Н. И Ободан, д-р. техн. наук Н. А. Гук, д-р физ.-мат. наук Н. Л. Козакова

Днепропетровский национальный университет имени Олеся Гончара г. Днепр, e-mail: kkt_fpm@ukr.net

Ключові слова: плоска контактна задача, стійкість системи, стійкість шару, відставання шару, тертя.

УДК 539.3

НЕЛИНЕЙНОЕ ДЕФОРМИРОВАНИЕ ДВУХСЛОЙНОЙ ПЛОСКОЙ КРИВОЛИНЕЙНОЙ СИСТЕМЫ

Досліджена нелінійна поведінка двошарової криволінійної системи, що знаходиться під дією розподіленого поверхневого навантаження і збурення у вигляді сили, що прикладена до нижнього шару. Задача формулюється у варіаційній постановці. Здійснений числовий аналіз нелінійного напружено-деформованого стану шарів в залежності від висоти нижнього шару, кута моделі, коефіцієнта тертя і відносної жорсткості шарів. Встановлені можливість і особливості втрати стійкості нижнього шару та усієї системи в цілому, досліджений їх зв'язок з параметрами системи.

Введение

Нелинейные задачи для систем с односторонними связями и трением при неизвестной заранее зоне контакта часто встречаются при расчете различного рода конструкций. Это задачи о расслоениях в конструкционных материалах, о дефектах в многослойных системах типа непроклея слоя, о поведении деформационных и технологических швов в строительных сооружениях, о контакте подошвы механизмов с основанием и т. д. В указанных задачах состояние контактной зоны является определяющим.

Многообразие методов исследования контактных задач механики и многообразие постановок таких задач в последнее время в связи с развитием численных методов и расширением возможности их реализации резко возросло [1–11].

Но основные постановки задач при контактном взаимодействии слоев предусматривают исследование напряженно-деформированного состояния системы в линейной постановке [6–11]. Между тем, при наличии зон сжимающих напряжений возможна потеря устойчивости как обоих контактирующих слоев, так и локальная, нижнего слоя, если на него действует механическое возмущение, с последующей общей потерей устойчивости, которая происходит при существенно меньших значениях критической нагрузки, чем при совместном деформировании [1, 14]. Существующие исследования поведения расслоений базируются, как правило, на балочном приближении [2–5], при этом не учитывается возможность проскальзывания, а также изменение напряженно-деформированного состояния в нормальном к поверхности расслоения направлении.

Настоящее исследование посвящено решению задачи об устойчивости и деформировании двухслойной криволинейной конструкции при наличии возмущения с учетом трения в предположении о наличии участка с односторонними связями на линии контакта, при этом граница участка отрыва неизвестна.

Постановка задачи

Рассматривается бесконечная криволинейная упругая система, состоящая из двух контактирующих слоев, нагруженная распределенной поверхностной нагрузкой *q* и возмущением в виде силы *F*, приложенной к нижнему слою.

Система занимает конечные области

$$\Omega_{k} = \left\{ x^{k}, x^{k} = \left\{ x_{1}^{(k)}, x_{2}^{(k)} \right\} \in \mathbb{R}^{2}, \ \mathbb{R} \le x_{1}^{(1)} \le \mathbb{R} + h^{(1)}, \ \mathbb{R} + h^{(2)} \le x_{1}^{(2)} \le \mathbb{R} + h^{(1)} + h^{(2)}, -\varphi_{0} \le x_{2}^{(k)} \le \varphi_{0} \right\},$$

где k – номер подсистемы, R – радиус кривизны нижней поверхности. Линия контакта слоев описывается дугой окружности радиуса $R + h^{(1)}$ и совпадает с направлением оси $x_2^{(2)}$. Используется полярная система координат $(x_1^{(k)}, x_2^{(k)})$.

Геометрические соотношения (номера слоев опущены) имеют вид [12]

[©] Н. И Ободан, Н. А. Гук, Н. Л. Козакова, 2017

ДИНАМІКА ТА МІЦНІСТЬ МАШИН

$$\varepsilon_{11} = e_{11} + \frac{1}{2}\Theta^2, \ \varepsilon_{22} = e_{22} + \frac{1}{2}\Theta^2, \ \varepsilon_{12} = e_{12},$$
 (1)

$$e_{11} = \frac{\partial u_1}{\partial x_1}, \ e_{22} = \frac{1}{x_1} \left(\frac{\partial u_2}{\partial x_2} + u_1 \right),$$

$$e_{12} = \frac{\partial u_2}{\partial x_1} + \frac{1}{x_1} \frac{\partial u_1}{\partial x_2} - \frac{u_2}{x_1}, \ 2\Theta = \left(\frac{u_2}{x_1} + \frac{\partial u_2}{\partial x_1} - \frac{1}{x_1} \frac{\partial u_1}{\partial x_2} \right)$$
(2)

Здесь $u = \{u_1, u_2\}^T$ – вектор перемещений вдоль осей x_1, x_2 . Уравнения равновесия деформированного элемента:

$$\frac{\partial \tilde{\sigma}_{11}}{\partial x_1} + \frac{(\tilde{\sigma}_{11} - \tilde{\sigma}_{22})}{x_1} + \frac{1}{x_1} \frac{\partial \tilde{\sigma}_{21}}{\partial x_2} = 0,$$

$$\frac{1}{x_1} \frac{\partial \tilde{\sigma}_{22}}{\partial x_2} + \frac{(\tilde{\sigma}_{21} + \tilde{\sigma}_{12})}{x_1} + \frac{\partial \tilde{\sigma}_{12}}{\partial x_1} = 0,$$
(3)

где $\tilde{\sigma}_{11} = \sigma_{11} - \sigma_{12}\Theta$, $\tilde{\sigma}_{12} = \sigma_{12} + \sigma_{22}\Theta$, $\tilde{\sigma}_{21} = \sigma_{21} - \sigma_{11}\Theta$, $\tilde{\sigma}_{22} = \sigma_{22} + \sigma_{21}\Theta$, $\sigma_{ij}(u)$ – напряжения, выраженные через перемещения.

В качестве физического закона принят закон Гука (модули Юнга E_1 и E_2 заданы для слоев 1 и 2 соответственно).

Граничные условия имеют вид

$$u_1(x_1^k, \pm \phi_0) = 0; \ u_2(x_1^k, \pm \phi_0) = 0; \ k = 1,2$$
 (4)

На верхней границе $\Gamma_{e} x_{1} = R + h^{(1)} + h^{(2)} = H$ выполняются условия

$$\sigma_{11}^{(1)}(u) = q, \quad -\phi_0 \le x_2 \le \phi_0, \quad \sigma_{12}^{(1)}(u) = 0, \quad -\phi_0 \le x_2 \le \phi_0, \tag{5}$$

на нижней границе $x_1 = R$

$$\sigma_{11}^{(2)}(u) = 0, \ \sigma_{12}^{(2)}(u) = 0. \tag{6}$$

На границе раздела слоев в зоне контакта $x_1^{(1)} = x_1^{(2)} = R + h^{(1)} = R^*$ имеют место граничные условия

$$σ_{11}^{(1)} = σ_{11}^{(2)}, \quad u_1^{(k)} \le 0$$
или $σ_{11}^{(k)} \le 0, \quad u_1^{(k)} \cdot \sigma_{11}^{(k)} = 0, \quad k = 1, 2.$
(7)

Предполагается, что существуют границы Γ_{c} , Γ_{Π} , Γ_{o} , соответствующие зоне сцепления, проскальзывания и отрыва соответственно, такие, что $\Gamma_{c} \cup \Gamma_{\Pi} \cup \Gamma_{o} = \Gamma$, $\Gamma_{c} \cap \Gamma_{\Pi} \cap \Gamma_{o} = \emptyset$.

В зоне сцепления $x_2 \in \Gamma_C$ выполняются условия

$$u_{1}^{(1)} = u_{1}^{(2)}, \quad u_{2}^{(1)} = u_{2}^{(2)},$$

$$\sigma_{12}^{(1)} \leq \left| \sigma_{11}^{(1)} \right| \text{ при } \left| \sigma_{12}^{(2)} \right| \leq K \left| \sigma_{11}^{(2)} \right|, \quad \int_{-\phi_{0}}^{\phi_{0}} \sigma_{11}^{(2)}(R^{*}, x_{2}) dx_{2} = F, \qquad (8)$$

где К – коэффициент трения.

В зоне проскальзывания для всех $x_2 \in \Gamma_{\Pi}$

$$u_{1}^{(1)}\left(x_{2}+u_{2}^{(1)}\right) = u_{1}^{(2)}\left(x_{2}+u_{2}^{(2)}\right),$$

$$\left|\sigma_{12}\right|-K\left|\sigma_{11}\right| \ge 0, \quad \int_{-\varphi_{0}}^{\varphi_{0}} \sigma_{11}^{(2)}(R^{*},x_{2}) \, dx_{2} = F,$$

$$u_{2}^{(1)} \ne u_{2}^{(2)}.$$
(9)

ISSN 0131–2928. Пробл. машинобудування, 2017, Т. 20, № 3

В зоне отрыва для всех $x_2 \in \Gamma_o$,

$$\sigma_{12}^{(k)} = 0, \ k = 1, 2, \ \sigma_{11}^{(1)}(R^*, x_2) = 0, \ \int_{-\varphi_0}^{\varphi_0} \sigma_{11}^{(2)}(R^*, x_2) dx_2 = F \ . \tag{10}$$

Здесь $\sigma_{ij}^{(k)}$, $u_i^{(k)}$, i, j = 1, 2 – компоненты тензора напряжений и перемещений в *k*-ом слое.

Метод решения

Для описания неизвестных участков границ введем характеристические функции для точек границ Γ_c , Γ_{Π} , Γ_o в виде

$$\begin{split} \gamma_{1}(x_{2}) &= \begin{cases} 1 & \text{при} & |\sigma_{12}| \geq K |\sigma_{11}|, \quad x_{2} \in \Gamma_{\Pi}, \\ 0 & \text{при} & |\sigma_{12}| < K |\sigma_{11}|, \quad x_{2} \in \Gamma_{C}; \end{cases} \\ \gamma_{2}(x_{2}) &= \begin{cases} 0 & \text{при} & \sigma_{11} < 0, \quad x_{2} \notin \Gamma_{O}, \\ 1 & \text{при} & \sigma_{11} \geq 0, \quad x_{2} \in \Gamma_{O}; \end{cases} \\ \gamma_{3}(x_{2}) &= \begin{cases} 0 & \text{при} & \sigma_{12} < 0, \quad x_{2} \notin \Gamma_{O}, \\ 1 & \text{при} & \sigma_{12} \geq 0, \quad x_{2} \notin \Gamma_{O}, \end{cases} \end{split}$$
(11)

С учетом соотношения (11) вариационная постановка краевой задачи (1)–(10) будет иметь вид [11]

$$W = \underset{W \in \overline{W}}{\arg\min} \mathcal{A}(u, u^*), \qquad (12)$$

где

$$\Im(u,u^{*}) = \sum_{k=1}^{2} \left\{ \int_{\Omega_{k}} \frac{1}{2} C_{k}^{ijlm} \varepsilon_{ij}^{(k)}(u) \varepsilon_{lm}^{(k)}(u) d\Omega_{k} + \int_{-\varphi_{0}}^{\varphi_{0}} (q(x_{2})u_{1}^{(1)}(\mathbf{H}, x_{2}) + \mathbf{F}\delta(x_{2})u_{1}^{(2)}(\mathbf{R}^{*}, x_{2})) dx_{2} + \int_{-\varphi_{0}}^{\varphi_{0}} \left[\gamma_{1}(x_{2}) K \sigma_{11}^{(2)}(u) u_{2}^{(2)} + \gamma_{2}(x_{2}) \sigma_{11}^{(k)}(u) (u_{1}^{(k)} - u_{1i}^{*(k)}) + \gamma_{3}(x_{2}) \sigma_{12}^{(k)}(u) (u_{2}^{(k)} - u_{2i}^{*(k)}) \right] dx_{2} \right\} \Big|_{x_{1}=0},$$
(13)

 $W = \{u, u^*, \gamma\}^T$, C_k^{ijlm} – коэффициенты жесткости, *i*, *j*, *l*, *m* = 1, 2; u_{ik}^* – варьируемые значения перемещений на линии контакта; ε_{ij} – деформации, вычисляемые через перемещения u_i с учетом геометрической нелинейности. Принято соглашение о суммировании по повторяющимся индексам.

Характеристические функции $\gamma(x_2) = \{\gamma_q(x_2), q = \overline{1,3}\}$, определенные соотношениями (11), обеспечивают выполнение соотношения (12) по $\gamma(x_2)$.

Анализ решений осуществляется для случая простого нагружения: $q = tq_0$, $F = tF_0$, где t – переменная величина, а q_0 , F_0 – фиксированные значения.

Для построения решения задачи (12) осуществляется переход к дискретной модели с использованием конечно-элементной аппроксимации [13]. Для этого на областях Ω_k вводится сетка с узлами в точках с координатами X_s $s = \overline{1, N}$, где $X_s = \{x_{1s}, x_{2s}\}$, тогда неизвестные функции u(x), $\sigma_{ij}(x)$, $u^*(x)$ представляются в виде векторов, компонентами которых являются значения функций задачи в узлах сетки

$$u = \{u_i\}^T, \ \sigma_{ij} = \{\sigma_{ijs}\}^T, \ u^* = \{u_i^*\}^T, \ u_i = \{u_{ik}\}^T, \ u_{ik} = \{u_{iks}\}^T, \ u_{ik} = \{u_{iks}\}^T, \ u^* = \{u_{ik}^*\}^T, \ u^*_{ik} = \{u_{iks}^*\}^T, \ \gamma_{qs} = 0 \lor 1, \ i, j = 1, 2, \ s = \overline{1, N}, \ k = 1, 2, \ q = \overline{1, 3}.$$
(14)

Узлы, лежащие на границе Γ , нумеруются как $P = \{p_1, p_2, ..., p_M\}$, число M выбирается путем численного эксперимента. Из элементов вектора P могут быть сформированы вектора

$$P^{C} = \left\{ p_{1}^{C}, p_{2}^{C}, ..., p_{r_{1}}^{C} \right\}, \quad P^{\Pi} = \left\{ p_{1}^{\Pi}, p_{2}^{\Pi}, ..., p_{r_{2}}^{\Pi} \right\}, \quad P^{O} = \left\{ p_{1}^{O}, p_{2}^{O}, ..., p_{r_{3}}^{O} \right\}, \tag{15}$$

которые определяют узлы сетки, соответствующие зонам сцепления, проскальзывания и отрыва путем вычисления значений γ_q в соответствии с условиями (11).

После подстановки конечно-элементной аппроксимации в функционал (13), интегрирования и выполнения процедуры (12) получим разрешающую систему нелинейных уравнений *N*-го порядка

$$Q(u) = G , \qquad (16)$$

эквивалентную условию $\partial \tilde{\Im}^* / \partial u_{iks} = 0$, $i, k = \overline{1, 2}$, $s = \overline{1, N}$, $\tilde{\Im}^*$ – значения функционала $\tilde{\Im}$ после подстановки конечно-элементной аппроксимации и выполнения процедуры интегрирования; Q – нелинейная вектор – функция, зависящая от значений векторов γ_a ; G – вектор, зависящий от u^* .

Для решения системы нелинейных уравнений (16) используется метод продолжения по параметру $t^{(n)} = t^{(n-1)} + \Delta t$. Тогда разрешающая система уравнений (16) приобретает вид

$$A(u^{(n-1)})\Delta u^{(n)} = \Delta G(u^{(n-1)}, u^{*(n-1)}), \qquad u^{(n)} = u^{(n-1)} + \Delta u^{(n)}, \tag{17}$$

где $A(u^{(n-1)}) = \left\{ \frac{\partial Q_p}{\partial u_{iks}} \right\}_{u^{(n-1)}}$, ΔG – приращение правой части при изменении номера шага n.

При построении матрицы жесткости учитывается, что

$$\sigma = Du , \qquad (18)$$

где $\sigma = \left\{ \sigma_{ijs}, i, j = \overline{1, 2}, s = \overline{1, N} \right\}^T$, D - функциональная матрица коэффициентов, получаемая из физических и геометрических соотношений.

Для выполнения условия минимума $\tilde{\mathcal{P}}$ по u_{is}^* , $s = \overline{1, N}$, используется метод Ньютона

$$u^{*(l)} = u^{*(l-1)} - (C^{(l-1)})^{-1} \sigma^{(l-1)} \Big|_{\Gamma_o} .$$
⁽¹⁹⁾

Здесь

$$\sigma^{(l-1)}|_{\Gamma_{O}} = \left\{\sigma^{(l-1)}_{s}\right\}^{T}|_{\Gamma_{O}}, \ \sigma^{(l-1)}_{s} = \left\{\sigma^{(l-1)}_{12s}\sigma^{(l-1)}_{11s}\right\}^{T}|_{\Gamma_{O}}, \ x_{s} \in \Gamma_{0}, \ C^{(l-1)} = \left\{\frac{\partial\sigma(u^{(l-1)}, u^{*})}{\partial u^{*}}\right\}|_{\Gamma_{O}},$$

где *l* – номер итерации.

Алгоритм

- 0. Задать $l=1, n=1, \sigma_{11s} = q_s^*, \sigma_{12s} = 0$ для $\forall x_s \in \Gamma_s, u_{is}^{*(1,1)} = 0, \gamma_{qs}^{(1,1)} = 0, i = \overline{1,2}, q = \overline{1,3}, \varepsilon$ малое число, $\Delta t, t^*, t = \Delta t$.
- 1. Построить сетку с узлами X_s , $s = \overline{1, N}$.
- **2.** Сформировать вектор неизвестных **u** с учетом условий $u_{1s}^{(1)} = u_{1s}^{(2)}$, $u_{2s}^{(1)} = u_{2s}^{(2)}$, для узлов с координатами X_s , таких, что $X_s \in \Gamma_C$ согласно (14).
- 3. Сформировать систему уравнений (17).
- **4.** Определить вектор $u^{(n,l)}$, $\sigma^{(n,l)}$ по уравнениям (18) (19).
- **5.** Определить вектор $\gamma_{qs}^{(n,l)}$, $X_s \in \Gamma$, $q = \overline{1,3}$ в соответствии с условием (11).
- **6.** Если $\exists \gamma_{as}^{(n,l)} \neq 0$, то дальше, иначе на пункт 11.
- 7. Определить номера узлов $P^{O(n,l)}$, $P^{\Pi(n,l)}$, $P^{C(n,l)}$ на основании значений вектора $\gamma_{qs}^{(n,l)}$ согласно (15).
- 8. Создать узлы $P_i^{O(n,l)}$, $i = \overline{1,2}$, с соответствующими перемещениями $u_2^{(1)(n,l)} \neq u_2^{(2)(n,l)}$, и узлы $P_i^{\Pi(n,l)}$, $i = \overline{1,2}$, с соответствующими перемещениями $u_1^{(1)(n,l)} \neq u_1^{(2)(n,l)}$, сформировать вектор неизвестных u.

9. Определить $u_{is}^{*(n,l)}$ по формуле (19), l = l + 1

10. Если $\|u^{*(n)} - u^{*(n-1)}\| \le \varepsilon$, то дальше, иначе на п. 3.

11. $t^{(n)} = t^{(n-1)} + \Delta t$, n = n+1.

12. $t^{(n)} \le t^*$ на п. 3, иначе конец.

Результаты расчета

С помощью предложенного алгоритма проведен анализ поведения системы, имеющей следующие характеристики: для первого варианта верхнего слоя выбраны модуль Юнга $E_1 = 1 \cdot 10^4 \,\mathrm{kr} \,/ \,\mathrm{cm}^2$ и коэффициент Пуассона $\upsilon_1 = 0.2$, а для второго – $E_1 = 1 \cdot 10^5 \,\mathrm{kr} \,/ \,\mathrm{cm}^2$ и $\upsilon_1 = 0.3$, для нижнего слоя – $E_2 = 2 \cdot 10^6 \,\mathrm{kr} \,/ \,\mathrm{cm}^2$ и $\upsilon_2 = 0.3$. На основании исследования задачи выделены следующие параметры модели: $R \,/ \,h^{(1)} = 100$; 350, $\eta = h^{(2)} \,/ \,h^{(1)} = 4$; 14, $\chi = E_2 \,/ E_1 = 20$; 200.

Расчеты проводились с помощью пакета прикладных программ «Cosmos» с использованием нелинейного плоского элемента на каждом шаге алгоритма. На рис. 1 представлена модель рассматриваемой системы, содержащая 150 элементов и 198 узлов.

Представленный алгоритм был использован для анализа поведения рассматриваемой модели в зависимости от параметров задачи ϕ_0 , $\phi_1 = 0.75\phi_0$, q, F, η , χ , K.

Наличие кривизны слоев приводит к появлению значительных напряжений σ_{22} и, как следствие, к потере исходной формы (потеря устойчивости). На рис. 2 представлена зависимость критических значений $\overline{q}_{\kappa p} = q_{\kappa p} / q_{\kappa p}^*$ от значения $\overline{F} = F / \sigma_p R \phi_0$ при $\phi_0 = \pi / 12$, $\eta = 4$, $\eta = 14$, $\chi = 200$, $\chi = 20$, где $q_{\kappa p}^*$ – значение критической нагрузки при F = 0, σ_p – предел пропорциональности. Звездочками показано граничное значение $F_{\kappa p}$, при котором происходит потеря устойчивости с отрывом нижнего слоя.

Из рис. 2 следует, что уменьшение относительной толщины нижнего слоя может изменять значение относительной критической нагрузки более чем в 3 раза во всем диапазоне значений \overline{F} , в то же время относительное изменение модуля упругости существенно меньше влияет на критические нагрузки. При этом более значительно такое изменение при больших \overline{F} .

Зависимость критического значения нагрузки $\bar{q}_{\kappa p}$ при фиксированных значениях \bar{F} от угла раствора ϕ_0 приведена на рис. 3, рис. 4. Эта зависимость носит немонотонный характер и аналогич-

на соответствующей зависимости для цилиндрических панелей под действием поперечной нагрузки [14]. Немонотонность зависимости связана с существованием закритических кососимметричных форм потери устойчивости как нижнего слоя, так и всей системы в целом, при определенных значениях ϕ_0 . Так как возмущение инициирует всегда симметричную форму, то в указанных областях изменения ϕ_0 вследствие взаимодействия описанных форм деформирования наблюдается повышение критической нагрузки.

Немонотонный характер зависимости $\bar{q}_{\kappa p}(\phi_0)$ сохраняется независимо от величины действующего возмущения (рис. 3, 4).

Рис. 5 иллюстрирует зависимость $\Delta u_1 = (u_1^{(2)}(0,0) - u_1^{(1)}(0,0)) / h^{(2)}$ при действии различных возмущений. Видно, что величина раскрытия зависит от уровня возмущения только до его определенного значения, а затем стабилизируется, при этом Δu_1 существенно зависит от физических и геометрических параметров.

Исследована зависимость относительного размера зоны отрыва $a^* / R\phi_1$ (где ϕ_1 – длина границы односторонней связи) в момент потери устойчивости (рис. 6). Установлено, что, начиная со значения \overline{F} , размер зоны a^* остается постоянным. При этом размер области отслоения может быть значительно меньше размера зоны контакта с односторонними связями даже при больших значениях возмущения. Особенно значителен указанный эффект при учете трения, который значительно уменьшает область раскрытия во всех рассматриваемых случаях.

Анализ действующих напряжений в зоне контакта показывает, что в зоне односторонней связи может иметь место проскальзывание, причем контактные максимальные напряжения в этой зоне изменяются с увеличением возмущения, при учете трения эти напряжения увеличиваются (рис. 7, 8).

Необходимо отметить, что значения контактных напряжений весьма зависят от относительной толщины слоев и значительно меньше – от соотношения модулей упругости.

Далее проведен анализ зависимости значений $\bar{q}_{\kappa p}(\bar{F})$, $\Delta a^*(\bar{F}) = (a_1^* - a_2^*) / R\phi_1 (a_1^* - размер зоны отрыва при <math>K \neq 0$) от коэффициента трения K, соотношения модулей Юнга χ при значении угла раствора $\phi_0 = \pi / 12$ (рис. 9, 10).

Для оценки достоверности расчетов, выполненных на основе предложенного алгоритма, был проведен расчет для определения критической нагрузки $q_{\kappa p}^0$ двухслойной конструкции при значении $R/2h^{(1)} = 200$, в которой на всей линии соприкосновения выполнены условия одностороннего контакта, модули упругости и толщины слоев равны. При этом отношение $q_{\kappa p}^0 / q_{\kappa p}^*$ составило 0,997, где

 $q_{\kappa p}^*$ – критическое значение нагрузки для бесконечно длинной панели с изгибной жесткостью, равной сумме жесткостей слоев [15].

Выводы

Проведенный численный анализ позволяет установить, что:

- двухслойная криволинейная упругая конструкция при возмущении может терять устойчивость как общую, со значительным изгибом обоих слоев, так и локальную, возникающую в нижнем слое;
- зависимость критической поверхностной нагрузки от угла раствора системы носит немонотонный характер при любом значении возмущения;
- при локальной потере устойчивости размер зоны отрыва меньше размера зоны одностороннего контакта, он уменьшается при учете трения;
- проведенные исследования и разработанные алгоритмы являются эффективными средствами при робастном проектировании строительных сооружений, конструкций летательных аппаратов и др.,

которое предполагает априорный учет возможных дефектов и возмущений на реальное напряженно-деформированное состояние и геометрию системы.

Литература

- 8. Гузь, А. Н. О построении основ механики разрушения материалов при сжатии вдоль трещин (обзор) / А. Н. Гузь // Прикл. механика. 2014. Т. 50, № 1. С. 5–88.
- 9. *Liu*, *P. F.* A nonlinear cohesive model for mixed-mod delamination of composites laminates / P. F. Lin, M. M. Islam // Composite Structure. 2013. Iss 106. P. 47–56.
- 10. *Чернякин, С. А.* Анализ роста расслоений в композитных конструкциях/ С. А. Чернякин, Ю. В. Скворцов // Вестн. Сиб. гос. аэрокосм. ун-та им. акад. Решетнева. 2014. Вып. 4(56). С. 249–258.
- 11. *Парцевский, В. В.* Расслоение в полимерных композитах (обзор) // В. В. Парцевский // Изв. РАН. Механика твердого тела. 2003. № 5. С. 62–94.
- 12. Akbarov, S. D. Stability Loss and Buckling Delamination / S. D. Akbarov // Berlin: Springer 2012. 450 p.
- 13. Федорова, В. С. Взаимодействие гофрированной металлической трубы с упругой средой посредством трения Кулона / В. С. Федорова, А. Д. Ловцов // Ученые заметки Тихоокеан. гос. ун-та. – 2013. – Т. 4, № 4. – С. 1662–1669.
- 14. Jun, L. Numerical and experimental analysis of delamination in the T-stiffeer integrated composite structure / L. Jun., X. Y. Lui, Y. Y. Nan, Y. Xuefeng // Mechanics of Advanced Materials and Structures. – 2016. – Vol. 23(10). – P. 1188–1196.
- 15. Лукашевич, А. А. О решении контактных задач строительной механики с односторонними связями и трением методом пошагового анализа // А. А. Лукашевич, Л. А. Розин // Инж.-строит. журн. 2013. № 1.– С. 75–81.
- 16. Slobodyan, B. S. Modeling of Contact Interaction of Periodically Textured Bodies with Regard for Frictional Slip / B. S. Slobodyan, B. A. Lyashenko, N. I. Malanchuk, V. E. Marchuk, R. M. Martynyak // J. of Math. Sci. – 2016. – Vol. 215, Iss. 1. – P. 110–120.
- 17. Зернин, М. В. Моделирование контактного взаимодействия с использованием положений механики «контактной псевдосреды» / М. В. Зернин, А. П. Бабин, А. В. Мишин, В. Ю. Бурак // Вестн. Брянск. техн. ун-та. 2007. № 4(16). С. 62–73.
- 18. Александров, В. М. Механика контактных взаимодействий / В. М. Александров, И. И. Ворович. М.: Наука, 2001. 670 с.
- 19. Новожилов, В. В. Теория упругости / В. В. Новожилов // Л.: Судпромгиз. 1958. 374 с.
- 20. Bathe, K. Numerical method in finite element analysis // K. Bathe, E. L. Wilson. M.: Hayka, 1985. 648 c.
- 21. *Obodan, N. I.* Nonlinear behaviour and stability of thin-walled shells / N. I. Obodan, O. G. Lebedeyev, V. A. Gromov. N.-Y.: Springer, 2013. 180 p.
- 22. Динник, А. Н. Устойчивость арок / А. Н. Динник // Л.: ОГИЗ. 1946. 127 с.

Поступила в редакцию 25.05.17