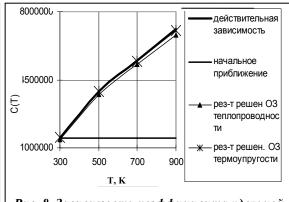


Рис. 8. Зависимость коэффициента удельной теплоемкости от температуры

- 4. *Сергиенко И. В.* Системный анализ многокомпонентных распределенных систем / И. В. Сергиенко, В. С. Дейнека. Киев: Наук. думка, 2009. 639 с.
- 5. *Тихонов А. Н.* Математическое моделирование технологических процессов и метод обратных задач в машиностроении / А. Н. Тихонов, В. Д. Кальнер, В. Б. Гласко. М.: Машиностроение, 1990. 263 с.
- 6. *Ватульян А. О.* Обратные задачи в механике деформируемого твердого тела / А. О. Ватульян. М.: Физматлит, 2007. 222 с.
- 7. *Булычева Е. Ю.* Декомпозиционный подход к решению плохо обусловленных задач параметрической идентификации / Е. Ю. Булычева, Ю. Г Булычев, И. В. Бурлай // Изв. РАН. Теория и системы управления. -2004. -№ 5. -C. 28–31.
- 8. *Безухов Н. И.* Расчеты на прочность, устойчивость и колебания в условиях высоких температур / Н. И. Безухов, В. Л. Бажанов, И. И. Гольденблат. М.: Машиностроение, 1965. 567 с.
- 9. *Мацевитый Ю. М.* Идентификация теплофизических свойств твердых тел / Ю. М. Мацевитый, С. Ф. Лушпенко. Киев: Наук. думка, 1990. 213 с.

Поступила в редакцию 11.01.11