¹ С. Е. Малышев

² **К. В. Аврамов**, д-р техн. наук

¹ В. Н. Конкин, канд. техн. наук

¹ Национальный технический университет «Харьковский политехнический институт», г. Харьков,

e-mail: malsea@ukr.net

² Институт проблем машиностроения им. А. Н. Подгорного НАН Украины, г. Харьков

Ключові слова: нелінійні періодичні коливання пологої оболонки, стійкість коливань, майже періодичні коливання, хаотичні коливання. УДК 539.3

ПЕРИОДИЧЕСКИЕ, ПОЧТИ ПЕРИОДИЧЕСКИЕ И ХАОТИЧЕСКИЕ ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ ПОЛОГОЙ КОНСОЛЬНОЙ ОБОЛОЧКИ ПРИ ГЕОМЕТРИЧЕСКИ НЕЛИНЕЙНОМ ДЕФОРМИРОВАНИИ

Отримано нелінійну динамічну систему з кінцевим числом ступенів свободи, що описує вимушені коливання пологої оболонки при її геометрично нелінійному деформуванні. Для виведення цієї динамічної системи застосовується метод заданих форм. В області першого основного резонансу виявлені біфуркації Неймарка-Сакера. В результаті цих біфуркацій виникають майже- періодичні коливання, які перетворюються в хаотичні. Досліджуються властивості цих коливань.

Введение

Пологие оболочки широко используются в аэрокосмической технике, энергомашиностроении, строительстве. Данные часто находятся под действием значительных динамических нагрузок. Вследствие тонкостенности этих конструкций их динамические поперечные перемещения оболочек могут быть соизмеримы с их толщиной. Тогда динамика конструкции описывается геометрически нелинейной теорией.

Много усилий было предпринято для исследования колебаний пологих оболочек при геометрически нелинейном деформировании. В работах [1, 2] представлены подробные обзоры исследований нелинейных колебаний пологих оболочек.

1. Постановка задачи

Рассмотрим пологую оболочку постоянной толщины с прямоугольным планом. Для исследования динамического деформирования оболочки введем криволинейную систему координат (x, θ, z) . Оси x, θ свяжем со срединной поверхностью оболочки (рис. 1); ось z направим перпендикулярно срединной поверхности оболочки. Прямолинейная ось x принадлежит срединной поверхности оболочки, а криволинейная ось θ имеет постоянный радиус кривизны R. Перемещения точек срединной поверхности оболочек опишем тремя ее проекциями $u(x, \theta, t); v(x, \theta, t); w(x, \theta, t)$. Оболочка является тонкой. Поэтому сдвигом и инерцией вращения можно пренебречь. Отметим, что поперечные перемещения оболочки $w(x, \theta, t)$ соизмеримы с ее толщиной. Динамика оболочки описывается геометрически нелинейной теорией. Материал оболочки является упругим. Вследствие этого элементы тензо-

ра напряжений и деформаций удовлетворяют закону Гука. Колебания оболочки возбуждаются сосредоточенной периодической силой $A_f \cos(\overline{\Omega}t)$, которая действует перпендикулярно срединной поверхности оболочки в точке $x = x_0; \theta = \theta_0$.

Для вывода уравнений движения пологой оболочки с конечным числом степеней свободы воспользуемся методом заданных форм [3]. Геометрически нелинейное деформирование оболочки опишем гипотезами Донелла [4]. Тогда деформации срединной поверхности определяются так:

[©] С. Е. Малышев, К. В. Аврамов, В. Н. Конкин, 2017

$$\varepsilon_{11} = \frac{\partial u}{\partial \theta} + \frac{w}{R} + \frac{1}{2} \left(\frac{\partial w}{\partial \theta} \right)^2; \\ \varepsilon_{22} = \frac{\partial v}{\partial x} + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2; \\ \varepsilon_{12} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial \theta} + \frac{\partial w}{\partial \theta} \frac{\partial w}{\partial x}; \\ k_1 = -\frac{\partial^2 w}{\partial \theta^2}; \\ k_2 = -\frac{\partial^2 w}{\partial x^2}; \\ k_3 = -2\frac{\partial^2 w}{\partial \theta \partial x},$$
(1)

где $\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}$ – элементы тензора деформаций срединной поверхности оболочки; k_1, k_2, k_3 – кривизны срединной поверхности. Потенциальную энергию оболочки представим в следующем виде [4]:

$$\Pi = \frac{C}{2} \int_{0}^{a} \int_{0}^{b} \left\{ \varepsilon_{11}^{2} + \varepsilon_{22}^{2} + 2\mu\varepsilon_{11}\varepsilon_{22} + \frac{1-\mu}{2}\varepsilon_{12}^{2} \right\} d\theta dx + \frac{D}{2} \int_{0}^{a} \int_{0}^{b} \left\{ k_{1}^{2} + k_{2}^{2} + 2\mu k_{1}k_{2} + \frac{1-\mu}{2}k_{3}^{2} \right\} d\theta dx + \frac{D}{12R} \int_{0}^{a} \int_{0}^{b} \left\{ \varepsilon_{11}k_{1} + \varepsilon_{22}k_{2} + \mu\varepsilon_{11}k_{2} + \mu\varepsilon_{22}k_{1} + \frac{1-\mu}{2}\varepsilon_{12}k_{3} \right\} d\theta dx,$$

$$(2)$$

где $C = \frac{Eh}{1-\mu^2}$ – жесткость конструкции на растяжение; $D = \frac{Eh^3}{12(1-\mu^2)}$ – цилиндрическая жесткость;

E – модуль Юнга; μ – коэффициент Пуассона; *h* – толщина оболочки; *a*, *b* – длины сторон оболочки (рис. 1). Кинетическую энергию оболочки запишем так [2]:

$$T = \frac{\rho h}{2} \int_{00}^{ab} \left(\dot{w}^2 + \dot{u}^2 + \dot{v}^2 \right) d\theta \, dx, \tag{3}$$

где р – плотность материала оболочки.

В дальнейшем рассмотрим консольную оболочку (рис. 1). Сторона x = 0 защемлена, а все остальные стороны свободны. На рис. 1 защемленная сторона заштрихована. Для применения метода заданных форм найдем собственные формы колебаний конструкции методом Релея-Ритца [4]. Рассмотрим геометрические и естественные граничные условия оболочки. На защемленной стороне оболочки выполняются геометрические граничные условия

$$w\Big|_{x=0} = 0, \frac{\partial w}{\partial x}\Big|_{x=0} = 0, u\Big|_{x=0} = 0, v\Big|_{x=0} = 0.$$
 (4)

Граничные условия (4) обязательно учитываются при расчете собственных форм. На трех свободных сторонах оболочки выполняются естественные граничные условия, которые не берутся во внимание в методе Релея-Ритца. Для аппроксимации перемещений в методе Релея-Ритца использовался кубический В-сплайн. Применение таких базисных функций подробно рассматривается в [5].

2. Вывод уравнений движения

Целью настоящей статьи является исследование вынужденных колебаний пологой оболочки при геометрически нелинейном деформировании на основании многомодовых разложений движений. В этом разделе выводится система с произвольным числом степеней свободы, описывающей колебания оболочки.

Перемещения оболочек разложим по собственным формам их колебаний так:

$$w(x,\theta,t) = \sum_{k=1}^{N} \xi_{k}(t) W_{k}(x,\theta);$$

$$u(x,\theta,t) = \sum_{k=1}^{N} \xi_{k+N}(t) U_{k}(x,\theta);$$

$$v(x,\theta,t) = \sum_{k=1}^{N} \xi_{k+2N}(t) V_{k}(x,\theta),$$

(5)

где $[\xi_1,...,\xi_{3N}]$ – вектор обобщенных координат конструкции; $W_k(x,\theta), U_k(x,\theta), V_k(x,\theta)$ – компоненты перемещений на собственной форме.

В потенциальную энергию (2) введем разложения (1). В результирующее соотношение введем разложения (5) и произведем необходимое интегрирование. В результате получим потенциальную энергию, которую можно представить так: $\Pi(\xi_1,...,\xi_{3N})$. Эта энергия будет содержать квадратичные и кубические слагаемые и члены четвертой степени относительно обобщенных координат. Разложения (5) введем в кинетическую энергию (3). Тогда кинетическая энергия является квадратичной формой относительно обобщенных скоростей: $T(\dot{\xi}_1,...,\dot{\xi}_{3N})$.

Обобщенные силы, соответствующие обобщенным координатам ξ_i ; *j* = 1,...,*N*, находим так:

$$Q_j = \int_0^a \int_0^b W_j(x,\theta) \delta(x-x_0,\theta-\theta_0) A_f \cos(\overline{\Omega t}) d\theta dx; j = 1,...,N,$$

где $\delta(x - x_0, y - y_0)$ – дельта функция. Тогда уравнения Лагранжа второго рода, описывающие движения конструкции, можно записать в матрично- блочном виде

$$\begin{bmatrix} \mathbf{M}^{(1)} & 0 & 0 \\ 0 & \mathbf{M}^{(2)} & 0 \\ 0 & 0 & \mathbf{M}^{(3)} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{q}}^{(w)} \\ \ddot{\mathbf{q}}^{(u)} \\ \ddot{\mathbf{q}}^{(v)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}^{(1,1)} & \mathbf{C}^{(1,2)} & \mathbf{C}^{(1,3)} \\ \mathbf{C}^{(2,1)} & \mathbf{C}^{(2,2)} & \mathbf{C}^{(2,3)} \\ \mathbf{C}^{(3,1)} & \mathbf{C}^{(3,2)} & \mathbf{C}^{(3,3)} \end{bmatrix} \begin{bmatrix} \mathbf{q}^{(w)} \\ \mathbf{q}^{(u)} \\ \mathbf{q}^{(v)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}^{(1,7)}(\mathbf{q}^{(w)}, \mathbf{q}^{(w)}) \mathbf{q}^{(w)} \\ \mathbf{C}^{(2,4)}(\mathbf{q}^{(w)}) \mathbf{q}^{(w)} \\ \mathbf{C}^{(3,4)}(\mathbf{q}^{(w)}) \mathbf{q}^{(w)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}^{(1,4)}(\mathbf{q}^{(w)}) \mathbf{q}^{(w)} \\ \mathbf{Q}^{(w)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}^{(1,4)}(\mathbf{q}^{(w)}) \mathbf{q}^{(w)} + \mathbf{C}^{(1,5)}(\mathbf{q}^{(u)}) \mathbf{q}^{(w)} + \mathbf{C}^{(1,6)}(\mathbf{q}^{(v)}) \mathbf{q}^{(w)} \\ 0 \end{bmatrix} = \begin{bmatrix} \mathbf{F} \cos(\overline{\Omega} t) \\ 0 \\ 0 \end{bmatrix}, \qquad (6)$$

где $\mathbf{q}^{(\mathbf{w})} = (\xi_1, ..., \xi_N)^T, \mathbf{q}^{(\mathbf{u})} = (\xi_{N+1}, ..., \xi_{2N})^T, \mathbf{q}^{(\mathbf{v})} = (\xi_{2N+1}, ..., \xi_{3N})^T.$

Для определения продольных и крутильных перемещений, индуцируемых поперечными колебаниями, воспользуемся квазистатическим анализом. Такой подход к анализу геометрически нелинейного деформирования оболочки используется в работе [6]. Во втором и третьем матричном уравнении системы (6) отбросим инерционные слагаемые. Тогда эти уравнения можно записать в следующем матричном виде:

$$\begin{bmatrix} \mathbf{C}^{(2,1)} & \mathbf{C}^{(2,2)} & \mathbf{C}^{(2,3)} \\ \mathbf{C}^{(3,1)} & \mathbf{C}^{(3,2)} & \mathbf{C}^{(3,3)} \end{bmatrix} \begin{bmatrix} \mathbf{q}^{(w)} \\ \mathbf{q}^{(w)} \\ \mathbf{q}^{(v)} \end{bmatrix} + \begin{bmatrix} \mathbf{C}^{(2,4)}(\mathbf{q}^{(w)})\mathbf{q}^{(w)} \\ \mathbf{C}^{(3,4)}(\mathbf{q}^{(w)})\mathbf{q}^{(w)} \end{bmatrix} = 0.$$
(7)

Решение системы (7) представим так:

$$q^{(u)} = \alpha^{(1)}q^{(w)} + \beta^{(1)}(q^{(w)})q^{(w)};$$

$$q^{(v)} = \alpha^{(2)}q^{(w)} + \beta^{(2)}(q^{(w)})q^{(w)},$$
(8)

где $a^{(1)}, a^{(2)}$ – квадратные матрицы размера $N \times N$; $\beta^{(i)}(\mathbf{q}^{(w)}); i = 1, 2$ – квадратные матрицы, все элементы которых являются линейными функциями обобщенных координат, входящих в вектор $\mathbf{q}^{(w)}$.

Уравнения (8) позволяют динамическую систему (6) свести к нелинейной динамической системе относительно обобщенных координат поперечных движений оболочки $q^{(w)}$. Для этого соотношения (8) введем в первое матричное уравнение системы (6). В результате получим динамическую систему в матричном виде

$$\mathbf{M}^{(1)}\ddot{\mathbf{q}}^{(w)} + \mathbf{K}^{(1)}\mathbf{q}^{(w)} + \mathbf{K}^{(2)}(\mathbf{q}^{(w)})\mathbf{q}^{(w)} + \mathbf{K}^{(3)}(\mathbf{q}^{(w)}, \mathbf{q}^{(w)})\mathbf{q}^{(w)} = \mathbf{F}\cos(\overline{\Omega}t).$$
(9)

Для дальнейшего анализа введем безразмерные обобщенные координаты, безразмерное время и безразмерные параметры

$$y_j = \frac{\xi_j}{h}; j = 1, \dots, N; \quad \tau = \omega_1 t; \Omega = \frac{\overline{\Omega}}{\omega_1}, \tag{10}$$

ISSN 0131–2928. Пробл. машинобудування, 2017, Т. 20, № 3

где ω_1 – первая собственная частота колебаний оболочки. Теперь в динамической системе (9) учтем внутреннее трение в материале оболочки, которое пропорционально первой степени скорости. Тогда динамическая система (9) относительно безразмерных переменных и параметров (10) примет следующий вид:

$$y''_{j} + \lambda_{j}y'_{j} + \sum_{i=1}^{N} z_{ji}y_{i} + \sum_{i=1}^{N} \sum_{k=1}^{N} z_{jik}y_{i}y_{k} + \sum_{i=1}^{N} \sum_{k=1}^{N} \sum_{l=1}^{N} z_{jikl}y_{l}y_{k}y_{l} = \widetilde{F}_{j}\cos(\Omega\tau),$$
(11)

где $y'_{j} = \frac{dy_{j}}{d\tau}$; $\lambda_{j}y'_{j}$ – слагаемое, описывающее безразмерное внутреннее трение в материале оболочки; $z_{ji}, z_{jik}, z_{jikl}, \tilde{F}_{j}$ – величины, зависящие от параметров конструкции. Теперь введем вектор фазовых координат $\mathbf{\eta} = (y_{1}, ..., y_{N}, y'_{1}, ..., y'_{N})$. Тогда динамическую систему (11) относительно вектора фазовых координат можно представить в следующем виде:

$$\mathbf{\eta}' = \mathbf{f}(\mathbf{\eta}, \tau, \Omega), \tag{12}$$

где $\mathbf{f}(\mathbf{\eta}, \tau, \Omega) = \mathbf{f}(\mathbf{\eta}, \tau + T, \Omega)$ - периодическая вектор-функция по явно входящему времени; $T = \frac{2\pi}{\Omega}$ – период колебаний.

Для анализа периодических колебаний в оболочке при ее геометрически нелинейном деформировании решается двухточечная краевая задача для нелинейной динамической системы (12). Зная решения этой краевой задачи при разных значениях частоты возмущающей силы Ω , можно построить амплитудно-частотную характеристику. Для ее расчета применяется алгоритм продолжения, который подробно рассмотрен в [3].

Для анализа устойчивости периодических колебаний рассчитывалась матрица монодромии и находились ее собственные значения.

3. Результаты численного анализа

Рассмотрим линейные колебания консольной пологой оболочки (рис. 1).

Исследуем собственные частоты и собственные формы колебаний консольной оболочки (рис. 1). Параметры этой оболочки принимались следующими [7]:

$$E = 0.7056 \times 10^{11} \Pi a, \rho = 2.84 \times 10^{3} \text{ kr/m}^{3}, a = 0.27 \text{ m}$$

$$b = 0,127$$
 M, $\mu = 0.3$, $h = 0,39 \times 10^{-3}$ M, $R = 5$ M.

Коэффициенты диссипации, входящие в (11), таковы:

$$\lambda_i = 0.003 \cdot \omega_i / \omega_1; \ i = 1, ..., N$$
,

где ω_i – собственные частоты колебаний конструкции. Амплитуда внешней силы A_f принималась следующей: $A_f = 0.273 h \omega_1^2$.

R	Метод	ω_1	ω_2	W ₃	ω_4	ω ₅	ω ₆
(M)	расчета	(рад/с)	(рад/с)	(рад/с)	(рад/с)	(рад/с)	(рад/с)
2	ANSYS	349,53	364,87	753,39	1055,91	1137,51	1273,72
	RRM	348,75	364,15	751,15	1052,75	1119,22	1265,03
5	ANSYS	236,77	288,31	494,09	654,499	994,075	998,65
	RRM	236,58	287,93	491,87	652,57	990,73	996,70
10	ANSYS	202,35	215,06	373,71	641,11	872,61	918,64
	RRM	202,22	214,87	372,07	639,31	869,22	917,16

Собственные частоты колебаний оболочки

Для анализа сходимости решений расчет собственных частот производился с различным числом слагаемых в разложении для перемещений. Результаты расчетов сравнивались с данными конечно-элементного моделирования с помощью программного комплекса ANSYS. Был сделан вывод, что по 10 кубических В-сплайнов в каждом направлении достаточно для сходимости результатов. Конечные результаты расчетов представлены в таблице. В первом столбце показаны радиусы кривизны исследуемых оболочек. Результаты расчетов собственных частот колебаний, полученные методом Релея-Ритца, обозначены RRM.

В дальнейшем рассмотрим колебания оболочки с радиусом кривизны $R = 5 \,\mathrm{m}$.

Геометрически нелинейное динамическое деформирование пологой оболочки описывается динамической системой (11). Результаты численного исследования периодических колебаний представим на амплитудно-частотной характеристике. Для ее расчета воспользуемся алгоритмом продолжения, который подробно рассматривается в [3]. Периодическую сосредоточенную силу приложим в точке с координатами (θ_0, x_0) = (0,27; 0,1508). Эта точка принадлежит узловой линии второй формы колебаний. Поэтому вторая форма колебаний не учитывается в анализе.

Численно получены две модели нелинейных колебаний оболочки (11) с четырьмя и пятью степенями свободы. Для получения модели с четырьмя степенями свободы в разложении (9) учиты-

вались первые пять форм колебаний. В модели с пятью степенями свободы учитывалось шесть форм колебаний в разложении (9). На рис. 2 показан частотный отклик колебаний, где по оси абсцисс откладывается частота возмущающего воздействия, а по оси ординат – безразмерный полуразмах колебаний $A_i = (\max(y_i) - \min(y_i))/2$. Результаты расчетов для модели с пятью степенями свободы показаны пунктирной линией, с четырьмя степенями свободы – сплошной. В области первого резонанса (рис. 2) результаты расчетов для моделей с четырьмя и пятью степенями свободы чрезвычайно близки. В дальнейшем анализе будет использоваться модель с пятью степенями свободы.

Рассмотрим первый основной резонанс. Амплитудно-частотные характеристики в области этого резонанса приводятся на рис. 3. Устойчивые движения изображены на этом рисунке сплошной линией, а неустойчивые – пунктирной. На рис. 3, а по оси ординат показывается половина размаха обобщенной координаты y_1 , а на рис. 3, б половина размаха обобщенной координаты третьей собственной формы колебаний y_2 . На рис. 3, а треугольниками показаны бифуркации Немарка-Сакера [3].

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

На амплитудно-частотной характеристике (рис. 3, а) представлены три области неустойчивых колебаний, которые возникают вследствие бифуркации Неймарка-Сакера. Хорошо известно [3], что в таких бифуркационных точках рождаются почти периодические колебания. Для анализа почти периодических колебаний рассчитывались сечения Пуанкаре. Неустойчивые периодические колебания, которые возникли вследствие бифуркации Неймарка-Сакера, наблюдаются в частотном диапазоне $\Omega \in [1,03905; 1,04809]$. При $\Omega = 1,04809$ возникают почти периодические колебания (рис. 4). Сечения Пуанкаре этих колебаний на плоскости (y_1, y_1') приводятся на рис. 4, а. Из этого рисунка видно, что в системе существует инвариантный тор. На рис. 4, б показано поведение обобщенной координаты y_1 .

При уменьшении частоты возмущающего воздействия почти периодические колебания разрушаются и преобразуются в хаотические. Странные аттракторы хаотических колебаний при $\Omega = 1,047$ и $\Omega = 1,046$ на плоскости (y_2, y'_2) представлены на рис. 5. При дальнейшем уменьшении частоты возмущающего воздействия хаотические колебания преобразуются в почти периодические.

Результаты анализа спектральных плотностей хаотических колебаний приводятся на рис. 6. На рис. 6, а и рис. 6, б представлены спектральные плотности хаотических колебаний обобщенных координат y_2 и y_3 при $\Omega = 1,047$. У спектральной плотности обобщенной координаты y_2 наблюдаются дискретные составляющие спектра на частотах возмущающего воздействия $\Omega_1 = 1,047$ и $\Omega_2 = 2\Omega_1$. Подчеркнем, что около второй частоты Ω_2 наблюдается область сплошного спектра, что свидетельствует о хаотическом характере движения $y_2(t)$. У спектральной плотности обобщенной координаты y_3 (рис. 6, б) наблюдаются дискретные составляющие спектра на частотах Ω_1, Ω_2 и $\Omega_3 = 3\Omega_1$. Около каждой из этих частот наблюдается область сплошного спектра. Итак, движение $y_3(t)$ является хаотическим.

Заключение

В области первого основного резонанса наблюдается два пика амплитудно-частотной характеристики, что объясняется наличием внутреннего резонанса между первой и третьей собственными частотами колебаний. Вследствие этого внутреннего резонанса наблюдается энергообмен между первой и третьей собственными формами колебаний при геометрически нелинейном деформировании оболочки. В области этого резонанса образуются бифуркации Неймарка-Сакера и седло-узловые бифуркации. Вследствие бифуркаций Неймарка-Сакера образуются три области неустойчивых колебаний и возникают почти периодические колебания, которые при изменении частоты возмущающего воздействия преобразуются в хаотические колебания. Для исследования такого преобразования колебаний используются сечения Пуанкаре и спектральные плотности.

Литература

- 1. *Amabili, M.* Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with and without fluid structure interaction /M. Amabili, M. P. Patdoussis // Appl. Mech Reviews. 2003. Vol. 56, № 4. P. 349–381.
- 2. *Alijani, F.* Non-linear vibrations of shells: A literature review from 2003 to 2013/ F. Alijani, M. Amabili // International Journal of Non-Linear Mechanics. 2014. Vol. 58, № 1. P. 233–257.
- Аврамов, К. В. Нелинейная динамика упругих систем: В 2-х т. Т. 1. Модели, методы, явления / К. В. Аврамов, Ю. В. Михлин. – М.: НИЦ «Регулярная и хаотическая динамика», Ин-т компьютер. исслед., 2010. – 704 с.
- 4. *Amabili, M.* Nonlinear vibrations and stability of shells and plates / M. Amabili Cambridge: Cambridge Univ. Press.
- 5. Awrejcewicz, J. Investigation of the stress-strain state of the laminated shallow shells by R-functions method combined with spline-approximation / J. Awrejcewicz, L. Kurpa, A. Osetrov // ZAMM J. Appl. Mathematics and Mechanics. 2011. Vol. 91, №. 6. P. 458–467.
- 6. Avramov, K. V. Vibrations of shallow shells rectangular in the horizontal projection with two freely supported opposite edges / K. V. Avramov, I. D. Breslavsky // Mechanics of Solids. – 2013. – Vol. 48, № 2. – P. 186–193.
- Avramov, K. V. Dynamic instability of shallow shells in three-dimensional incompressible inviscid potential flow / K. V. Avramov, S. V. Papazov, I. D. Breslavsky // J. Sound and Vibration. – 2017. – Vol. 394, № 37. – P. 593–611.

Поступила в редакцию 19.07.17