УДК 621.515

С. А. Прилипко И. Н. Тертышный Р. А. Лазоренко

ПАО «Сумское НПО им. М. В. Фрунзе» (г. Сумы, e-mail: tkm@frunze.com.ua)

НЕКОТОРЫЕ ВОПРОСЫ СИСТЕМНОГО АНАЛИЗА ЭФФЕКТИВНОСТИ КОМПРЕССОРНЫХ УСТАНОВОК С ГАЗОТУРБИННЫМ ПРИВОДОМ ДЛЯ НЕФТЯНОЙ И ГАЗОВОЙ ПРОМЫШЛЕННОСТИ

На основе применения эксергетического метода выполнен термодинамический анализ технологической схемы турбокомпрессорной установки нефтяного газа, созданной на основе агрегата ТКА-Ц-8БД/0,3-8,16 с газотурбинным двигателем НК-14СТ и центробежным компрессором мощностью 8 МВт. Определены показатели эффективности установки как для проектного, так и фактического режимов работы в составе комплекса.

3 використанням ексергетичного методу виконано термодинамічний аналіз технологічної схеми турбокомпресорної установки нафтового газу, створеної на основі агрегату TKA-Ц-8БД/0,3-8,16 з газотурбінним двигуном HK-14CT і відцентровим компресором потужністю 8 MBm. Визначені показники ефективності установки як для проектного, так і фактичного режимів роботи у складі комплексу.

Введение

Настоящая работа посвящена дальнейшему развитию метода проектирования блочно-комплектных турбокомпрессорных установок (ТКУ) нефтяного газа (н.г.) на основе системного подхода и эксергетического метода анализа технологических схем (ТС) компрессорных установок на примере анализа эффективности рабочего процесса ТКУ, созданной в ПАО «Сумское НПО им. М.В. Фрунзе» (далее ПАО) на основе газотурбинного двигателя (ГТД) НК-14СТ-8 производства ОАО «Моторостроитель» (г. Самара, Россия), трехкаскадного центробежного компрессора (ЦК) и технологического оборудования конструкции ПАО.

Объект исследования

ТКУ для утилизации н.г. является многофункциональным энерготехнологическим комплексом, который может обеспечивать не только сбор, транспорт и осушку газа, но и отбор конденсата, а также производство тепла в процессе утилизации теплоты выхлопных газов в ГТД. Основными функциональными единицами ТКУ являются: система предварительной подготовки н.г. (СППГ), турбокомпрессорный агрегат (ТКА), оснащенный установкой утилизации теплоты выхлопных газов (УТВГ), и система низкотемпературной сепарации (СНТС) н.г. на основе использования дроссель-эффекта. Кроме того, в составе ТКУ имеется весьма сложный технологический контур, состоящий из элементов трубной обвязки и арматуры.

Структурная схема комплекса оборудования в составе КС Уренгойского нефтегазоконденсатного месторождения (НГКМ) представлена на рис. 1. Ее основными элементами являются: С1...С6 – сепаратор; СН – сепаратор низкотемпературный; ABO1...ABO3 – аппарат воздушного охлаждения; АТ – аппарат теплообменный; Др – дроссельное устройство; ГТД – газотурбинный двигатель; КНД – компрессор низкого давления; КВД1, КВД2 – 1-я и 2-я секции сжатия компрессора высокого давления.

ЗАДАЧИ ОПТИМИЗАЦИИ В МАШИНОСТРОЕНИИИ

Рис. 1. Структурная схема ТКУ КС Уренгойского НГКМ:

С1...С6 – сепаратор; СН – сепаратор низкотемпературный; ABO1...ABO3 – аппарат воздушного охлаждения; АТ – аппарат теплообменный; Др – дроссельное устройство; ГТД – газотурбинный двигатель; КНД – компрессор низкого давления; КВД1, КВД2 – 1-я и 2-я секции сжатия компрессора высокого давления

Подготовку газа на входе в ТКУ обеспечивает СППГ, состоящая из двух ступеней очистки. Для реализация процесса компримирования н.г. в ТКУ применяется трехкаскадный ЦК в составе агрегата ТКА-Ц-8БД/0,3-8,16. При этом в составе каждого каскада сжатия компрессора (КСК) работает одна секция сжатия компрессора (ССК), система охлаждения, состоящая из аппаратов воздушного охлаждения (АВО), и система сепарации газа после каждого АВО (рис. 1).

Подготовка газа перед подачей его в магистральный газопровод (МГ) осуществляется в СНТС, созданной на основе использования дроссель-эффекта. Основные энерготехнологические параметры объекта, полученные на этапе технологического проектирования ТКУ, представлены в табл. 1.

Особенности работы технологической схемы и оборудования в составе ТКУ

При создании и термодинамическом анализе установки рассматриваются особенности рабочего процесса:

1. ТКУ является совокупностью технологических систем, реализующих основные этапы ее рабочего процесса.

2. В процессе эксплуатации ТКУ возможно изменение в широком диапазоне параметров н.г. на входе.

3. Система предварительной подготовки газа должна обеспечивать не только очистку, но и защиту технологического оборудования от залповых забросов жидкости на вход ТКУ.

4. Проектирование систем охлаждения и сепарации газа в ТКУ должно выполняться с учетом отвода теплоты конденсации углеводородного газа и необходимости обеспечения безгидратного режима работы технологического контура установки.

5. В связи с потребностью подготовки газа перед подачей его в МГ возникает необходимость анализа и учета зимнего и летнего режимов работы ТКУ, в т.ч. СНТС.

	Значения				
Наименование параметра	Проектны	е режимы	Фактический		
	«лето» «зима»		режим «зима»		
коммерческая производительность					
на входе при стандартных условиях, млн.м ³ /сут	1,1	141	1,199		
(T = 293 K, p = 0,1013 МПа) массовая, кг/с,	10),4	11,01		
давление газа: на входе КС (ТКУ), МПа	0,330,59	(0,30,56)	0,431 (0,401)		
на выходе КС (ТКУ), МПа	5,55 (8,44)	4,55 (8,16)	4,55 (7,58)		
температура газа: на входе КС, К	279290		272		
на выходе КС, К	293	285	291		
температура точки росы газа на выходе КС:					
по воде, К	261	251	253		
по углеводородам, К	261	251	253		
Энергетические пок	азатели				
потребляемая мощность ТКА, кВт	7175	7753	7170		
эффективный КПД ГТД	0,290	0,295	0,281		
расход топливного газа, кг/с	0,513	0,545	0,529		
потребляемая электрическая мощность ТКУ, кВт	412,5	202,5	225		
тепловая мощность утилизатора тепла	_	4	_		
(при температуре теплоносителя 343/ 388 К), МВт		4			

Таблица 1. Энерготехнологические параметры исследуемой установки

Некоторые особенности методики анализа и расчет эффективности блочнокомплектной ТКУ для КС Уренгойского НГКМ мощностью 8 МВт

Решение задачи анализа эффективности ТС блочно-комплектной ТКУ осуществляется в постановке прямой задачи термодинамики, т.е. определяется эффективность схемы установки, получаемой на этапе технологического проектирования [1].

На рис. 2 представлена схема потоков энергии блочно-комплектной ТКУ, к которым относятся: G_{TF} , $G_{\text{ИВ}}$ – энергия, подводимая с потоком топливного газа и импульсного воздуха; $N_{\Im\Pi}^{\text{TKA}}$, $N_{\Im\Pi}^{\text{CHIII}}$, $N_{\Im\Pi}^{\text{ABO}}$, $N_{\Im\Pi}^{\text{CHTC}}$ – электрическая мощность, подводимая к потребителям ТКА, СППГ, АВО и СНТС соответственно; $Q_{\text{УТВГ}}$ – тепловая мощность, отводимая из утилизатора ТВГ; Q_{BEHT} , Q_{OTB}^{ABO} – тепло, отводимое за пределы установки с вентиляционными сбросами ТКА и воздухом на выходе АВО.

В ТС компрессорной установки происходят разнокачественные энергетические преобразования [1]. В связи с этим термодинамический анализ ТС выполняется на основе ис-

ЗАДАЧИ ОПТИМИЗАЦИИ В МАШИНОСТРОЕНИИИ

пользования общей меры работоспособности для всех видов энергии – эксергии. Эксергетический метод, базирующийся на первом и втором законах термодинамики, – наиболее универсальный метод термодинамического анализа сложной технической системы. Критерием эффективности системы при этом является, как известно, эксергетический КПД (η_{ex}^{TKY}) [2– 7]. При этом величина η_{ex}^{TKY} определяется при условии обеспечения материального, мощностного и эксергетического балансов в ТКУ.

Схема эксергетических потоков и потерь эксергии для рассматриваемой TC блочнокомплектной TKУ н.г. представлена на рис. 3.

К установке подводятся следующие потоки эксергии: топливного газа (т.г.) – E_{TT} ; компримируемого газа на входе – $E_{\text{K}\Gamma_1}$; электроэнергия для приводов вентиляторов ABO в системе охлаждения и электропотребителей ТКА соответственно – E_{\ni}^{ABO} , E_{\ni}^{TKA} ; эксергия ингибитора – $E_{\text{ИH}\Gamma}$. К полезно используемой эксергии относятся: эксергия компримируемого газа на выходе установки – $E_{\text{K}\Gamma_2}$; выделившегося конденсата – $E_{\text{К}OH}$; утилизированной ТВГ двигателя – $E_{\text{УT}}$; сжатого воздуха, отведенного от ГТД агрегата, для нужд соседней ТКУ – E_{B} .

Потери эксергии (диссипация эксергии) представлены в виде $D_{\text{ТВГ}}$, $D_{\text{ВЕНТ}}$, $D_{\text{МО}}$, $D_{\text{МЕХ}}$, $D_{\text{АВО1}}$, $D_{\text{АВО2}}$, $D_{\text{АВО3}}$, $D_{\text{АП}}$, $D_{\text{АРМ}}$, $D_{\text{ТР}}$ – потерь ТВГ двигателя, с вентиляционными выбросами из ТКА, с охлаждающим воздухом, отводимым от маслоохладителей (МО) и АВО; механических потерь в мультипликаторе (мех); потерь, связанных с наличием сопротивления в технологических аппаратах (ап), арматуре (арм) и трубопроводах (тр) технологического контура соответственно. Учет потерь в процессе эксергетического анализа установки осуществляется путем включения соответствующих эксергетических КПД в уравнения эксергетического баланса при анализе как отдельных подсистем, так и ТС в целом.

Исходные данные для проведения анализа эффективности ТКУ как при расчетных, так и фактических параметрах установки представлены выше в табл. 1.

Анализ эффективности ТКУ осуществлялся при ее работе на установившемся режиме с учетом ряда допущений и особенностей реального рабочего процесса:

- потоки эксергии, связанные с вводимым ингибитором, импульсным воздухом и подачей электроэнергии к СППГ и СНТС по причине их незначительного влияния на эксергетический и мощностной балансы ТКУ не учитываются;
- утилизатор ТВГ двигателя при фактическом режиме работы ТКА не используется.

Для каждого из режимов работы, представленных в табл. 1, анализ эффективности установки выполнен по следующим вариантам:

1. С учетом потоков эксергии только на входе и выходе из установки, т.е. по принципу «черного ящика». При этом расход т.г. в ГТП определен расчетным путем; 2. С определением эффективности отдельных подсистем, входящих в состав установки – СППГ, ТКА, СНТС.

Значения эксергии потоков определялись с использованием выражения для удельной эксергии компримируемого газа $e_{\rm K\Gamma} = h_2 - h_{\rm OC} - T_{\rm OC} \cdot (s_2 - s_{\rm OC})$ [4] и с учетом теплофизических характеристик реального газа.

При этом эксергетический КПД ТКУ по параметрам газа на входе и выходе определялся согласно выражению

$$\eta_{\rm ex}^{TKV} = \frac{\Delta E_{K\Gamma}}{E_{T\Gamma} + \Sigma E_{\Im}},$$

где $\Delta E_{\rm K\Gamma}$ – изменение эксергии компримируемого газа; $E_{\rm T\Gamma}$ – эксергия, подведенная к ГТД агрегата с потоком т.г.; $\Sigma E_{\Im} = N_{\Im} + \Sigma N_{\rm ABO}$ – суммарный поток эксергии, подведенный в виде электрической мощности: N_{\Im} – мощность электропотребителей ТКА; $\Sigma N_{\rm ABO}$ – мощность привода вентиляторов ABO.

Анализ эффективности ТКУ по второму варианту выполнен с использованием аналитической зависимости, позволяющей установить взаимосвязь между эксергетическими показателями эффективности установки и ее подсистем [7]

$$\eta_{ex}^{TKY} = \eta_{ex}^{TKA} * \beta_{TKA} - \left[\left(1 - \eta_{ex}^{CIIIIT} \right) \cdot \beta_{CIIIIT} + \left(1 - \eta_{ex}^{HTC} \right) \cdot \beta_{HTC} \right],$$

где η_{ex}^{TKA} , $\eta_{ex}^{C\Pi\Pi\Gamma}$, η_{ex}^{HTC} – эксергетические КПД ТКА, СППГ и СНТС соответственно; $\beta = \frac{E_P}{E_{PC}}$ – доля располагаемой эксергии (*E*_P) соответствующей подсистемы установки к рас-

полагаемой эксергии всей анализируемой системы (*E*_{PC}).

Располагаемая эксергия установки (E_{PC}) определяется суммой располагаемой эксергии всех ее головных элементов. Головным элементом в данной установке является блочнокомплектный ТКА, к которому подводится суммарный внешний поток эксергии

$$E_{\rm PC} = \Sigma N_{\rm ЭЛ} + E_{\rm TF},$$

где $\Sigma N_{\Im J}$ – электрическая мощность, подводимая к потребителям ТКУ; $E_{T\Gamma}$ – эксергия, подводимая с потоком топливного газа в ГТД.

Располагаемая эксергия неголовных элементов (*E*_P) установки рассматривается для каждого элемента отдельно.

В соответствии со структурной схемой ТКУ (рис. 1) и схемой эксергетических преобразований (рис. 3) рассмотрим методику определения эксергетического КПД каждого из функциональных элементов.

Коэффициент эффективности СППГ в эксергетических параметрах, связанный с наличием гидравлических потерь, определялся как

$$\eta_{\rm ex}^{\rm CIIIIT} = \frac{E_2}{E_1} \,, \tag{1}$$

где *E*₁, *E*₂ – эксергия потока на входе и выходе системы соответственно.

Располагаемой эксергией СППГ является эксергия потока компримируемого газа на входе системы.

Эксергетический анализ эффективности ТКА осуществляется с учетом следующих условий и допущений:

1) Отборы части циклового воздуха ГТД на обогрев отсеков ТКА и периодическую защиту воздухоприемного тракта ГТД от обледенения, расход газа на технологические нужды (например, на турбодетандер во время запуска ГТД), а также отбор мощности в двигателе для привода его вспомогательных агрегатов не учитываются.

2) Внешние и внутренние потери в ГТП, вызванные потерями давления в воздухоприемном и выхлопном трактах привода, а также отводом ТВГ, учитываются эффективным КПД двигателя в составе агрегата.

DBC DBEHT DMO DMEX DMEX DMEX DME> Еут квд2(ССКЗ) КВД1(ССК2) КНД(ССК1) Етг Еэтка гтл Ć DABO3 DABO Выхол н Ć Входн EKE2 Fκ ABO2 КСК1 кск2 кскз Езаво Езавс Еконл Езавс Еконл Рис. 4. Схема эксергетических преобразований потоков энергии в ТКА и в КСК

ЗАДАЧИ ОПТИМИЗАЦИИ В МАШИНОСТРОЕНИИИ

3) Потоки эксергии углеводородного конденсата, выделяющегося в ABO, в связи с их незначительной величиной на фактическом режиме работы ТКА также не учитываются

Анализируя эффективность агрегата ТКА-Ц-8БД/0,3-8,16 (рис. 4), целесообразно выделить КСК в самостоятельные подсистемы и определять их КПД как отдельных функциональных единиц. Тогда выражение для КПД агрегата может быть записано как

$$\eta_{ex}^{TKA} = \eta_{ex}^{\Gamma T\Pi} \beta_{\Gamma T\Pi} - \left[\left(1 - \eta_{ex}^{M} \right) \beta_{M} + \sum_{n=1}^{n} \left[\left(1 - \eta_{ex}^{KCK_{i}} \right) \beta_{KCK_{i}} \right] \right],$$
(2)

где $\eta_{ex}^{\Gamma T\Pi}$, η_{ex}^{M} , $\eta_{ex}^{KCK_{i}}$ – эксергетический КПД ГТП, мультипликатора и КСК; $\beta_{\Gamma T\Pi}$, β_{M} , $\beta_{KCK_{i}}$ – доля располагаемой эксергии ГТП, мультипликатора и КСК.

Эксергетический КПД ГТП ($\eta_{ex}^{\Gamma T\Pi}$) при условии, что низшая теплотворная способность с точностью до 2% соответствует химической эксергии т.г. [8], равняется эффективному КПД привода (η_e). Головным элементом ТКА является ГТП.

Эксергетический КПД мультипликатора М равен его механическому КПД и определяется из выражения

$$\eta_{\rm M} = \frac{N_{\rm BbIX}}{N_{\rm BX}},\tag{3}$$

где $N_{\rm BX}$, $N_{\rm BbIX}$ – мощность на ведущем (входном) и ведомом (выходном) валу мультипликатора соответственно.

Располагаемой эксергией М является механическая мощность силовой турбины ГТП. Аналогично (2) определяем КПД каскада сжатия

$$\eta_{\text{ex}}^{\text{KCK}_{i}} = \eta_{\text{ex}}^{\text{CCK}_{i}} \beta_{\text{CCK}_{i}} - \left(1 - \eta_{\text{ex}}^{\text{ABO}_{i}}\right) \beta_{\text{ABO}_{i}} - \left(1 - \eta_{\text{ex}}^{\text{C}_{i}}\right) \beta_{\text{C}_{i}}, \qquad (4)$$

где $\eta_{ex}^{CCK_i}$, $\eta_{ex}^{ABO_i}$, $\eta_{ex}^{C_i}$ – эксергетический КПД ССК, ABO и сепаратора соответственно; β_{CCK_i} , β_{ABO_i} , β_{C_i} – располагаемая эксергия ССК, ABO и сепаратора соответственно.

Эксергетичский КПД ССК определяется с учетом того, что в секции сжатия обеспечивается повышение параметров компримируемого газа за счет подвода части механической энергии привода. Поэтому КПД ССК можно представить как

(выделение конденсата не превышает 0,04 кг/с).

$$\eta_{\rm ex}^{{\rm CCK}_i} = \frac{E_2^{{\rm CCC}_i} - E_1^{{\rm CCC}_i}}{N_{{\rm CCK}_i}} \,. \tag{5}$$

Доля располагаемой эксергии ССК как головного элемента подсистемы КСК определяется как

$$\beta_{\rm CCK_i} = \frac{N_{\rm CCK_i}}{N_{\rm CCK_i}} \,. \tag{6}$$

Показатель эффективности ABO определен согласно [5] с учетом термодинамических параметров теплоносителя, окружающей среды, а также их гидравлического совершенства. Располагаемая эксергия на входе ABO состоит из эксергии потока компримируемого газа на выходе CCK_i, т.е. на входе ABO_i $E_2^{CCC_i}$. Доля располагаемой эксергии ABO определяется как

$$\beta_{ABO_i} = \frac{E_2^{CCC_i}}{N_{CCK_i}} \,. \tag{7}$$

Коэффициент эффективности сепаратора, связанный с наличием гидравлических потерь в аппарате, определялся аналогично выражению (1). Располагаемой эксергией является поток эксергии компримируемого газа на входе аппарата E_1^{Ci} . Доля располагаемой эксергии С определяется как

$$\beta_{C_i} = \frac{E_1^{C_i}}{N_{\text{CCK}_i}}.$$
(8)

Следует отметить, что в данной работе диссипацией эксергии в арматуре (D_{APM}) и отдельных элементах трубопроводов (D_{TP}), соединяющих функциональные элементы ТКУ, согласно [5] можем пренебречь.

Эксергетический КПД системы НТС определялся как

$$\eta_{\rm ex}^{\rm HTC} = \frac{E_{\rm BMX}^{\rm HTC} + E_{\rm KOHA}}{E_{\rm BX}^{\rm HTC}},$$

где $E_{\text{вх}}^{\text{HTC}}$, $E_{\text{вых}}^{\text{HTC}}$ – эксергия потоков газа на входе и выходе системы HTC соответственно; $E_{\text{КОНД}}$ – эксергия потока конденсата, выделившегося при работе системы HTC.

Эксергия конденсата оценивается как поток эксергии, подводимый для сжижения конденсата в обратимом процессе [6]

$$E_{\text{КОНД}} = G_{\text{КОНД}} \cdot r_{\text{КОНД}} \cdot \frac{T_{\text{ср.к}} - T_0}{T_{\text{ср.к}}},$$

где $G_{\text{КОНД}}$ – массовый выход конденсата в системе НТС; $r_{\text{КОНД}}$ – средняя теплота конденсации углеводородной смеси; $T_{\text{ср.к}}$ – средняя температура конденсации углеводородов; T_0 – температура окружающей среды.

С использованием (2)–(8) результаты расчета эффективности каждого каскада сжатия КСК1...КСКЗ и всего ТКА для фактического режима работы представлены в табл. 2.

Поскольку на вход ЦК установки как дожимной машины подается газ высокого давления для таких элементов КСК, как АВО и С, доля располагаемой эксергии $\beta > 1$. В связи с этим величина эксергии компримируемого газа на входе в АВО и С превышает значение внешней эксергии, подводимой к каждому КСК.

Интегральные результаты расчетного анализа эффективности TC установки при проектных и фактических режимах работы представлены в табл. 3.

Hamkawapawwa	Значения										
паименование	ГТП	М	КСК1 (КНД)		КСК2 (КВД1)			КСКЗ (КВД2)			
параметра			ССК	ABO	С	ССК	ABO	С	ССК	ABO	С
	КСК										
β	_	_	1	1,462	1,177	1	2,287	1,87	1	2,855	2,449
η _{ex}	_	—	0,842	0,805	0,98	0,927	0,818	0,991	0,816	0,858	0,999
η_{ex}^{KCK}	_	_	0,533		0,492		0,408				
ТКА											
β	1	0,279	0,105		0,09		0,082				
η _{ex}	0,279	0,98	0,533		0,492		0,408				
η_{ex}^{TKA}	0,131										

Таблица 2. Показатели эффективности элементов ТС и эксергетического КПД ТКА

Таблица 3. Показатели эффективности элементов ТС и эксергетического КПД ТКУ

Наимен	ювание	ие Проектный режим Проектный режим		Фактический режим				
элемента		«ле	то»	«ЗИ	ма»	«зима»		
		Вариант 1	Вариант 2	Вариант 1	Вариант 2	Вариант 1	Вариант 2	
СППГ	$\beta_{C\Pi\Pi\Gamma}$	_	0,074	_	0,049	_	0,065	
	$\eta_{ex}^{C\Pi\Pi\Gamma}$	-	0,939	-	0,996	-	0,979	
ТКА	β_{TKA}	_	1	_	1	—	1	
	η_{ex}^{TKA}	_	$0,\!167^{*}$	_	0,192*	_	0,135*	
HTC	β_{HTC}	_	0,237	_	0,186	_	0,198	
	$\eta_{ex}^{\rm HTC}$	_	0,894	_	0,85	-	0,861	
эксергет КПД ус	ический тановки	0,137	0,137 (0,140 ^{**})	0,163	0,163 (0,163 ^{**})	0,106	0,106 (0,113 ^{**})	

* – эксергетический КПД ТКА, определяемый методом «черного ящика »;

** – значения КПД, полученные умножением значений эксергетического КПД отдельных систем.

Эффективность СППГ зависит от параметров компримируемого газа на входе системы и величины ее гидравлического сопротивления. Значение эффективности и доля располагаемой эксергии находятся в интервале значений 0,939...0,996 и 0,049...0,074 соответственно.

Для ТКА КС Уренгойского НГКМ анализ результатов, полученных двумя способами (см. табл. 2 и 3), показывает достаточную для инженерных расчетов сходимость результатов. Отличие значений η_{ex}^{TKA} , определяемых поэлементно и методом «черного ящика», достигает 3%. Эксергетический КПД ТКА для фактического зимнего режима работы имеет значения 0,131 и 0,135 и зависит от эффективности всех функциональных элементов и в первую очередь ГТД и ЦК.

Для системы HTC значение η_{ex}^{HTC} находится в диапазоне 0,85...0,894 и зависит от величины перепада давления газа на дроссельном устройстве.

Расчетная эффективность TC установки, полученная при технологическом проектировании, находится в диапазоне значений эксергетического КПД 0,137...0,163 для летнего и зимнего режимов работы соответственно. Большее значение КПД для проектного зимнего режима обусловлено использованием утилизатора тепла тепловой мощностью 4 МВт. Значения КПД, полученные для каждого из анализируемых режимов как по варианту 1, так и по варианту 2, одинаковы. В результате выполненной работы получены следующие данные об эффективности ТКУ, применяемой на КС Уренгойского НГКМ:

1. Расчетное значение эксергетического КПД блочно-комплектной ТКУ КС Уренгойского НГКМ находится в диапазоне 0,137...0,163 в зависимости от режимов работы в зимний и летний периоды. Значение эксергетического КПД установки для зимнего режима работы без УТВГ, установленного по фактическим параметрам, составляет 0,106.

2. Термодинамическая эффективность основных функциональных элементов ТКУ составляет $\eta_{ex}^{C\Pi\Pi\Gamma} = 0,939 \div 0,996$; $\eta_{ex}^{TKA} = 0,135 \div 0,192$; $\eta_{ex}^{HTC} = 0,85 \div 0,894$.

3. Принципы и подходы, изложенные в данной работе, могут быть использованы в дальнейшем для создания инженерной методики расчета эффективности технологических схем ТКУ с учетом различных условий эксплуатации установок нефтяной и газовой промышленности.

Литература

- 1. Парафейник В. П. Научные основы совершенствования турбокомпрессорных установок с газотурбинным приводом: Автореф. дис. ... д-ра техн. наук. – Харьков, 2009. – 41 с.
- 2. Бродянский В. М. Эксергетический метод и его приложения / В. М. Бродянский, В. Фратшер, К. Михалек. М.: Энергоатомиздат, 1988. 288 с.
- Соколов Е. Я. Энергетические основы трансформации тепла и процессов охлаждения: Учеб. пособие для вузов 2-е изд., перераб. / Е. Я. Соколов, В. М. Бродянский. –М.: Энергоиздат, 1981. 320 с.
- 4. Шаргут Я. Эксергия / Я. Шаргут, Р. Петела. М.: Энергия, 1968. 280 с.
- Прилипко С. А. Анализ эффективности блочно-комплектной турбокомпрессорной установки природного газа с газотурбинным приводом / С. А. Прилипко, В. П. Парафейник, И. Н. Тертышный // Техн. газы. – 2012. – № 4. – С. 39–47.
- 6. Язик А. В. Системы и средства охлаждения природного газа / А. В. Язик. М.: Недра, 1986. 200 с.
- 7. *Андреев Л. П.* Обобщенное уравнение связи К.П.Д. энергоиспользующей системы и К.П.Д. ее элементов / Л. П. Андреев // Изв. вузов. Энергетика. 1982. № 3. С. 77–82.
- 8. Степанов В. С. Расчет химической эксергии и эксергии технических топлив / В. С. Степанов, Т. Б. Степанова // Энергетика: Изв. РАН. 1994. № 1. С. 106–115.

Поступила в редакцию 29.09.12

УДК 001.891:65.011.56

М. С. Овчаренко

Сумський державний університет (e-mail: miklovcharenko@gmail.com)

ДОСЛІДЖЕННЯ РОБОЧОГО ПРОЦЕСУ РОТОРНО-ДИНАМІЧНОГО АГРЕГАТУ ГОМОГЕНІЗАТОРА

Проаналізовані причини, що не дозволяють використовувати існуючі роторні агрегати – гомогенізатори для технологічних процесів з високими вимогами до дисперсності робочого середовища. Запропоновано спосіб розв'язання проблеми. Створено дослідний зразок роторно-динамічного агрегату гомогенізатора (РДАГ), що дозволив знайти залежності між конструктивними параметрами робочих органів та гідродинамічними ефектами в проточній частині. Проведено параметричні випробування різних конфігурацій проточних частин РДАГ.

Проанализированы причини, не позволяющие использовать существующие роторные агрегаты – гомогенизаторы для технологических процессов с высокими требованиями к дисперсности рабочей среды. Предложен способ решения проблемы. Создан опытный образец роторно-динамического агрегата гомогенизатора (РДАГ), который позволил найти зависимости между конструктивными параметрами рабочих органов и гидро-