ДИНАМИКА И ПРОЧНОСТЬ МАШИН

туемых изделий, так как число циклов нагружения n_i в этом случае больше, чем при синусоидальной нагрузке в то же время действия. Этот вывод может быть отнесен и к условиям эксплуатации изделий, при которых возникают ударные нагрузки, способствующие ускоренному разрушению изделий. Одной из мер увеличения длительности работы изделий в условиях ударных нагрузок является применение демпфирующих средств, являющихся гасителями ударов и преобразователями в синусоидальные нагрузки с низкими уровнями.

Литература

- 1. Трощенко В. Т. Прочность металлов при переменных нагрузках/ В. Т. Трощенко Киев: Наук. думка, 1978. 173 с.
- Locati L. Le prove di saficacome ausilio alla prodetta sone ed alle predusiijni/ L. Locati Metall.ital.– 1955. – Vol. 47, № 9. – P. 21–23.
- 3. Божко А. Е. О сингуларисном разложении скачкообразной функции / А. Е. Божко // Доп. НАН України. 2008. № 2. С. 42–47.
- 4. Божко А. Е. О реакции колебательной системы на удар прямоугольной формы / А. Е. Божко // Доп. НАН України. – 2007. – № 9. – С. 42–47.

Поступила в редакцию 21.01.12

УДК 534.1:539.3

И. В. Янчевский, канд. техн. наук

Харьковский национальный автомобильно-дорожный университет (г. Харьков, e-mail: yanchevsky@khadi.kharkov.ua)

ПЕРЕХОДНЫЕ ПРОЦЕССЫ В ТОНКОСТЕННЫХ ЦИЛИНДРИЧЕСКИХ ПЬЕЗОПРЕОБРАЗОВАТЕЛЯХ С СЕКЦИЕЙ РАЗОМКНУТЫХ ЭЛЕКТРОДОВ ПРИ ИМПУЛЬСНОМ ЭЛЕКТРИЧЕСКОМ ВОЗБУЖДЕНИИ

Исследуются переходные процессы в тонкостенных круговых цилиндрических пьезопреобразователях, к одной системе электродных покрытий которых подводится электрический сигнал известной конфигурации, а вторая подключена к внешней разомкнутой электрической цепи. Моделирование электромеханических колебаний выполнено в рамках обобщенных гипотез Кирхгофа–Лява. Проанализировано влияние геометрии электродирования на характеристики связанных полей. Проведена оценка достоверности полученных результатов.

Досліджуються перехідні процеси в тонкостінних кругових циліндричних п'єзоперетворювачах, до однієї системи електродних покриттів яких підводиться електричний сигнал відомої конфігурації, а друга підключена до зовнішнього розімкнутого електричного ланцюга. Моделювання електромеханічних коливань виконано в рамках узагальнених гіпотез Кірхгофа–Лява. Проаналізовано вплив геометрії електродирування на характеристики зв'язаних полів. Проведено оцінку вірогідності отриманих результатів.

Введение

Для преобразования переменного электрического напряжения широко используются пьезоэлектрические трансформаторы, представляющие собой элементы из пьезоактивного материала, в которых можно выделить механически связанные области, покрытые электрически изолированными двумя системами электродов – входной (возбуждающей) и выходной (генераторной). Электроды входной системы подключены к источнику электрического сигнала, и за счет обратного пьезоэлектрического эффекта возбуждаются колебания электроупругой среды, которые на основании прямого пьезоэффекта преобразовываются в электрический сигнал в выходной области. Перечень практических приложений пьезотрансформаторов в настоящее время достаточно обширен [1, 2]. Особенно эффективно их применение в современной электротехнической аппаратуре и приборах, к которым предъявляются повышенные требования по минимизации, надежности, стабильности характеристик, безопасности, бесшумности и пр.

Несмотря на то что максимальные значения основных параметров пьезотрансформаторов (коэффициент трансформации, КПД, выходная мощность) достигаются при работе устройства в окрестности резонанса механических колебаний, исследования переходных режимов работы также являются актуальными. Это обусловлено как расширением функциональных возможностей резонансных пьезотрансформаторов, так и необходимостью построения адекватных математических моделей нерезонансных преобразователей.

Конструктивные исполнения пьезотрансформаторов, геометрия электродов и их коммутации весьма разнообразны. В настоящей работе исследуются нестационарные электромеханические колебания пьезопреобразователей, которые можно отнести к бесконечно длинным тонкостенным цилиндрическим оболочкам (рис. 1). Предполагается, что оболочки изготовлены из поляризованной по толщине пьезоэлектрической керамики гексагональной системы класса 6mm, а электродные покрытия, нанесенные на ее поверхности, являются весьма тонкими и имеют пренебрежимо малую массу и жесткость.

Для конструктивного исполнения преобразователя, представленного на рис. 1, а, электрический потенциал на сплошном внутреннем электродном покрытии равен нулю. Внешний электрод разделен выпол-

ненными в осевом направлении узкими разрезами на 2N частей, половина из которых имеет угол раскрыва $2\theta_2$ и равномерно распределена по сечению оболочки. Секции оболочки с углом $2\theta_2$ находятся в режиме прямого пьезоэффекта, к внешним электродам остальных секций подводится заданный потенциал $2V_1$ (режим обратного пьезоэффекта). При этом, ввиду периодичности электродирования и схемы нагружения на рис. 1, а изображена часть пьезопреобразователя.

Цилиндрический трансформатор на рис. 1, б состоит из жестко связанных между собой двух слоев из пьезокерамики толщиной h. При этом секционированными являются внешние токопроводящие покрытия. Угол $2\theta_2$ устанавливает равномерно распределенные по сечению оболочки генераторные ее секции. Между электродами второй половины секций обеспечивается заданная разность потенциалов $2V_1$. Заземленным предполагается сплошной внутренний электрод.

Преобразователь третьего исполнения (рис. 1, в) также является двухслойным, однако электроды сплошные. Внутренний электрод, как и на рис. 1, б, поддерживается на нулевом потенциале, ко второму электроду внутреннего слоя подводится заданный электрический потенциал $-V_1$. Электроды внешнего слоя подключены к электронному устройству с бесконечно большим входным сопротивлением [3].

ДИНАМИКА И ПРОЧНОСТЬ МАШИН

При оценке характеристик пьезотрансформаторов зачастую используются экспериментальные подходы, метод конечных элементов и метод эквивалентных электрических цепей. Теоретические исследования, позволяющие учитывать связанность электромеханических процессов, весьма немногочисленны. Среди периодических публикаций последних лет отметим [4–7]. Изучению работы цилиндрических пьезотрансформаторов со сплошными и разрезными токопроводящими покрытиями при их гармоническом возбуждении посвящены [8, 9]. Переходные процессы в тонкостенном цилиндрическом пьезоизлучателе с секцией генераторных электродов моделировались в статье [10].

Пьезопреобразователи с разрезными электродами

Уравнения колебаний однослойной электроупругой оболочки при секционированных токопроводящих покрытиях (рис. 1, а) с использованием безразмерных переменных могут быть представлены в виде [8, 9]

$$\frac{\partial u_0}{\partial t^2} - (1+\delta) \frac{\partial^2 u_0}{\partial \theta^2} - \frac{\partial w}{\partial \theta} + \delta \frac{\partial^3 w}{\partial \theta^3} = -\frac{\partial V}{\partial \theta};$$

$$\frac{\partial^2 w}{\partial t^2} + w + \delta \frac{\partial^4 w}{\partial \theta^4} + \frac{\partial u_0}{\partial \theta} - \delta \frac{\partial^3 u_0}{\partial \theta^3} = V,$$
 (1)

в которых компоненты вектора перемещений точек срединной поверхности оболочки *w* и u_0 отнесены к радиусу R_0 (рис. 1, а), разность потенциалов $2V - \kappa -e_1/c_1h$, время $t - \kappa R_0\sqrt{\rho/c_1}$, а постоянные коэффициенты определяются по формулам

$$\delta = \frac{h^2}{3R_0^2} \left(1 + \frac{e_1^2}{c_1 \varepsilon_3} \right); \quad e_1 = \frac{d_{31}}{s_{11}^E (1 - \nu)}; \quad c_1 = \frac{1}{s_{11}^E (1 - \nu^2)}; \quad \varepsilon_3 = \varepsilon_{33}^T \left(1 - k_p^2 \right),$$

где d_{31} , s_{11}^E и ε_{33}^T – физические характеристики материала; v и k_p^2 – коэффициент Пуассона и планарный коэффициент электромеханической связи [3]; ρ – плотность материала.

Систему уравнений (1), записанную в рамках классических гипотез о строении электромеханических полевых величин [3], необходимо дополнить электрическими граничными условиями. Для первого конструктивного исполнения пьезопреобразователя (см. рис. 1, а) эти условия с учетом периодичности характеристик по угловой координате θ могут быть представлены следующим образом:

$$\theta_{2} < |\theta| \le \pi/N : \quad V = V_{1};$$

$$|\theta| < \theta_{2}: \quad V = V_{2} = \frac{\gamma_{2}}{2\theta_{2}} \int_{-\theta_{2}}^{\theta_{2}} \left(\frac{\partial u_{0}}{\partial \theta} + w\right) d\theta, \qquad (2)$$

где функция V_1 задает конфигурацию подводимого электрического сигнала; $2V_2$ – электрический потенциал на внешних генераторных покрытиях; $\gamma_2 = -e_1^2/c_1\varepsilon_3$.

Первое соотношение системы (2) определяет режим обратного пьезоэлектрического эффекта в «возбуждающей» секции оболочки, второе выражает равенство нулю погонного тока смещения через срединную поверхность секции с разомкнутыми электродами [8].

Для решения задачи анализа переходных процессов в рассматриваемом многомодовом преобразователе система уравнений (1) с учетом нулевых начальных условий записывается в пространстве изображений по Лапласу (t – переменная, подлежащая исключению; s – параметр преобразования). Перемещения w и u_0 ищутся в виде рядов по собственным формам колебаний оболочки [10]

$$w^{L} = \sum_{k=0}^{\infty} c_{k}^{L}(s) \cos kN\theta; \quad u_{0}^{L} = \sum_{k=1}^{\infty} b_{k}^{L}(s) \sin kN\theta.$$
(3)

Здесь индексом *L* обозначены трансформированные по Лапласу функции.

Потенциал V также представляется в виде разложения в ряд Фурье – $V = \sum_{k=0}^{\infty} v_k(t) \cos k N \theta$, формулы для вычисления коэффициентов v_k которого несложно запи-

сать исходя из равенств (2)

$$v_0 = \beta_1 V_1 + \beta_2 V_2; \quad v_k = \xi_k^{(2)} (V_2 - V_1) \quad \text{при } k > 0,$$

$$B_2; \quad \beta_2 = \frac{N \theta_2}{k}; \quad \xi_k^{(2)} = \frac{2 \sin k N \theta_2}{k}.$$
(4)

где $\beta_1 = 1 - \beta_2; \ \beta_2 = \frac{N\theta_2}{\pi}; \ \xi_k^{(2)} = \frac{2\sin kN\theta_2}{k\pi}$

Подставив формулы (3) в уравнения (1), получим алгебраическую систему уравнений относительно неизвестных коэффициентов c_k^L и b_k^L , решением которой с учетом (4) будет

$$c_0^L = v_0^L I^{(1)L}; \quad c_k^L = v_k^L I^{(3)L}_k, \quad b_k^L = v_k^L \xi_k^{(4)} I^{(4)L}_k \quad (k \ge 1),$$
(5)

где $I^{(1)L} = \frac{1}{s^2 + 1}$; $I_k^{(r)L} = \frac{s^2 + \lambda_k^{(r)}}{D_k(s)}$ (r=3,4,5); $D_k(s) = s^4 + s^2 \lambda_k^{(1)} + \lambda_k^{(2)}$; $\lambda_k^{(1)} = \frac{\xi_k^{(1)}}{\xi_k^{(4)}} \xi_k^{(3)}$; $\lambda_k^{(2)} = \frac{\lambda_k^{(3)2}}{\delta \xi_k^{(4)2}}$;

$$\lambda_{k}^{(3)} = \delta\xi_{k}^{(4)2} \left(1 - \xi_{k}^{(4)2} \right); \ \lambda_{k}^{(4)} = -\lambda_{k}^{(3)}; \ \lambda_{k}^{(5)} = \frac{\lambda_{k}^{(2)}}{\xi_{k}^{(3)}}; \ \xi_{k}^{(1)} = \xi_{k}^{(4)} \left(1 + \delta\xi_{k}^{(4)2} \right); \ \xi_{k}^{(3)} = 1 + \xi_{k}^{(4)2}; \ \xi_{k}^{(4)} = kN.$$

Изображение для искомой разности потенциалов $2V_2$ из второго соотношения системы (2) получим в виде

$$V_2^L = \gamma_2 \left[c_0^L + \sum_{k=1}^{\infty} \frac{\xi_k^{(5)}}{\xi_k^{(3)}} \left(c_k^L + \xi_k^{(4)} b_k^L \right) \right].$$
(6)

Последующая подстановка в (6) выражений (5) и (4) позволяет исключить промежуточные коэффициенты

$$V_{2}^{L}\left(\frac{1}{\gamma_{2}}-\beta_{2}I^{(1)L}-I^{(2)L}\right)=V_{1}^{L}\left(\beta_{1}I^{(1)L}-I^{(2)L}\right).$$
(7)

В равенствах (6) и (7) используются обозначения

$$\xi_k^{(5)} = \xi_k^{(3)} \frac{\sin k N \theta_2}{k N \theta_2}; \qquad I^{(2)L} = \sum_{k=1}^{\infty} \xi_k^{(2)} \xi_k^{(5)} I_k^{(5)L} .$$

Переход в пространство оригиналов для равенства (7) выполнен аналитически. В результате обращения получим интегральное уравнение Вольтерра второго рода

$$\frac{1}{\gamma_2}V_2(t) - \int_0^t V_2(\tau) \Big[\beta_2 I^{(1)}(t-\tau) + I^{(2)}(t-\tau)\Big] d\tau = \int_0^t V_1(\tau) \Big[\beta_1 I^{(1)}(t-\tau) - I^{(2)}(t-\tau)\Big] d\tau , \qquad (8)$$

в котором ядра имеют вид

$$I^{(1)}(t) = \sin(t); \quad I_k^{(r)}(t) = \sum_{j=1}^2 \frac{\beta_k^{(r,j)}}{\alpha_k^{(j)}} \sin(\alpha_k^{(j)}t) \quad (r = 3, 4, 5)$$

где $\beta_k^{(r,j)} = \frac{\lambda_k^{(r)} - \alpha_k^{(j)2}}{\alpha_k^{(\iota)2} - \alpha_k^{(j)2}} (\iota \neq j); \pm i\alpha_k^{(j)} (j=1,2) -$ чисто мнимые корни уравнения $D_k(s) = 0$.

С использованием таблиц операционного исчисления несложно выполнить инверсию равенств (5), в которых коэффициенты v_k (4) выражаются через уже известные функции

$$c_{0}(t) = \int_{0}^{t} \left[\beta_{1}V_{1}(\tau) + \beta_{2}V_{2}(\tau) \right] I^{(1)}(t-\tau) d\tau ;$$

$$c_{k}(t) = \xi_{k}^{(2)} \int_{0}^{t} \left[V_{2}(\tau) - V_{1}(\tau) \right] I_{k}^{(3)}(t-\tau) d\tau ;$$

$$b_{k}(t) = \xi_{k}^{(2)} \xi_{k}^{(4)} \int_{0}^{t} \left[V_{2}(\tau) - V_{1}(\tau) \right] I_{k}^{(4)}(t-\tau) d\tau .$$
(9)

После определения функций c_k и b_k рассчитываются компоненты перемещений точек срединной поверхности оболочки (3) при заданном нестационарном электрическом нагружении.

На основании условий равновесия бесконечно малого элемента оболочки [11] и обобщенных на случай электромеханики гипотез Кирхгофа–Лява [3, 11] несложно показать, что уравнения движения (1) и смешанные электрические граничные условия (2) будут справедливыми и для исполнения 1, б, положив при этом $\delta = 0$. Отличительной особенностью такого пьезопреобразователя является предположение о линейном распределении электрического потенциала по толщине оболочки, что не противоречит линеаризированным соотношениям теории тонких электроупругих оболочек и позволяет удовлетворить электрические граничные условия. Подобие разрешающих систем уравнений указывает на применимость изложенного выше метода решения и для второго конструктивного исполнения (рис. 1, б). Равенство $\delta = 0$ в этом случае приводит к некоторым упрощениям вычислительного характера, в частности, следует положить

$$\lambda_k^{(3)} = 0$$
 и $I_k^{(r)}(t) = \frac{1}{\sqrt{\xi_k^{(3)}}} \sin\left(\sqrt{\xi_k^{(3)}}t\right), \quad r = 3, 4, 5.$

Расчетные выражения для других коэффициентов, ядер интегральных уравнений и подынтегральных функций остаются без изменений.

Пьезопреобразователь со сплошными электродами

Как и ранее, предполагается, что пьезокерамическая оболочка является тонкостенной, т.е. допускает моделирование движения уравнениями линейной теории электроупругих оболочек, основанной на обобщенных гипотезах Кирхгофа–Лява. Для выведения уравнений, возбуждаемых нестационарной электрической нагрузкой $-V_1$ осесимметричных колебаний оболочки в рамках принятых гипотез, используем

- условие равновесия бесконечно малого элемента

$$-T_{\theta} = \partial^2 w / \partial t^2 ; \qquad (10)$$

- определяющее соотношение для тангенциального усилия $T_{\theta} = \int \sigma_{\theta}^{(j)} dz$, где *z* – толщинная координата, отсчитываемая от срединной поверхности оболочки; $\sigma_{\theta}^{(j)}$ – компоненты тензоров механических напряжений в слоях (*j* = 1 – внутренний слой, *z* ∈ [-*h*; 0]; *j* = 2 – внешний слой, *z* ∈ (*h*; *h*]);

– материальные соотношения связанной электроупругости

$$\sigma_{\theta}^{(j)} = \varepsilon_{\theta} - E_r^{(j)};$$
$$D_r^{(j)} = \varepsilon_{\theta} - E_r^{(j)} / \gamma_2,$$

в которых ε_{θ} – компонента тензора деформаций; $D_r^{(j)}$ и $E_r^{(j)}$ – нормальные составляющие векторов электрической индукции и напряженности электрического поля в *j*-м слое;

- геометрическое соотношение $\varepsilon_{\theta} = w$;

– и соотношения $\partial D_r^{(j)} / \partial z = 0$; $E_r^{(j)z} = -\partial \varphi^{(j)} / \partial z$, являющиеся следствием электростатических уравнений Максвелла.

В этих выражениях T_{θ} отнесено к $2hc_1$, $\sigma_{\theta}^{(j)} - \kappa c_1$, $D_r^{(j)} - \kappa e_1$, $E_r^{(j)} - \kappa e_1/c_1$, функция $\phi^{(j)}$, описывающая распределение электрического потенциала по толщине оболочки, – $\kappa -e_1/c_1h$.

С учетом электрических граничных условий

 $\phi|_{z=-h} = -V_1; \quad \phi|_{z=0} = 0; \quad \phi|_{z=h} = V_2,$

принятых гипотез и осесимметрии деформирования, на основании которых напряженность электрического поля аппроксимируется кусочно-постоянной функцией толщинной координаты

$$E_r^{(j)} = E_r^{(01)}(t) \cdot H(-z) + E_r^{(02)}(t) \cdot H(z),$$

где *H* – единичная функция Хевисайда, получим линеаризированное по *z* выражение для потенциала

$$\varphi^{(j)} = E_r^{(j)} \cdot z/h ,$$

при этом $E_r^{(0j)} = V_j$.

Из условия непротекания тока через срединную поверхность внешнего слоя оболочки (режим холостого хода) – $\frac{\partial}{\partial t} \int D_r^{(2)} d\theta = 0$, записанное на единицу длины оболочки, следует соотношение между выходной разностью потенциалов V_2 и радиальными перемещениями $w = V_2/\gamma_2$. (11)

Подстановкой равенств в выражение (10) получим уравнение вынужденных колебаний одномодовой двухслойной пьезокерамической оболочки, возбуждаемой нестационарной электрической нагрузкой – V_1 –

$$\frac{\partial^2 w}{\partial t^2} + \left(1 - \frac{\gamma_2}{2}\right) w = \frac{V_1}{2}, \qquad (12)$$

или, с использованием соотношения (11), дифференциальное уравнение относительно потенциала V_2 –

$$\frac{\partial^2 V_2}{\partial t^2} + \left(1 - \frac{\gamma_2}{2}\right) V_2 = \frac{\gamma_2}{2} V_1, \tag{13}$$

записанные с использованием безразмерных переменных.

Методом вариации постоянных с учетом нулевых начальных условий несложно представить решение (13) в виде

$$V_2 = \frac{1 - \lambda_1^2}{\lambda_1} \int_0^t V_1(\tau) \sin(\lambda_1(t - \tau)) d\tau, \qquad (14)$$

где $\lambda_1^2 = 1 - \gamma_2/2$.

Располагая значениями V₂, определяются и другие, представляющие интерес, характеристики переходного процесса, как, например, радиальные перемещения w (11).

Числовые результаты

Расчеты проводились для цилиндрического преобразователя с p = 0,04, выполненного из пьезокерамики марки PZT-5, физические свойства которой можно найти в [12]. При решении интегрального уравнения (8) искомая функция аппроксимировалась кусочнопостоянной функцией времени, а интегралы заменялись конечными суммами. Последующий

алгоритм предполагает нахождение выходной разности потенциалов на каждом шаге по времени через рекуррентное соотношение (см. [13]). Шаг дискретизации временного интервала выбирался из условия сходимости результатов и устойчивости вычислительного процесса и составил $\Delta t = 0,05$. Метод квадратур использовался также при вычислении интегралов (9) и (14). Расчеты проводились для собственных форм колебаний до k = 7 включительно. При этом вклад последней формы не превышал трех процентов от величины приложенной нагрузки. Приведенные далее графики получены при возбуждении пьезопреобразователя электрическим сигналом ступенчатого профиля – $V_1 = H(t)$.

На рис. 2 представлены перемещения w (рис. 2, а) в трех наиболее характерных точках ($\theta = 0$; $\pm \pi/2N$; $\pm \pi/N$) и половины разности потенциалов V_2 между генераторными электродами (рис. 2, δ , кривая 2) в случае $\theta_2 = \pi/4$, N = 2 и $\delta \neq 0$ (рис. 1, а). Отметим, что для двухслойного конструктивного исполнения с секционированными внешними токопроводящими покрытиями (рис. 1, б) на начальном этапе деформирования (t < 3T, T = 5,7 – период пульсирующих колебаний исследуемой оболочки) результаты отличаются незначительно и в настоящей работе не приводятся. Радиальные колебания двухслойной пьезокерамической оболочки со сплошными электродами (рис. 1, в) при $V_1 = H(t)$ имеют несколько меньшие амплитудные значения и могут быть приближенно описаны функцией 0,82· $w(\pi/2N, t)$, где перемещения w вычислены для $\delta \neq 0$ при N = 2 (рис. 2, а). Выходную разность потенциалов для такого пьезотрансформатора иллюстрирует кривая 1 (рис. 2, б).

Проведенные расчеты показали, что приложение ступенчатой электрической нагрузки к одномодовому преобразователю (рис. 1, в) возбуждает пульсирующие колебания оболочки относительно статического уровня деформаций, значение которого несложно получить из уравнения движения (12), положив инерционную составляющую равной нулю – $\overline{w}=V_1/(2-\gamma_2)$. Для принятых физических параметров и $V_1 = 1$ получим $\overline{w}=0.41$, что соответствует разности потенциалов между электродами внешнего пьезослоя $\overline{V_2} = -0.1798$. Радиальные колебания оболочки с секционированным покрытием на начальном этапе незначительно отличаются от осесимметричных (рис. 2, а). Окружные колебания в эквидистантной от плоскостей $\theta = 0$ и $\theta = \pm \pi/N$ точке происходят практически с N раз большей частотой по сравнению с осесимметричными и имеют приблизительно во столько же раз меньшие амплитудные значения. Характер изменения во времени выходной разности потенциалов в многомодовом преобразователе (рис. 2, б, кривая 2) определяется наложением этих колебаний.

Выполненное численно-аналитическое исследование (рис. 2) хорошо согласуется с численными результатами, полученными методом конечных элементов (рис. 3). Расхожде-

ние расчетных значений V_2 в экстремальных точках составляет менее 8%. Для преобразователя со сплошными электродами конечноэлементные решения задачи в статической постановке составили $\overline{w} \approx 0.41$ и $\overline{V_2} = -0.1779$ (разницы $\Delta_w \approx 0$ и $\Delta_V \approx 1$ %).

Информацию о влиянии электродирования на эффективность двойного преобразования электромеханической энергии дает рис. 4, на котором показаны изменения во времени выходной разности потенциалов при фиксированной площади генераторных электродов ($\theta_2 = \pi/2N$) для различного их количества N (рис. 4, а) и фиксированном значении N = 2 для различного угла раскрыва $2\theta_2$ (рис. 4, б). Как и ранее, питающее напряжение было задано в виде ступенчатой функции – $V_1 = H(t)$.

Как видно из рис. 4, геометрия электродирования оказывает большое влияние на напряженность электрического поля генераторной секции пьезотрансформатора и на переходные электромеханические процессы в целом. Экспериментальные подходы к оценке влияния геометрии электродов, их расположения и коммутации на динамические характеристики цилиндрических пьезотрансформаторов реализованы в исследовании [14]. Согласно представленным на рис. 2, б и 4, а результатам, наличие изгибных форм колебаний по сравнению с осесимметричной задачей приводит к появлению «вторичных» всплесков, частота которых определяется количеством разрезов. При заданном V_1 и фиксированном N амплитудные значения напряжения V_2 зависят от соотношения площадей входных/выходных систем электродов – уменьшение угла $2\theta_2$, соответствующее увеличению площадей «входных» электродов,

ДИНАМИКА И ПРОЧНОСТЬ МАШИН

сопровождается ростом пиковых значений выходной разности потенциалов V_2 (рис. 4, б), обусловленное увеличением подводимой электрической энергии к пьезокерамическому преобразователю.

Заключение

В настоящей работе изложен численно-аналитический метод исследования переходных процессов в электрически нагруженных пьезокерамических тонкостенных оболочках, часть поверхности которых покрыта системой генераторных токопроводящих покрытий. Проанализировано влияние геометрии электродирования на характеристики связанных полей. Для оценки эффективности разработанного метода и достоверности результатов дано сравнение с конечноэлементными решениями. Полученные результаты могут быть также использованы при разработке методов управления нестационарными электромеханическими колебаниями цилиндрических оболочек, выполненных из пьезоактивных материалов.

Литература

- 1. *Новые* области применения пьезотрансформаторов / В. М. Климашин, В. Г. Никифоров, А. Я. Сафронов, В. К. Казаков // Компоненты и технологии. 2004. № 1. С. 56–60.
- Piezoelectric transformers. New perspective / K. Uchino, B. Koc, P. Laoratanakul, Carazo A. Vázquez // Ferroelectrics. – 2001. – Vol. 263. – P. 91–100.
- Механика связанных полей в элементах, конструкций: В 5-ти т. / Под общ. ред. А. Н. Гузя. Т. 5. Электроупругость / В. Т. Гринченко, А. Ф. Улитко, Н. А. Шульга. – Киев : Наук. думка, 1989. – 280 с.
- Karlash V. L. Longitudinal and lateral vibrations of a planar piezoceramic transformer / V. L. Karlash // Jpn. J. Appl. Phys. – 2005. – Vol. 44. – P. 1852–1856.
- 5. *Hsu Y.-H.* Optimizing piezoelectric transformer for maximum power transfer / Y.-H. Hsu, C.-K. Lee, W.-H. Hsiao // Smart Material and Structures. 2003. Vol. 12, № 3. P. 373–383.
- Půlpán P. Transformation ratio of "ring-dot" planar piezoelectric transformer / P. Půlpán, J. Erhart // Sensors and Actuators. Ser. A. 2007. Iss. 140. P. 215–224.
- Yang J. S. Analysis of a thickness-shear piezoelectric transformer / J. S. Yang, X. Zhang // Int. J. Appl. Electromagn. Mech. – 2005. – Vol. 21. – P. 131–141.
- 8. *Моргун И. О.* Математическое моделирование работы цилиндрического пьезокерамического трансформатора / И. О. Моргун // Электроника и связь. 2010. № 2. С. 204–207.
- A Circular Cylindrical, Radially Polarized Ceramic Shell Piezoelectric Transformer / W. Chen, Ch. Lü, J. Yang, J. Wang // IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. – 2009. – Vol. 56, № 6. – P. 1238–1245.
- 10. *Маценко Г. Л.* Нестационарные колебания многомодового цилиндрического пьезоизлучателя, имеющего секцию с разомкнутыми электродами / Г. Л. Маценко // Прикл. механика. 1999. Т. 35, № 4. С. 73–79.
- 11. Бабаев А. Э. Нестационарные волны в сплошных средах с системой отражающих поверхностей / А. Э. Бабаев. Киев: Наук. думка, 1990. 176 с.
- 12. *Янчевский И. В.* Нестационарные колебания асимметричного дискового биморфа в режиме прямого пьезоэлектрического эффекта / И. В. Янчевский // Пробл. машиностроения. 2010. Т. 13, № 6. С. 42–52.
- 13. *Янютин Е. Г.* Импульсные воздействия на упругодеформируемые элементы конструкций / Е. Г. Янютин, И. В. Янчевский. Харьков: Изд-во Харьк. автомоб.-дор. ин-та, 2001. 184 с.
- Шарапов В. М. Исследование динамических характеристик цилиндрического пьезокерамического трансформатора / В. М. Шарапов, Д. Е. Романенко // Вісн. Черкас. технолог. ун-та. – 2009. – № 4. – С. 65–69.

Поступила в редакцию 27.04.11