J.F.Sun, X.L.Wang

CONNECTED STABILITY ANALYSIS OF DELAY SYSTEMS VIA THE MATRIX-VALUED LYAPUNOV FUNCTION

Harbin Institute of Technology (Weihai), Shangdong province 2, Wenhua Xi Road Weihai, China; e-mail: sunif 70@126.com

Abstract. By the method of combining the matrix-valued Lyapunov functional and comparison theorem, connected Lyapunov stability and practical stability of large scale delay system are studied deeply. A series of new sufficient conditions are proposed. These results are not only of theoretical but also of practical value.

Key words: delay system, connected Lyapunov stability, practical stability.

1. Designations.

Let $C = C([-\tau, 0], R^n)$, $J = [t_0, \infty)$, $t_0 \ge 0$. For any $\varphi \in C$ the norm $\|\varphi\| = \sup_{-\tau \le s \le 0} |\varphi(s)|$ is used. For $x \in R^n$, $|x| = \max |x_r|$, r = 1, 2, ..., n. If $x \in C([t_0 - \tau, \infty), R^n)$, then $x_t \in C$ is determined as $x_t(s) = x(t+s)$, $-\tau \le s \le 0$. We designate $C_n^H = \{\varphi \in C : \|\varphi\| < H\}$, where H > 0 or $H = \infty$.

2. Description of the system and decomposition.

Consider the large scale system modeled by functional differential equation

$$\frac{dx}{dt} = f(t, x_t), x_{t_0} = \varphi_0 \in C_n^H,$$
(1)

where $f: J \times C_n^H \to R^n$. Provided that the vector-function f maps the bounded sets into the bounded sets, for each $t_0 \in J$ and $\varphi_0 \in C_n^H$ there exists a unique solution $x(t_0, x_{t_0})(t)$ determined on some interval $[t_0, t + \alpha], \alpha > 0$, and if $H_1 < H$ is such that $|x(t_0, \varphi_0(t)| \le H_1$, then $\alpha = \infty$.

The system (1) is decomposed into m interconnected subsystems

$$\frac{dx^{i}(t)}{dt} = f_{i}(t, x_{t}^{i}) + g_{i}(t, x_{t}^{1}, \cdots, x_{t}^{m}),$$
(2)

where $i \in I_m \underline{\Delta} \{1, 2, ..., m\}$, $f_i \in (J \times C_{n_i}^{H_i}, \mathbb{R}^{n_i})$, $g_i \in C(J \times C_n^H, \mathbb{R}^{n_i})$ and $\sum_i n_i = n$. We

assume that the functions $g_i(t, x_t)$ depend on $m \times m$ -matrix of interconnections $E_t = [e_t^{ij}]$,

$$g_i(t, x_t) = g_i(t, e_t^{i1} x_t^1, e_t^{i2} x_t^2, \cdots, e_t^{im} x_t^m),$$
(3)

139

ISSN0032-8243. Прикл. механика, 2013, 49, № 5

when $i \in I_m$, where the elements $e_t^{ij} \in C([-\tau, 0], [0, 1])$ depend in general case on the delay $e_t^{ij} x_t = e^{ij} (t+\theta) x^i (t+\theta), \theta \in [-\tau, 0].$

We designate by $\overline{E_t}$ the fundamental matrix of interactions with the elements $\overline{e_t}^{ij} = 1$ if x_i is contained in $g_i(t, x_t)$; $\overline{e_t}^{ij} = 0$ if x_i is not contained in $g_i(t, x_t)$.

For $E_t = 0$ we get from system (2) the independent subsystems of functional differential equations of smaller dimensions

$$\frac{dx^{i}(t)}{dt} = f_{i}(t, x_{t}^{i}), \quad x_{t_{0}}^{i} = \varphi_{0}^{i} \in C,$$
(4)

where $x_i \in R^{n_i}$ and $f_i \in J \times C_{n_i}^{H_i} \to R^{n_i}$. Moreover, we assume $f_i(t,0) = 0$ and for subsystems (2) $f_i(t,0) + g_i(t,0) = 0$ for all $t \in J$ and $i \in I_m$, i.e. the state $x = x^1 = ... = x^m = 0$ is the unique equilibrium state of system (1) and subsystems (2).

For subsystem (2), whose functions $g_i(t, x_t)$, i = 1, 2, ..., m, depend on the matrix of interactions E_t , the problem on practical stability of motion is reduced to the establishment of conditions under which the solution $x(t_0, x_{t_0})$ (t) of system (2) possesses certain qualitative properties for given estimates of initial and subsequent deviations on the infinite interval.

3. Matrix-valued functional.

For system (2) we construct the matrix-valued functional

$$U(t,\varphi) = [v_{ij}(t,\varphi)], \ i, j \in I_m$$
(5)

with the elements satisfying the following conditions.

 H_1 . The elements $v_{ii}(t, \varphi^i) \in C(J \times C_{n_i}^{H_i}, R_+^{m_i})$, $1 \le m_i \le n_i$, $v_{ii}(t, 0) = 0$, are locally Lipschitz in φ^i ;

 H_2 . The elements $v_{ij}(t, \varphi^i, \varphi^j) \in C(J \times C_{n_i}^{H_i} \times C_{n_i}^{H_i}, R^{m_i \times m_j})$, are locally Lipschitz in φ^i and φ^j for all $(i \neq j) \in I_m$.

By means of the real vector $\eta \in R^m_+$, $\eta > 0$, we construct the functional

$$V(t, \varphi, \eta) = \eta^T U(t, \varphi) \eta, \tag{6}$$

which is continuous and definite on the set $J \times C_n^H$ by conditions $H_1 - H_2$. The upper derivative of functional (6) along solutions of system (2) is determined by the formula

$$D^{+}V(t,\,\varphi,\,\eta) = \eta^{T}D^{+}U(t,\,\varphi)\eta,\tag{7}$$

where $D^+U(t,\phi) = \lim_{\delta \to 0^+} \sup \frac{1}{\delta} \{ U(t+\delta, x_{t+\delta}(t,\phi)) - U(t,\phi) \}$. Note that $D^+U(t,\phi)$ is computed element-wise.

4. Definitions of connected stability of system (2).

Taking into account the results of paper [3] we shall cite the definitions of stability notion incorporated in this paper.

Definition 1. The equilibrium state x = 0 of system (1) is called

a) connectedly stable if for every $\varepsilon > 0$ and $t_0 \ge 0$ there exists $\delta = \delta(\varepsilon, t_0)$, such that $||x(t_0, \varphi)(t)|| < \varepsilon$ whenever $[\varphi \in C_n^{\delta}, t \ge t_0]$ for all $E_t \subset \overline{E_t}$;

b) uniformly connectedly stable if in definition (a) the value δ does not depend on t_0 ;

c) asymptotically connectedly stable if it is connectedly stable and for any $t_0 \ge 0$ there exists $\Delta > 0$ such that $||x(t_0, \varphi(t))|| \to 0$, as $t \to \infty$, whenever $\varphi \in C_n^{\Delta}$, for all $E_t \subset \overline{E_t}$;

d) uniformly asymptotically connectedly stable if it is uniformly connectedly stable and there exists some $\eta > 0$ and for every $\gamma > 0$ there exists $\tau > 0$ such that $||x(t_0, \varphi(t))|| < \gamma$, whenever $[\varphi_0 \in C_n^{\delta}, t \ge t_0]$ for all $E_t \subset \overline{E_t}$.

5. Conditions of connected stability of system (2).

Using matrix-valued functional (5) and its derivative (7) and applying the theorems of comparison principle for functional-differential equations (see [1]) we shall set out a series of sufficient conditions for connected stability of the equilibrium state x = 0 of system (1).

Theorem 1. Let system of functional-differential equations (1) be such that

1) there exists the matrix-valued functional $U(t, \varphi) \in C(J \times C_n^H, R^{m \times m})$, U(t, 0) = 0 for all $t \in J$ and $U(t, \varphi)$ is locally Lipschitz in φ for every $t \in J$;

2) there exist $m \times m$ constant matrices $A_1(\eta)$ and $B_1(\eta)$, real vector $\eta \in R^m_+$, $\eta > 0$ and comparison functions $u_{1i}(|\varphi^i(0)|), u_{2i}(||\varphi^i||), i \in I_m$, of Hahn class K so that $u_1^T(|\varphi(0)|) A_1(\eta) u_1(|\varphi(0)|) \le \sum_{i,j=1}^m \eta_i \eta_j u_{ij}(t, \varphi) \le u_2^T(||\varphi||) B_1(\eta) u_2(||\varphi||)$ for all $t \in J$ and $\varphi \in C_n^H$;

3) there exists the comparison function $W \in C(J \times R_+, R)$ such that

$$D^{+}V(t,\,\varphi,\,\eta) \le W(t,V(t,\,\varphi,\,\eta)) \tag{8}$$

for all $(t, \varphi) \in J \times C_n^H$ and all matrices of interaction $E_t \subset \overline{E_t}$. Then the certain type of stability of zero solution to the comparison equation

$$\frac{du}{dt} = W(t, u), \ u(t_0) = u_0 \ge 0$$
(9)

and the restrictions on the matrices $A_1(\eta), B_1(\eta)$ imply the corresponding type of connected stability of the equilibrium state of system (1) with decomposition (2).

Proof. Provided that the matrices $A_1(\eta)$ and $B_1(\eta)$ are positive definite, functional (6) is positive definite and decreasing. Further, we apply Theorem 4.4.3 from [1] and determine certain type of connected stability of system (1).

Corollary 1. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;

2) the matrix $A_1(\eta)$ be positive definite, the matrix $B_1(\eta) \equiv 0$ and the comparison function $W(t, V(t, \varphi, \eta)) \equiv 0$.

Then the equilibrium state x = 0 of system (1) with decomposition (2) is connectedly stable.

Corollary 2. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;

2) the matrices $A_1(\eta)$ and $B_1(\eta)$ be positive definite and the comparison function $W(t, V(t, \varphi, \eta)) \equiv 0$.

Then the equilibrium state x = 0 of system (1) with decomposition (2) is uniformly connectedly stable.

Corollary 3. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;

2) the matrices $A_1(\eta)$ and $B_1(\eta)$ be positive definite;

3) the zero solution of comparison equation (9) be uniformly asymptotically stable.

Then the equilibrium state x = 0 of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

Theorem 2. Let system of functional differential equations (1) be such that 1) conditions (1) and (2) of Theorem 1 are satisfied;

2) there exist a constant $m \times m$ matrix $C_1(\eta), \eta \in \mathbb{R}^m_+, \eta > 0$ and functions $u_{3i}(\|x_t^i\|)$, u_{3i} is of class K for all $i \in I_m$, such that $D^+V(t, \varphi, \eta) \le u_3^T(\|x_t\|) C_1(\eta)u_3(\|x_t\|)$ for any $(t, \varphi) \in J \times C_n^H$ and any matrices of interactions $E_t \subset \overline{E_t}$, where $u_3^T(\|x_t\|) =$ $= (u_{31}(\|x_t^i\|), ..., u_{3m}(\|x_t^m\|));$

3) the matrices $A_1(\eta)$ and $B_1(\eta)$ are positive definite and the matrix $C_1(\eta)$ is negative definite.

Then the equilibrium state x = 0 of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

Theorem 3. Let in system of equations (1) the vector function $f(t, \phi)$ be bounded in ϕ and

1) conditions (1) and (2) of Theorem 1 are satisfied;

2) there exist a constant $m \times m$ matrix $C_2(\eta)$, $\eta \in R^m_+$, $\eta > 0$ and functions $u_{4i}(|x_t^i|)$ of class K for all $i \in I_m$ such that $D^+V(t, \varphi, \eta) \le u_4^T(|x_t|)C_2(\eta)u_4(|x_t|)$ for all $(t,\varphi) \in J \times C_n^H$ and any matrices of interconnections $E_t \subset \overline{E_t}$;

3) the matrices $A_1(\eta)$ and $B_1(\eta)$ are positive definite and the matrix $C_2(\eta)$ is negative definite.

Then the equilibrium state x = 0 of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

6. Matrix-valued function on space product.

For system (4) we construct the matrix-valued function

$$U(t, x, x_t) = [v_{ij}(t, x, x_t)], \ i, j = 1, 2, ..., m ,$$
(10)

with the elements satisfying the following conditions.

 H_3 . The elements $v_{ii} \in C(J \times C_n^{H_i} \times C, R_+)$, $v_{ii}(t, 0, 0) = 0$ are locally Lipschitz in x_i ;

 H_4 . The elements $v_{ij} \in C(J \times C_{n_i}^{H_i} \times C_{n_j}^{H_j} \times C \times C, R)$, $v_{ij}(t, 0, 0, 0) = 0$ are locally Lipschitz in x_i , x_i for all $(i \neq j) \in I_m$.

By means of the real vector $\eta \in R^m_+$, $\eta > 0$, we construct the function

$$V(t, x, x_t, \eta) = \eta^T U(t, x, x_t) \eta, \tag{11}$$

which is definite on the space product $R^n \times C$ and locally Lipschitz in x, providing conditions of assumptions H_3 and H_4 are satisfied. Further we define

$$D^{+}V(t, x, x_{t}, \eta) = \eta^{T} D^{+}U(t, x, x_{t})\eta,$$
(12)

where

$$D^{+}U(t, x, x_{t}) = \lim \left\{ \sup \left[U(t + \theta, x + \theta f(t, x_{t}), x_{t+h}(\cdot)) - U(t, x, x_{t}) \right] \theta^{-1} : \theta \to 0^{+} \right\}.$$
 (13)

Note that when formula (12) is properly applied, $D^+U(t, x, x_t)$ is computed element-wise.

7. Conditions of connected practical stability of system (2).

In view of the results from [1, 4] we shall formulate the following definitions. **Definition 2.** System (2) is called

a) connectedly practically stable, if given estimates of (λ, A) , $0 < \lambda < A$, the condition $\varphi_0 \in C_n^{\lambda}$ implies $|x(t_0, \varphi_0)(t)| < A$ for all $t \ge t_0$ and all $E_t \subset \overline{E_t}$;

b) connectedly asymptotically practically stable, if conditions of definition (a) are satisfied and $\lim_{t \to T} |x(t_0, \varphi_0)(t)| = 0$.

The other definitions of connected practical stability can be formulated in terms of Definition 2.

Theorem 4. Let system of functional differentional equations (1) be such that

1) there exists a matrix-valued function $U \in C(J \times C_n^H \times C, R^{m \times m})$, U(t, 0, 0) = 0 for all $t \in J$ and $U(t, x, x_t)$ is locally Lipschitz in x for $(t, x, x_t) \in J_+ \times S(A) \times C(A)$;

2) there exist a real vector $\eta \in R^+$, $\eta > 0$, constant $m \times m$ matrices $A(\eta)$ and $B(\eta)$ and a comparison function $u_{1i}(|x|), u_{2i}(|x_i(\cdot)|), i = 1, 2, ..., m, u_{1i}, u_{2i} \in K$, such that $u_1^T(|x|)A(\eta)u_1(|x|) \le 1$

$$\leq \sum_{i,j=1}^{m} \eta_i \eta_j v_{ij}(t,x,x_t) \leq u_2^T \left(\left| x_t(\cdot) \right| \right) B(\eta) u_2 \left(\left| x_t(\cdot) \right| \right) \text{ for all } (t,x,x_t) \in J \times S(A) \times C(A)$$

3) there exists a comparison function $W \in C(J \times R_+, R)$ such that $D^+V(t, x, x_t, \eta) \le \le W(t, V(t, x, x_t, \eta))$ for all $(t, x, x_t) \in J \times S(A) \times C(A)$ and all matrices of interactions $E_t \subset \overline{E_t}$;

4) the matrices A and B are positive definite and $\lambda_M(B) a(\lambda) < \lambda_m(A) b(\lambda)$ where $\lambda_m(A)$ is the minimal and $\lambda_M(B)$ is the maximal eigenvalues of the matrices A and B respectively and a, b are of class K.

Then the certain type of practical stability of zero solution to the equation

$$\frac{du}{dt} = W(t, u), u(t_0) = u_0 \ge 0$$
(14)

implies the certain type of connected practical stability of system (2).

Proof. Note first that under conditions (1) and (2) of Theorem 4 for the function $V(t, x, x_t)$ determined by (11) the estimate

$$\lambda_m(A) \ b(|x|) < V(t, x, x_t) < \lambda_M(B) \ a(|x_t(\cdot)|)$$
(15)

is true. This follows from the fact that for function $u_{1i}, u_{2i} \in K$, i = 1, 2, ..., m, there exist functions $a(|x_t(\cdot)|)$ and b(|x|) of class K such that $b(|x|) \le u_1^T(|x|)u_1(|x|)$ and $a(|x_t(\cdot)|) \ge u_2^T(|x_t(\cdot)|)u_2(|x_t(\cdot)|)$. Further we have from condition (3) of Theorem 4 for the function $m(t) = V(t, x(t_0, x_{t_0})(t), x(t_0, x_{t_0}))$ $D^+m(t) \le W(t, m(t))$ which together with the condition $V(t, x_0, x_{t_0}) \le u_0$ yield the estimate

$$V(t, x(t_0, x_{t_0})(t), x_t(t_0, x_{t_0})) \le r(t, t_0, u_0), \ t \ge t_0$$
(16)

according to the comparison principle (see[1] Theorem 4.1.1). Let the zero solution of equation (14) be practically stable. Given $(\lambda_M(B) a(\lambda), \lambda_m(A) b(A))$, we have

$$u(t, t_0, u_0) < \lambda_m(A) b(A), \qquad (17)$$

provided that

$$u_0 < \lambda_M(B) \ a(\lambda) \ . \tag{18}$$

143

$$|x_0| < \lambda \text{ and } |x_{t_0}(\cdot)| < \lambda$$
 (19)

We shall demonstrate that $|x(t_0, x_{t_0})(t)| < A$ for all $t \ge t_0$.

Assume that this is not true and that there exists $t_1 > t_0$ such that for the solution $x(t_0, x_{t_0})(t)$ with initial condition (19) the correlations $|x(t_0, x_{t_0})(t_1)| = A$ and $|x(t_0, x_{t_0})(t)| \le A$ hold for $t_0 \le t \le t_1$.

Estimate (15) yields

$$V(t_1, x(t_0, x_{t_0})(t_1), x_{t_1}(t_0, x_{t_0})) \ge \lambda_m(A) \ b(A)$$
(20)

Let $u_0 = V(t_0, x(t_0, x_{t_0})(t_0), x_{t_0}(t_0, x_{t_0}))$. Then for all $t_0 \le t \le t_1$, estimate (16) is valid, where $r(t, t_0, u_0)$ is the maximal solution of equation (14). Since $u_0 < \lambda_M(B) u_2^T \times \times (|x_{t_0}(\cdot)|) u_2(|x_{t_0}(\cdot)|) < \lambda_M(B)a(\lambda)$, we find by the comparison principle and inequalities (15).

$$\lambda_{m}(A)b(A) \leq \lambda_{m}(A)u_{1}^{T}(|x_{0}|)u_{1}(|x_{0}|) \leq$$

$$\leq V(t_{1}, x(t_{0}, x_{t_{0}})(t_{1}), x_{t_{1}}(t_{0}, x_{t_{0}})) \leq r(t_{1}, t_{0}, u_{0}) < \lambda_{m}(A)b(A).$$
(21)

T 1 1

The obtained contradiction shows that $t_1 \notin J$ and therefore system (2) is connectedly practically stable.

Р Е З Ю М Е. Методом об'єднання матрично-значних функціоналів Ляпунова і теореми порівняння досліджено зв'язну стійкість за Ляпуновим і практичну стійкість великих систем з запізненням. Запропоновано ряд нових достатніх умов. Результати мають не лише теоретичний сенс, але також практичне значення.

- Lakshimikantham V., Leela S., Martynyuk A.A. Practical Stability of Nonlinear Systems. Singapore: World Scientific, 1990. – 215 p.
- Lakshmikantham V., Leela S., Sivasundaram S. Lyapunov functions on product spaces and theory of delay differential equation // J. Math. Anal. and Appl. – 1991. – 154 – P. 391 – 402.
- Martynyuk A.A., Sun Z.Q. A matrix-valued Lyapunov functional and stability of systems with delay // Dokl. Akad. Nauk. – 1998. – 359, N 2. –P.165 – 167.
- Martynyuk A.A., Sun Z.Q. On Connected Practical Stability of Motion of Systems with Delay// Int. Appl. Mech. – 1999. – 35, N 1. – P. 87 – 92.
- Martynyuk A.A., Sun Z.Q. Stability analysis for nonlinear system with small parameter. Beijin: Science Publishing House, 2006. – P. 212 – 214.
- Martynyuk. A.A., Martynyuk-Chernienko Yu.A. Uncertain Dynamical Systems: Stability and Motion Control. – Boca – Raton: CRC Press, 2012. – 237 p.

From the Editorial Board: The article corresponds completely to submitted manuscript.

Поступила 10.09.2012

Утверждена в печать 26.06.2013

Let