УДК 516.3, 516.65

Ю. М. Мацевитый, акад. НАН Украины

А. И. Ценципер, канд. техн. наук

Н. А. Сафонов, канд. физ.-мат. наук

С. Ф. Лушпенко, д-р техн. наук

Институт проблем машиностроения им. А.Н. Подгорного НАН Украины (г. Харьков, E-mail: tsentsiper@meta.ua)

К ПОСТРОЕНИЮ СФЕРИЧЕСКОГО СОЛНЕЧНОГО КОЛЛЕКТОРА

Представлена конструктивная схема сферического солнечного коллектора и описан принцип его работы. Получено аналитическое выражение винтовой линии и её длины на сферической поверхности в параметрическом виде. Полученные формулы в дальнейшем будут использованы при проектировании и изготовлении сферических солнечных коллекторов, а также при вычислении потока солнечной энергии, воспринимаемой ими в зависимости от пространственных координат и времени.

Наведено конструктивну схему та опис принципу роботи сферичного сонячного колектора. Отримано аналітичний вираз гвинтової лінії та її довжини на сферичній поверхні в параметричному вигляді. Отримані формули надалі будуть використані при проектуванні та виготовленні сферичних сонячних колекторів, а також при обчислюванні потоку сонячної енергії, сприйманої ними залежно від просторових координат і часу.

Введение

В настоящее время, как правило, для преобразования солнечной энергии в тепловую используют плоские трубчатые коллекторы. Обычно это стационарно установленные коллекторы, ориентированные на юг с наклоном к горизонтали, зависящим от широты данной местности. Принципиальным недостатком всех существующих конструкций плоских коллекторов является необходимость иметь в их составе специальные механизмы, следящие за траекторией движения Солнца как по высоте, так и по углу азимута в течение всего светового дня от восхода до захода. Такие механизмы довольно сложны, а для их привода требуется дополнительная энергия [1].

Нами предложена принципиально новая геометрическая схема солнечного коллектора сферического типа, конструктивная схема которого представлена на рис. 1. Коллектор выполнен в виде единой непрерывной металлической трубки круглого сечения, навитой по сферической поверхности диаметром D по винтовой линии с шагом навивки S. Благодаря такой форме коллектор «следит» за Солнцем не только в течение дня, но и в разное время года, когда оно проходит по небосводу на разной высоте и под разными углами азимута. В результате этого исключается необходимость ориентации коллектора. Сферический коллектор «захватывает» солнечную энергию, поступающую со всех направлений. Лучи также проникают через межвитковые промежутки, нагревая внутренние поверхности витков. Кроме того, такой коллектор улавливает как отражённый, так и рассеянный в атмосфере свет.

Таким образом, предлагаемый сферический солнечный коллектор позволяет получить максимальное количество лучистой солнечной энергии в течение всего светового дня. Нагретый теплоноситель поступает для дальнейшего потребления (отопление, горячее водоснабжение и т. п.).

Постановка задачи

Для построения, проведения расчётов и последующего изготовления трубчатого сферического коллектора необходимо математически описать винтовую линию на сферической поверхности радиусом *R* с шагом навивки *S*. Известны винтовые линии на цилинд-

Рис. 1. Конструктивная схема сферического солнечного коллектора

рической и конической поверхностях. На бесконечном цилиндре винтовая линия бесконечна в обоих направлениях, на конусе – в одном, а на сфере она конечна. Винтовая линия на сферической поверхности начинается из точки условного «южного полюса» сферы и завершается в точке условного «северного полюса» (рис. 2). На рисунке в качестве примера показан один полный виток винтовой линии на сферической поверхности, в которой шаг S равен диаметру сферы *D*. Ясно, что таких винтовых линий на данной сферической поверхности можно построить бесчисленное множество, причём при $n \to \infty S \to 0$. Единственность такой винтовой линии (с точностью до поворота вокруг оси шара) при S = const определяется количеством витков *n* вокруг оси *z*. При этом максимальный угол вращения текущей точки ϕ_{max} этой линии вокруг оси *z* равен $2\pi n$.

Математическое описание сферической винтовой линии позволит вычислить длину зинтовой линии L при заданном числе витков n. Это необходимо для определения площади суммарной поверхности трубчатого коллектора при проведении теплофизических расчётов, объёмных и массовых расходных характеристик теплоносителя, проходящего через коллектор, а также для определения длины заготовки при изготовлении коллектора.

Основная часть

Пусть в декартовой системе координат *x*, *y*, *z* центр сферы радиуса *R* совмещён с началом О (0, 0, 0) этой системы (рис. 3). На данной сферической поверхности построим винтовую линию, начиная из точки с координатами (0, 0, -R) и заканчивая её с координатами в точке (0, 0, *R*).

ISSN 0131–2928. Пробл. машиностроения, 2011, Т. 14, № 2

Любая полуплоскость, ограниченная осью z, пересекает каждый виток винтовой линии в определённой точке. В одной из таких полуплоскостей возьмём две любые точки A и B, принадлежащие двум соседним виткам. При этом шаг винтовой линии S представляет собой абсолютную величину разности координат двух этих точек по оси z (рис. 3). Координаты точек A и B записываются следующим образом: (x, y, z) и (x, y, z-S) либо (x, y, z+S) и (x, y, z). Всё сказанное выше справедливо для любой такой полуплоскости. Отсюда вытекает зависимость S = 2R/n.

Для аналитического описания данной пространственной кривой определим зависимости координат её точек от какого-либо параметра. В качестве такого параметра выберем угол вращения ф вокруг оси *z* текущей точки кривой. При

возрастании параметра φ от 0 до значения $\varphi_{\text{max}} = 2\pi n$ координата *z* текущей точки кривой должна изменяться линейно относительно изменения параметра так, чтобы *S* = const. Таким образом, имеем линейное преобразование углов поворота в отрезок оси *z* от *-R* до *R*:

$$z(\varphi) = -R + \frac{2R}{\varphi_{\max}}\varphi.$$

Определим зависимости $x(\varphi)$ и $y(\varphi)$. Поскольку текущая точка *C* сферической винтовой линии вращается вокруг оси *z* (рис. 4) и для этой точки радиус вращения *r* зависит от координаты *z*: $r = \sqrt{R^2 - z^2}$, получаем для координат *x* и *y* следующие выражения: $x(\varphi) = \sqrt{R^2 - z^2} \cos \varphi$ и $y(\varphi) = \sqrt{R^2 - z^2} \sin \varphi$.

Подставив в последние выражения зависимость $z(\phi)$, получим следующее аналитическое описание сферической винтовой линии в параметрическом виде

$$z(\varphi) = -R + \frac{2R}{\varphi_{\max}}\varphi,$$

$$x(\varphi) = \sqrt{R^2 - z^2} \cos\varphi = 2R \sqrt{\frac{\varphi}{\varphi_{\max}} \left(1 - \frac{\varphi}{\varphi_{\max}}\right)} \cos\varphi,$$
 (1)

$$y(\varphi) = \sqrt{R^2 - z^2} \sin\varphi = 2R \sqrt{\frac{\varphi}{\varphi_{\max}} \left(1 - \frac{\varphi}{\varphi_{\max}}\right)} \sin\varphi.$$

Анализируя приведенные зависимости (1), можно отметить взаимно однозначное со-

ответствие координат точек кривой и значений параметра ф.

метра ϕ . Длина описанной сферической винтовой линии вычисляется как интеграл вида $\int_{0}^{\phi_{max}} \sqrt{\left(\frac{dx}{dx}\right)^2 + \left(\frac{dy}{dx}\right)^2} = \int_{0}^{2} \int_{0}^{2}$

 $L = \int_{0}^{\phi_{\text{max}}} \sqrt{\left(\frac{dx}{d\phi}\right)^2 + \left(\frac{dy}{d\phi}\right)^2 + \left(\frac{dz}{d\phi}\right)^2} d\phi \quad [2]. \text{ После дифференцирования функциональных зависимостей коорди-$

нат точки этой линии по параметру ϕ и очевидных преобразований имеем следующее выражение для вычисления её длины:

$$L = \frac{2R}{\varphi_{\max}} \int_{0}^{\varphi_{\max}} \left[\left(4 \left(\frac{\varphi}{\varphi_{\max}} - \frac{\varphi^2}{\varphi_{\max}^2} \right) \right)^{-1} + \varphi_{\max}^2 \left(\frac{\varphi}{\varphi_{\max}} - \frac{\varphi^2}{\varphi_{\max}^2} \right) \right]^{0.5} d\varphi$$

Введём следующую замену переменных $\varphi = \frac{\varphi_{\text{max}}}{2} (1 - \cos u)$. После перехода к пере-

менной и получим выражение для определения длины сферической винтовой линии

$$L = R \int_{0}^{n} \sqrt{1 + \pi^{2} n^{2} \sin^{4} u} \, du \, .$$

Для практических целей (например, при навивке трубчатого сферического солнечного коллектора) число витков *n* принимаем целым числом. Тогда длина винтовой линии выразится так:

$$L = 2R \int_{0.5\pi}^{0.5\pi} \sqrt{1 + \pi^2 n^2 \sin^4 u} \, du = 2R \int_{0.5\pi}^{\pi} \sqrt{1 + \pi^2 n^2 \sin^4 u} \, du \, .$$

Это позволяет при вычислении длины взять любое из приведенных выше выражений, например

$$L = 2R \int_{0.5\pi}^{0.5\pi} \sqrt{1 + \pi^2 n^2 \sin^4 u} \, du = 2R \int_{0.5\pi}^{0.5\pi} \omega_0(u) du \,. \tag{2}$$

Итак, чтобы найти длину *L* построенной винтовой линии для *n* заданных витков на сферической поверхности радиуса *R*, необходимо вычислить определённый интеграл (2). Поскольку точный результат получить затруднительно [3], найдём приближённую формулу.

В первом приближении представим интеграл (2) следующим образом:

$$L = 2R \int_{0.5\pi}^{0.5\pi} \sqrt{1 + \pi^2 n^2 \sin^4 u} \, du \approx 2R \int_{0.5\pi}^{0.5\pi} n \sin^2 u \, du = 2R \int_{0.5\pi}^{0.5\pi} \omega_1(u) \, du = 0.5\pi^2 R \, n.$$

Здесь проведено упрощение подкоренного выражения путём удаления единицы. При этом абсолютная величина разности обеих подынтегральных функций уменьшается при приближении переменной интегрирования к верхнему пределу. Ошибка будет максимальна для значения u = 0. Чем больше число витков *n* винтовой линии, тем меньше будет ошибка для значений $u \to 0.5\pi$, так как при этом неравенство $\pi^2 u^2 \sin^2 u > 1$ усиливается с увеличением *n*. В окрестности нижнего предела имеем обратное неравенство $\pi^2 n^2 \sin^4 u < 1$ для значений $u \to 0$. Поэтому необходимо построить второе приближение с целью уменьшения ошибки для значений переменной *u* в окрестности нуля.

На рис. 5 изображены подынтегральные аппроксимируемая ω_0 и аппроксимирующая ω_1 функции. Заметим, что в окрестности нижнего предела интегрирования функции ω_0 и ω_1 существенно отличаются, а с возрастанием аргумента погрешность аппроксимации уменьшается.

Используя приближённое равенство $u \approx \sin u$ для значений u вблизи нуля, получим следующее приближение: $\sqrt{1 + \pi^2 n^2 \sin^4 u} \approx \sqrt{1 + \pi^2 n^2 u^4}$. Представим это выражение пятью членами ряда Маклорена таким образом: $\sqrt{1 + \pi^2 n^2 u^4} \approx 1 + \frac{12\pi^2 n^2 u^4}{4!} = 1 + 0.5\pi^2 n^2 u^4 = \omega_2(u)$. Обозначим через u_e правую границу отрезка $[0, u_e]$, на котором определим функцию $\omega_2(u)$. Величину u_e находим из выражения $\sqrt{1 + \pi^2 n^2 u_e^4} = 1 + 0.5\pi^2 n^2 u_e^4 - \varepsilon$, где $\varepsilon > 0$ – погрешность.

ПРИКЛАДНАЯ МАТЕМАТИКА

После интегрирования функции $\omega_2(u)$ от нуля до верхнего предела u_e получаем поправку к первому приближению и, суммируя его с первым, – приближённую формулу для длины сферической винтовой линии в виде

$$L \approx R \left[4,934802n + \frac{1,402964}{\sqrt{n}} \right].$$
 (3)

Приведенная формула является приближённой с избытком, поскольку для практического изготовления сферического солнечного коллектора при навивке трубопровода необходимо иметь достаточную длину заготовки.

Из рис. 5 видно, что величина площади под кривой ω_1 для $0 \le u \le \pi/2$, представляющая собой первое приближение длины кривой, меньше, чем величина площади под кривой ω_0 для тех же значений аргумента. Значит, первое приближение длины кривой L – приближение с недостатком. Величина площади под кривой ω_2 для $0 \le u \le u_e$ есть добавочное слагаемое к первому приближению. Из этого же рис. 5 видно, что интеграл на отрезке $[0, u_e]$ от аппроксимирующей функции ω_2 больше, чем такой же интеграл от функции ω_0 , и площадь под кривой ω_1 на этом же отрезке в конечном итоге учитывается дважды, но первое приближение было с недостатком. В результате получается компенсация недостающей площади между первой и нулевой кривыми после первого приближения.

Для проверки точности приближённой формулы (3) длина сферической винтовой линии определялась путём численного интегрирования исходного интеграла (2) либо вычислением длины кусочно-линейной кривой в виде следующей суммы:

$$L_m \approx \sum_{i=0}^{m-1} \sqrt{\left(x(\varphi_{i+1}) - x(\varphi_i)\right)^2 + \left(y(\varphi_{i+1}) - y(\varphi_i)\right)^2 + \left(z(\varphi_{i+1}) - z(\varphi_i)\right)^2} , \qquad (4)$$

где $\varphi_i = i\Delta\varphi$, i = 0, 1, ..., m, $\Delta\varphi = \varphi_{max}/m$, m – количество отрезков кусочно-линейной кривой. В качестве примера в таблице для сферы радиуса R = 500 проводится сравнение длин сферической винтовой линии, посчитанных по приближённой формуле (3), со значениями, вычисленными по формуле (4) в зависимости от количества витков n.

r		-	
п	Значения длин		
	по формуле (4)	приближённое	погрешность, %
1	3131,287	3168,883	1,2006
2	5416,547	5430,825	0,2636
3	7798,742	7807,204	0,1085
4	10214,369	10220,345	0,0585
5	12646,088	12650,717	0,0366
10	24893,561	24895,838	0,0091
15	37190,545	37192,137	0,0043
20	49503,613	49504,876	0,0026
25	61824,253	61825,321	0,0017
30	74149,165	74150,103	0,0013
35	86476,764	86477,607	0,0010
40	98806,183	98806,954	0,0008
45	111136,902	111137,616	0,0006
50	123468,588	123469,255	0,0005

Сравнение значений длин винтовой линии

Для достижения желаемой точности приведенная сумма вычислялась каждый раз при удвоении величины *m*. Вычисления останавливались при выполнении следующего неравенства: $|L_{2m} - L_m| < 10^{-6}$, где L_{2m} – это сумма (4), полученная при удвоении количества отрезков кусочно-линейной кривой. Как видно из таблицы, с возрастанием *n* погрешность уменьшается.

Таким образом, получено аналитическое описание винтовой линии на сферической поверхности в параметрическом виде, которое в дальнейшем может быть использовано при проектировании сфероидных солнечных коллекторов, а также при вычислении потока воспринимаемой ими солнечной энергии.

Вычислена длина винтовой линии на сферической поверхности, зависящая от диаметра сферы и числа витков, и приведена формула для определения длины винтовой линии, пригодная для проведения практических расчётов при конструировании и изготовлении сферических солнечных коллекторов.

Литература

- 1. Бринкворт Б. Дж. Солнечная энергия для человека / Б. Дж. Бринкворт. М. Мир, 1976. 286 с.
- 2. *Рашевский П. К.* Курс дифференциальной геометрии / П. К. Рашевский. М.; Л.: Гостехиздат, 1950. 428 с.
- 3. Градитейн И. С. Таблицы интегралов, сумм, рядов и произведений / И. С. Градштейн, И. М. Рыжик. М: Физматгиз, 1971. 1108 с.

Поступила в редакцию 11.02.11