### УДК 621.165

#### Л. В. Колодяжная, канд. техн. наук

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (г. Харьков, e-mail: gnesin@ipmach.kharkov.ua)

# ЧИСЛЕННЫЙ АНАЛИЗ НЕСТАЦИОНАРНЫХ НАГРУЗОК И УПРУГИХ КОЛЕБАНИЙ ЛОПАТОК В СЕМИСТУПЕНЧАТОМ ОСЕВОМ КОМПРЕССОРЕ

Проведен численный анализ нестационарного взаимодействия лопаточных венцов семиступенчатого осевого компрессора в трехмерном потоке идеального газа. Показано, что основной вклад в нестационарные нагрузки вносят гармоники с частотами, которые равны произведению частоты вращения на числа лопаток соседних венцов.

Проведено чисельний аналіз нестаціонарної взаємодії лопатних вінців семиступінчатого осьового компресора у тривимірному потоці ідеального газу. Показано, що основний внесок в нестаціонарні навантаження вносять гармоніки з частотами, які дорівнюють добутку частоти обертання на числа лопаток сусідніх вінців.

#### Введение

Проблема прогнозирования аэроупругого поведения лопаток (автоколебания, резонансные колебания, флаттер) приобретает особую важность при разработке высоконагруженных компрессорных и вентиляторных венцов, а также ступеней паровых и газовых турбин, работающих в нерасчетных условиях.

В настоящее время развиты новые подходы в исследовании аэроупругого поведения лопаточного венца турбомашины, основанные на одновременном интегрировании уравнений движения газа и колебаний лопаток [1–5].

Целью настоящей работы является численный анализ аэроупругих колебаний лопаточных венцов осевого компрессора в трехмерном потоке с учетом взаимодействия смежных ступеней.

#### 1. Постановка задачи

Трехмерный трансзвуковой поток невязкого нетеплопроводного газа через отсек осевого компрессора рассматривается в физической области, включающей направляющий аппарат С0 и семь ступеней. Меридиональная проекция проточной части показана на рис. 1.

Расчетная область содержит пятнадцать подобластей. Каждая из них включает один лопаточный венец и имеет общие зоны пересечения в осевых зазорах.

В каждый момент времени структура потока характеризуется периодичностью на минимальном угловом шаге

$$T_{\text{MHH}} = \frac{2\pi(k_{C0} + k_{P1} + k_{C1} + k_{P2} + k_{C2} + k_{P3} + k_{C3} + k_{P4} + k_{C4} + k_{P5} + k_{C5} + k_{P6} + k_{C6} + k_{P7} + k_{C7})}{(z_{C0} + z_{P1} + z_{C1} + z_{P2} + z_{C2} + z_{P3} + z_{C3} + z_{P4} + z_{C4} + z_{P5} + z_{C5} + z_{P6} + z_{C6} + z_{P7} + z_{C7})}$$

где  $z_{C0}$ ,  $z_{Pi}$ ,  $z_{Ci}$  – числа лопаток статорных и роторных венцов ( $i = 1 \div 7$ );  $k_{C0}$ ,  $k_{Pi}$ ,  $k_{Ci}$  – взаимно простые числа, пропорциональные числам лопаток. В каждой из подобластей геометрические и аэродинамические характеристики лопаточных венцов описываются в относительной или абсолютной системах координат, жестко связанных с вращающимся или неподвижным лопаточным венцом соответственно. В этом случае расчетная область содержит  $k_{C0} + k_{P1} + k_{C1} + k_{P2} + k_{C2} + k_{P3} + k_{C3} + k_{P4} + k_{C4} + k_{P5} + k_{C5} + k_{P6} + k_{C6} + k_{P7} + k_{C7}$  сегментов, каждый из которых включает одну лопатку и имеет протяженность в окружном направлении, равную шагу соответствующего лопаточного венца. Каждый из сегментов расчетной области дискретизируется с использованием гибридной H–H разностной сетки. Разностные сетки в тан-

генциальной плоскости для периферийных сечений ротора и статора 1-й и 7-й ступеней показаны на рис. 2.

Трехмерный трансзвуковой поток идеального газа описывается в относительной декартовой системе координат полной нестационарной системой уравнений Эйлера, представленной в интегральной форме законов сохранения массы, импульса и энергии [4]. Постановка граничных условий основана на одномерной теории характеристик.

Дискретная форма уравнений Эйлера получена для произвольной пространственной деформируемой сетки с использованием разностной



схемы Годунова-Колгана со 2-м порядком аппроксимации по координатам и времени [4].

Динамическая модель колеблющейся лопатки с использованием модального подхода приведена к системе обыкновенных дифференциальных уравнений относительно модальных коэффициентов собственных форм [4]. Перемещения и скорость лопатки, полученные из решения динамической задачи, на каждой итерации используются в качестве граничных условий в аэродинамической задаче.

### 2. Численные исследования

Численное исследование выполнено для осевого компрессора, включающего направляющий аппарат и семь ступеней при номинальном режиме работы:

- число оборотов ротора n = 15360 об/мин;
- полное давление в абсолютной системе координат на входе в компрессор  $p_0 = 101000 \text{ Па}$ ;
- полная температура в абсолютной системе координат на входе  $T_0 = 288$  K;
- углы потока на входе в радиальном и окружном направлениях заданы;
- статическое давление на выходе за 7-м статором  $p_2 = 380000$  Па.

Колебания рабочих лопаток определялись с учетом первых пяти собственных форм, собственные частоты приведены ниже.

| Номер моды   | 1    | 2    | 3    | 4     | 5     |
|--------------|------|------|------|-------|-------|
| v, Гц ротор1 | 540  | 1620 | 2160 | 3240  | 4320  |
| v, Гц ротор2 | 670  | 2010 | 2680 | 4020  | 6030  |
| v, Гц ротор3 | 1200 | 3600 | 4800 | 7200  | 8400  |
| v, Гц ротор4 | 1150 | 3450 | 4600 | 8050  | 9200  |
| v, Гц ротор5 | 1380 | 4140 | 5520 | 9660  | 11040 |
| v, Гц роторб | 1600 | 4800 | 7180 | 11150 | 12740 |
| v, Гц ротор7 | 1600 | 4800 | 7960 | 11940 | 13540 |
| - <b>-</b>   |      |      |      |       |       |

Выполнен расчет трехмерного нестационарного потока через компрессор без учета колебаний лопаток в течение одного оборота ротора и с учетом колебаний лопаток под действием мгновенных аэродинамических нагрузок в течение восьми оборотов ротора.



На рис. 3 представлены графики осредненных по времени распределений статического давления по радиусу в осевых зазорах за роторными венцами (штриховые линии) и за статорными (сплошные линии).

Ниже представлены результаты численного исследования нестационарных аэродинамических нагрузок, действующих на рабочие лопатки, и колебаний лопаток для режима, характеризующегося массовым расходом 17,4 кг/с и степенью повышения давления  $\pi_k = 5,9$ .

Анализ нестационарных характеристик проведен с использованием разложения в ряды Фурье

$$F(t) = F_0 + \sum_{i=1}^{\infty} F_{1i} \cdot \cos(2\pi v \, it) + F_{2i} \sin(2\pi v \, it) \,,$$

где F(t) – физическая нестационарная характеристика;  $F_0$  – среднее значение;  $F_{1i}$  и  $F_{2i}$  – коэффициенты Фурье; i – номер гармоники; v – 1-я гармоническая частота.



Частота вращения ротора  $v_{por} = 256 \Gamma \mu$ ; время одного оборота ротора t = 0,0039 c; время расчета соответствует времени поворота ротора на 8 оборотов, первая гармоническая частота  $v = v_{por}/8 = 32 \Gamma \mu$ .

На рис. 4, 5 приведены графики нестационарных аэродинамических нагрузок (окружная сила Fy, осевая сила Fz, аэродинамический момент M относительно центра тяжести), действующих в периферийных слоях рабочих лопаток 1-го и 7-го роторных венцов, и их амплитудно-частотные спектры.

Как видно из графиков, нестационарные аэродинамические нагрузки включают высокочастотные гармоники с частотами, кратными частотам следования  $v_{por}$ : $z_{crar}$ , которые соответствуют соседним статорным венцам (для лопаток 1-го лопаточного венца 10752 и 8960 Гц, для лопаток 7-го венца 14336 Гц).

Наряду с высокочастотными возмущениями нестационарные нагрузки включают гармоники с частотами, кратными частоте следования зоны периодичности (3584, 5376, 7168 Гц), и низкочастотные гармоники, вызванные колебаниями лопаток.

Колебания лопаток под действием переменных аэродинамических сил представлены в форме перемещений периферийных сечений рабочих лопаток 1-го и 7-го лопаточных венцов. На рис. 6, 7 приведены графики перемещений периферийных сечений в окружном направлении (*hy*), осевом (*hz*) и угол поворота вокруг центра тяжести ( $\phi$ ).

Из графиков видно, что рабочие лопатки 1-го лопаточного венца совершают устойчивые изгибные автоколебания (рис. 6, а, в) с частотой, близкой к собственной частоте 1-й моды (~500 Гц) и крутильные автоколебания (рис. 6, д) с частотами 1-й и 3-й мод (~500 Гц, 1900 Гц). Низкочастотные колебания рабочих лопаток 7-го венца характеризуются аэро-

демпфированием, причем логарифмический декремент затухания колебаний  $\delta = \frac{1}{n} \ln \frac{A_1}{A_n} (n - 1)$ 

число циклов колебаний;  $A_1$  и  $A_n$  – амплитуды 1-го и n-го циклов) возрастает с увеличением жесткости лопатки и составляет 0,034 для лопаток 7-го венца.

Следует отметить, что амплитуды вынужденных колебаний с высокими частотами пренебрежимо малы по сравнению с амплитудами автоколебаний.





Рис. 4. Изменение нестационарной силы, действующей на периферийный слой рабочей лопатки 1-го лопаточного венца: а) – окружная сила; в) – осевая сила; д) – момент относительно центра тяжести; б), г), е) – амплитудно-частотный спектр



### АЭРО- И ГИДРОМЕХАНИКА В ЭНЕРГЕТИЧЕСКИХ МАШИНАХ

Рис. 5. Изменение нестационарной силы, действующей на периферийный слой рабочей лопатки 7-го лопаточного венца: а) – окружная сила; в) – осевая сила; д) – момент относительно центра тяжести; б), г), е) – амплитудно-частотный спектр



*Рис. 6. Перемещение периферийного сечения рабочей лопатки 1-го лопаточного венца:* а) – в окружном направлении; в) – в осевом направлении; д) – угол поворота вокруг центра тяжести; б), г), е) – амплитудно-частотный спектр



### АЭРО- И ГИДРОМЕХАНИКА В ЭНЕРГЕТИЧЕСКИХ МАШИНАХ

*Рис. 7. Перемещение периферииного сечения рабочей лопатки 7-го лопаточного венца:* а) – в окружном направлении; в) – в осевом направлении; д) – угол поворота вокруг центра тяжести; б), г), е) – амплитудно-частотный спектр

#### Выводы

Проведены численные исследования аэроупругого поведения лопаточных венцов осевого компрессора с учетом их взаимного аэродинамического взаимодействия.

Показано влияние смежных венцов на нестационарные аэродинамические нагрузки и режимы колебаний лопаток.

Колебания лопаток ротора по всем формам являются устойчивыми.

Предложенный метод позволяет прогнозировать амплитудно-частотный спектр колебаний лопаток осевого компрессора, включая вынужденные и самовозбуждающиеся вибрации (флаттер, автоколебания).

#### Литература

- Moyroud F. A Modal Coupling for Fluid and Structure Analysis of Turbomachine Flutter. Application to a Fan Stage / F. Moyroud, G. Jacquet-Richardet, T. H. Fransson // ASME Paper 96-GT-335. – 1996. – P. 1–19.
- Part-speed flutter analysis of a wide-chord fan blade / J. W. Chew, J. G. Marshall, M. Vandati, M. Imregun // Unsteady Aerodynamics and Aeroelasticity of Turbomachines. Kluwer Academic Publishers. In: Fransson T.H. (Ed.), Dordrecht. – 1998. – P. 707–724.
- Gnesin V. I. A coupled fluid-structure analysis for 3-D flutter in turbomachines / V. I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya // ASME J. 2000- GT-380, Intern. Gas Turbine and Aeroengine Congr., Munich, Germany. – 2000. – P. 8.
- Gnesin V. I. A numerical modeling of stator-rotor interaction in turbine stage with oscillating blades / V. I. Gnesin, R. Rzadkowski, L. Kolodyazhnaya // J. Fluid and Structure. – 2004. – 19. – P. 1141–1153.
- 5. *Гнесин В. И.* Численное исследование аэроупругого поведения компрессорной ступени в трехмерном потоке вязкого газа / В. И. Гнесин, Л. В. Колодяжная // Вестн. НТУ ХПИ. Энерг. и теплотехн. процессы и оборудование. 2010. № 2. С. 39–48.

Поступила в редакцию 03.04.11

УДК 621.165:51.380

И. Е. Аннопольская, канд. техн. наук

А. С. Ковалев, канд. техн. наук

### А. В. Медведовский

Институт проблем машиностроения им. А. Н. Подгорного НАН Украины (г. Харьков, e-mail: teplo07@ukr.net)

## МЕТОДИКИ ОПРЕДЕЛЕНИЯ МЕТАСТАБИЛЬНЫХ ПАРАМЕТРОВ ПАРА ПРИ НЕРАВНОВЕСНОМ РАСШИРЕНИИ ПОТОКА В ПРОТОЧНОЙ ЧАСТИ ПАРОВОЙ ТУРБИНЫ

Рассмотрены два способа расчета параметров состояния пара в метастабильной области. Первый подход основан на решении системы дифференциальных уравнений для двухмерного неравновесного расширения потока влажного пара. Данный метод позволяет рассчитывать стационарные и нестационарные потоки влажного пара, определять газодинамические параметры, влажность и переохлаждение в любой момент времени в любой точке расчетной области. Второй, упрощенный способ расчета, основан на вычислении термодинамических свойств воды и водяного пара на базе Международной системы уравнений IAPWS-IF97 и IAPWS-95. Приведено сравнение результатов, полученных по этим методикам на тестовом примере.

Розглянуто два способи розрахунків параметрів стану пари в метастабільній області. Перший підхід ґрунтується на розв'язанні системи диференціальних рівнянь для двовимірного нерівноважного розширення потоку вологої пари. Даний метод дозволяє розраховувати стаціонарні і нестаціонарні потоки вологої пари, визначати газодинамічні