J.F.Sun, X.L.Wang

CONNECTED STABILITY ANALYSIS OF DELAY SYSTEMS VIA THE MATRIX-VALUED LYAPUNOV FUNCTION

Harbin Institute of Technology (Weihai), Shangdong province 2, Wenhua Xi Road Weihai, China; e-mail: sunif_70@126.com

Abstract

By the method of combining the matrix-valued Lyapunov functional and comparison theorem, connected Lyapunov stability and practical stability of large scale delay system are studied deeply. A series of new sufficient conditions are proposed. These results are not only of theoretical but also of practical value.

Key words: delay system, connected Lyapunov stability, practical stability.

1. Designations.

Let $C=C\left([-\tau, 0], R^{n}\right), J=\left[t_{0}, \infty\right), t_{0} \geq 0$. For any $\varphi \in C$ the norm $\|\varphi\|=\sup _{-\tau \leq s \leq 0}|\varphi(s)|$ is used. For $x \in R^{n},|x|=\max \left|x_{r}\right|, r=1,2, \ldots, n$. If $x \in C\left(\left[t_{0}-\tau, \infty\right), R^{n}\right)$, then $x_{t} \in C$ is determined as $x_{t}(s)=x(t+s),-\tau \leq s \leq 0$. We designate $C_{n}^{H}=\{\varphi \in C:\|\varphi\|<H\}$, where $H>0$ or $H=\infty$.

2. Description of the system and decomposition.

Consider the large scale system modeled by functional differential equation

$$
\begin{equation*}
\frac{d x}{d t}=f\left(t, x_{t}\right), x_{t_{0}}=\varphi_{0} \in C_{n}^{H}, \tag{1}
\end{equation*}
$$

where $f: J \times C_{n}^{H} \rightarrow R^{n}$. Provided that the vector-function f maps the bounded sets into the bounded sets, for each $t_{0} \in J$ and $\varphi_{0} \in C_{n}^{H}$ there exists a unique solution $x\left(t_{0}, x_{t_{0}}\right)(t)$ determined on some interval $\left[t_{0}, t+\alpha\right], \alpha>0$, and if $H_{1}<H$ is such that $\mid x\left(t_{0}, \varphi_{0}(t) \mid \leq H_{1}\right.$, then $\alpha=\infty$.

The system (1) is decomposed into m interconnected subsystems

$$
\begin{equation*}
\frac{d x^{i}(t)}{d t}=f_{i}\left(t, x_{t}^{i}\right)+g_{i}\left(t, x_{t}^{1}, \cdots, x_{t}^{m}\right), \tag{2}
\end{equation*}
$$

where $i \in I_{m} \underline{\underline{\Delta}}\{1,2, \ldots, m\}, \quad f_{i} \in\left(J \times C_{n_{i}}^{H_{i}}, R^{n_{i}}\right), \quad g_{i} \in C\left(J \times C_{n}^{H}, R^{n_{i}}\right)$ and $\sum_{i} n_{i}=n$. We assume that the functions $g_{i}\left(t, x_{t}\right)$ depend on $m \times m$-matrix of interconnections $E_{t}=\left[e_{t}^{i j}\right]$,

$$
\begin{equation*}
g_{i}\left(t, x_{t}\right)=g_{i}\left(t, e_{t}^{i 1} x_{t}^{1}, e_{t}^{i 2} x_{t}^{2}, \cdots, e_{t}^{i m} x_{t}^{m}\right), \tag{3}
\end{equation*}
$$

when $i \in I_{m}$, where the elements $e_{t}^{i j} \in C([-\tau, 0],[0,1])$ depend in general case on the delay $e_{t}^{i j} x_{t}=e^{i j}(t+\theta) x^{i}(t+\theta), \theta \in[-\tau, 0]$.

We designate by $\overline{E_{t}}$ the fundamental matrix of interactions with the elements $\bar{e}_{t}^{i j}=1$ if x_{j} is contained in $g_{i}\left(t, x_{t}\right) ; \bar{e}_{t}^{i j}=0$ if x_{j} is not contained in $g_{i}\left(t, x_{t}\right)$.

For $E_{t}=0$ we get from system (2) the independent subsystems of functional differential equations of smaller dimensions

$$
\begin{equation*}
\frac{d x^{i}(t)}{d t}=f_{i}\left(t, x_{t}^{i}\right), \quad x_{t_{0}}^{i}=\varphi_{0}^{i} \in C \tag{4}
\end{equation*}
$$

where $x_{i} \in R^{n_{i}}$ and $f_{i} \in J \times C_{n_{i}}^{H_{i}} \rightarrow R^{n_{i}}$. Moreover, we assume $f_{i}(t, 0)=0$ and for subsystems (2) $f_{i}(t, 0)+g_{i}(t, 0)=0$ for all $t \in J$ and $i \in I_{m}$, i.e. the state $x=x^{1}=\ldots=x^{m}=0$ is the unique equilibrium state of system (1) and subsystems (2).

For subsystem (2), whose functions $g_{i}\left(t, x_{t}\right), i=1,2, \ldots, m$, depend on the matrix of interactions E_{t}, the problem on practical stability of motion is reduced to the establishment of conditions under which the solution $x\left(t_{0}, x_{t_{0}}\right)(t)$ of system (2) possesses certain qualitative properties for given estimates of initial and subsequent deviations on the infinite interval.

3. Matrix-valued functional.

For system (2) we construct the matrix-valued functional

$$
\begin{equation*}
U(t, \varphi)=\left[v_{i j}(t, \varphi)\right], i, j \in I_{m} \tag{5}
\end{equation*}
$$

with the elements satisfying the following conditions.
H_{1}. The elements $v_{i i}\left(t, \varphi^{i}\right) \in C\left(J \times C_{n_{i}}^{H_{i}}, R_{+}^{m_{i}}\right), \quad 1 \leq m_{i} \leq n_{i}, \quad v_{i i}(t, 0)=0$, are locally Lipschitz in φ^{i};
H_{2}.The elements $v_{i j}\left(t, \varphi^{i}, \varphi^{j}\right) \in C\left(J \times C_{n_{i}}^{H_{l}} \times C_{n_{i}}^{H_{I}}, R^{m_{i} \times m_{j}}\right)$, are locally Lipschitz in φ^{i} and φ^{j} for all $(i \neq j) \in I_{m}$.

By means of the real vector $\eta \in R_{+}^{m}, \eta>0$, we construct the functional

$$
\begin{equation*}
V(t, \varphi, \eta)=\eta^{T} U(t, \varphi) \eta \tag{6}
\end{equation*}
$$

which is continuous and definite on the set $J \times C_{n}^{H}$ by conditions $H_{1}-H_{2}$. The upper derivative of functional (6) along solutions of system (2) is determined by the formula

$$
\begin{equation*}
D^{+} V(t, \varphi, \eta)=\eta^{T} D^{+} U(t, \varphi) \eta, \tag{7}
\end{equation*}
$$

where $D^{+} U(t, \phi)=\lim _{\delta \rightarrow 0^{+}} \sup \frac{1}{\delta}\left\{U\left(t+\delta, x_{t+\delta}(t, \varphi)\right)-U(t, \varphi)\right\}$. Note that $D^{+} U(t, \varphi)$ is computed element-wise.

4. Definitions of connected stability of system (2).

Taking into account the results of paper [3] we shall cite the definitions of stability notion incorporated in this paper.
Definition 1. The equilibrium state $x=0$ of system (1) is called
a) connectedly stable if for every $\varepsilon>0$ and $t_{0} \geq 0$ there exists $\delta=\delta\left(\varepsilon, t_{0}\right)$, such that $\left\|x\left(t_{0}, \varphi\right)(t)\right\|<\varepsilon$ whenever $\left[\varphi \in C_{n}^{\delta}, t \geq t_{0}\right]$ for all $E_{t} \subset \overline{E_{t}}$;
b) uniformly connectedly stable if in definition (a) the value δ does not depend on t_{0};
c) asymptotically connectedly stable if it is connectedly stable and for any $t_{0} \geq 0$ there exists $\Delta>0$ such that $\| x\left(t_{0}, \varphi(t) \| \rightarrow 0\right.$, as $t \rightarrow \infty$, whenever $\varphi \in C_{n}^{\Delta}$, for all $E_{t} \subset \overline{E_{t}}$;
d) uniformly asymptotically connectedly stable if it is uniformly connectedly stable and there exists some $\eta>0$ and for every $\gamma>0$ there exists $\tau>0$ such that $\| x\left(t_{0}, \varphi(t) \|<\gamma\right.$, whenever $\left[\varphi_{0} \in C_{n}^{\delta}, t \geq t_{0}\right.$] for all $E_{t} \subset \overline{E_{t}}$.

5. Conditions of connected stability of system (2).

Using matrix-valued functional (5) and its derivative (7) and applying the theorems of comparison principle for functional-differential equations (see [1]) we shall set out a series of sufficient conditions for connected stability of the equilibrium state $x=0$ of system (1).

Theorem 1. Let system of functional-differential equations (1) be such that

1) there exists the matrix-valued functional $U(t, \varphi) \in C\left(J \times C_{n}^{H}, R^{m \times m}\right), U(t, 0)=0$ for all $t \in J$ and $U(t, \varphi)$ is locally Lipschitz in φ for every $t \in J$;
2) there exist $m \times m$ constant matrices $A_{1}(\eta)$ and $B_{1}(\eta)$, real vector $\eta \in R_{+}^{m}, \eta>0$ and comparison functions $u_{1 i}\left(\left|\varphi^{i}(0)\right|\right), u_{2 i}\left(\left\|\varphi^{i}\right\|\right), i \in I_{m}$, of Hahn class K so that $u_{1}^{T}(|\varphi(0)|) A_{1}(\eta) u_{1}(|\varphi(0)|) \leq \sum_{i, j=1}^{m} \eta_{i} \eta_{j} u_{i j}(t, \varphi) \leq u_{2}^{T}(\|\varphi\|) B_{1}(\eta) u_{2}(\|\varphi\|)$ for all $t \in J$ and $\varphi \in C_{n}^{H} ;$
3) there exists the comparison function $W \in C\left(J \times R_{+}, R\right)$ such that

$$
\begin{equation*}
D^{+} V(t, \varphi, \eta) \leq W(t, V(t, \varphi, \eta)) \tag{8}
\end{equation*}
$$

for all $(t, \varphi) \in J \times C_{n}^{H}$ and all matrices of interaction $E_{t} \subset \overline{E_{t}}$. Then the certain type of stability of zero solution to the comparison equation

$$
\begin{equation*}
\frac{d u}{d t}=W(t, u), u\left(t_{0}\right)=u_{0} \geq 0 \tag{9}
\end{equation*}
$$

and the restrictions on the matrices $A_{1}(\eta), B_{1}(\eta)$ imply the corresponding type of connected stability of the equilibrium state of system (1) with decomposition (2).

Proof. Provided that the matrices $A_{1}(\eta)$ and $B_{1}(\eta)$ are positive definite, functional (6) is positive definite and decreasing. Further, we apply Theorem 4.4.3 from [1] and determine certain type of connected stability of system (1).

Corollary 1. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;
2) the matrix $A_{1}(\eta)$ be positive definite, the matrix $B_{1}(\eta) \equiv 0$ and the comparison function $W(t, V(t, \varphi, \eta)) \equiv 0$.

Then the equilibrium state $x=0$ of system (1) with decomposition (2) is connectedly stable.

Corollary 2. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;
2) the matrices $A_{1}(\eta)$ and $B_{1}(\eta)$ be positive definite and the comparison function $W(t, V(t, \varphi, \eta)) \equiv 0$.

Then the equilibrium state $x=0$ of system (1) with decomposition (2) is uniformly connectedly stable.

Corollary 3. Let

1) conditions (1) and (2) of Theorem 1 be satisfied;
2) the matrices $A_{1}(\eta)$ and $B_{1}(\eta)$ be positive definite;
3) the zero solution of comparison equation (9) be uniformly asymptotically stable.

Then the equilibrium state $x=0$ of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

Theorem 2. Let system of functional differential equations (1) be such that

1) conditions (1) and (2) of Theorem 1 are satisfied;
2) there exist a constant $m \times m$ matrix $C_{1}(\eta), \eta \in R_{+}^{m}, \eta>0$ and functions $u_{3 i}\left(\left\|x_{t}^{i}\right\|\right)$, $u_{3 i}$ is of class K for all $i \in I_{m}$, such that $D^{+} V(t, \varphi, \eta) \leq u_{3}^{T}\left(\left\|x_{t}\right\|\right) C_{1}(\eta) u_{3}\left(\left\|x_{t}\right\|\right)$ for any $(t, \varphi) \in J \times C_{n}^{H} \quad$ and \quad any matrices of interactions $\quad E_{t} \subset \overline{E_{t}}$, where $u_{3}^{T}\left(\left\|x_{t}\right\|\right)=$ $=\left(u_{31}\left(\left\|x_{t}^{l}\right\|\right), \ldots, u_{3 m}\left(\left\|x_{t}^{m}\right\|\right)\right)$;
3) the matrices $A_{1}(\eta)$ and $B_{1}(\eta)$ are positive definite and the matrix $C_{1}(\eta)$ is negative definite.

Then the equilibrium state $x=0$ of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

Theorem 3. Let in system of equations (1) the vector function $f(t, \phi)$ be bounded in ϕ and

1) conditions (1) and (2) of Theorem 1 are satisfied;
2) there exist a constant $m \times m$ matrix $C_{2}(\eta), \eta \in R_{+}^{m}, \eta>0$ and functions $u_{4 i}\left(\left|x_{t}^{i}\right|\right)$ of class K for all $i \in I_{m}$ such that $D^{+} V(t, \varphi, \eta) \leq u_{4}^{T}\left(\left|x_{t}\right|\right) C_{2}(\eta) u_{4}\left(\left|x_{t}\right|\right)$ for all $(t, \varphi) \in J \times C_{n}^{H}$ and any matrices of interconnections $E_{t} \subset \overline{E_{t}}$;
3) the matrices $A_{1}(\eta)$ and $B_{1}(\eta)$ are positive definite and the matrix $C_{2}(\eta)$ is negative definite.

Then the equilibrium state $x=0$ of system (1) with decomposition (2) is uniformly asymptotically connectedly stable.

6. Matrix-valued function on space product.

For system (4) we construct the matrix-valued function

$$
\begin{equation*}
U\left(t, x, x_{t}\right)=\left[v_{i j}\left(t, x, x_{t}\right)\right], i, j=1,2, \ldots, m, \tag{10}
\end{equation*}
$$

with the elements satisfying the following conditions.
H_{3}. The elements $v_{i i} \in C\left(J \times C_{n_{i}}^{H_{i}} \times C, R_{+}\right), v_{i i}(t, 0,0)=0$ are locally Lipschitz in $x_{i} ;$
H_{4}. The elements $v_{i j} \in C\left(J \times C_{n_{i}}^{H_{i}} \times C_{n_{j}}^{H_{j}} \times C \times C, R\right), \quad v_{i j}(t, 0,0,0)=0 \quad$ are locally Lipschitz in x_{i}, x_{j} for all $(i \neq j) \in I_{m}$.

By means of the real vector $\eta \in R_{+}^{m}, \eta>0$, we construct the function

$$
\begin{equation*}
V\left(t, x, x_{t}, \eta\right)=\eta^{T} U\left(t, x, x_{t}\right) \eta \tag{11}
\end{equation*}
$$

which is definite on the space product $R^{n} \times C$ and locally Lipschitz in x, providing conditions of assumptions H_{3} and H_{4} are satisfied. Further we define

$$
\begin{equation*}
D^{+} V\left(t, x, x_{t}, \eta\right)=\eta^{T} D^{+} U\left(t, x, x_{t}\right) \eta \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
D^{+} U\left(t, x, x_{t}\right)=\lim \left\{\sup \left[U\left(t+\theta, x+\theta f\left(t, x_{t}\right), x_{t+h}(\cdot)\right)-U\left(t, x, x_{t}\right)\right] \theta^{-1}: \theta \rightarrow 0^{+}\right\} . \tag{13}
\end{equation*}
$$

Note that when formula (12) is properly applied, $D^{+} U\left(t, x, x_{t}\right)$ is computed element-wise.

7. Conditions of connected practical stability of system (2).

In view of the results from $[1,4]$ we shall formulate the following definitions.
Definition 2. System (2) is called
a) connectedly practically stable, if given estimates of $(\lambda, A), 0<\lambda<A$, the condition $\varphi_{0} \in C_{n}^{\lambda}$ implies $\left|x\left(t_{0}, \varphi_{0}\right)(t)\right|<A$ for all $t \geq t_{0}$ and all $E_{t} \subset \overline{E_{t}}$;
b) connectedly asymptotically practically stable, if conditions of definition (a) are satisfied and $\lim _{t \rightarrow \infty}\left|x\left(t_{0}, \varphi_{0}\right)(t)\right|=0$.

The other definitions of connected practical stability can be formulated in terms of Definition 2.

Theorem 4. Let system of functional differentional equations (1) be such that

1) there exists a matrix-valued function $U \in C\left(J \times C_{n}^{H} \times C, R^{m \times m}\right), U(t, 0,0)=0$ for all $t \in J$ and $U\left(t, x, x_{t}\right)$ is locally Lipschitz in x for $\left(t, x, x_{t}\right) \in J_{+} \times S(A) \times C(A)$;
2) there exist a real vector $\eta \in R^{+}, \eta>0$, constant $m \times m$ matrices $A(\eta)$ and $B(\eta)$ and a comparison function $u_{1 i}(|x|), u_{2 i}\left(\left|x_{t}(\cdot)\right|\right), i=1,2, \ldots, m, u_{1 i}, u_{2 i} \in K$, such that $u_{1}^{T}(|x|) A(\eta) u_{1}(|x|) \leq$ $\leq \sum_{i, j=1}^{m} \eta_{i} \eta_{j} v_{i j}\left(t, x, x_{t}\right) \leq u_{2}^{T}\left(\left|x_{t}(\cdot)\right|\right) B(\eta) u_{2}\left(\left|x_{t}(\cdot)\right|\right)$ for all $\left(t, x, x_{t}\right) \in J \times S(A) \times C(A) ;$
3) there exists a comparison function $W \in C\left(J \times R_{+}, R\right)$ such that $D^{+} V\left(t, x, x_{t}, \eta\right) \leq$ $\leq W\left(t, V\left(t, x, x_{t}, \eta\right)\right)$ for all $\left(t, x, x_{t}\right) \in J \times S(A) \times C(A)$ and all matrices of interactions $E_{t} \subset \overline{E_{t}} ;$
4) the matrices A and B are positive definite and $\lambda_{M}(B) a(\lambda)<\lambda_{m}(A) b(\lambda)$ where $\lambda_{m}(A)$ is the minimal and $\lambda_{M}(B)$ is the maximal eigenvalues of the matrices A and B respectively and a, b are of class K.

Then the certain type of practical stability of zero solution to the equation

$$
\begin{equation*}
\frac{d u}{d t}=W(t, u), u\left(t_{0}\right)=u_{0} \geq 0 \tag{14}
\end{equation*}
$$

implies the certain type of connected practical stability of system (2).
Proof. Note first that under conditions (1) and (2) of Theorem 4 for the function $V\left(t, x, x_{t}\right)$ determined by (11) the estimate

$$
\begin{equation*}
\lambda_{m}(A) b(|x|)<V\left(t, x, x_{t}\right)<\lambda_{M}(B) a\left(\left|x_{t}(\cdot)\right|\right) \tag{15}
\end{equation*}
$$

is true. This follows from the fact that for function $u_{1 i}, u_{2 i} \in K, i=1,2, \ldots, m$, there exist functions $a\left(\left|x_{t}(\cdot)\right|\right)$ and $b(|x|)$ of class K such that $b(|x|) \leq u_{1}^{T}(|x|) u_{1}(|x|)$ and $a\left(\left|x_{t}(\cdot)\right|\right) \geq u_{2}^{T}\left(\left|x_{t}(\cdot)\right|\right) u_{2}\left(\left|x_{t}(\cdot)\right|\right)$. Further we have from condition (3) of Theorem 4 for the function $m(t)=V\left(t, x\left(t_{0}, x_{t_{0}}\right)(t), x\left(t_{0}, x_{t_{0}}\right)\right) \quad D^{+} m(t) \leq W(t, m(t))$ which together with the condition $V\left(t, x_{0}, x_{t_{0}}\right) \leq u_{0}$ yield the estimate

$$
\begin{equation*}
V\left(t, x\left(t_{0}, x_{t_{0}}\right)(t), x_{t}\left(t_{0}, x_{t_{0}}\right)\right) \leq r\left(t, t_{0}, u_{0}\right), t \geq t_{0} \tag{16}
\end{equation*}
$$

according to the comparison principle (see[1] Theorem 4.1.1). Let the zero solution of equation (14) be practically stable. Given $\left(\lambda_{M}(B) a(\lambda), \lambda_{m}(A) b(A)\right)$, we have

$$
\begin{equation*}
u\left(t, t_{0}, u_{0}\right)<\lambda_{m}(A) b(A), \tag{17}
\end{equation*}
$$

provided that

$$
\begin{equation*}
u_{0}<\lambda_{M}(B) a(\lambda) \tag{18}
\end{equation*}
$$

Let

$$
\begin{equation*}
\left|x_{0}\right|<\lambda \text { and }\left|x_{t_{0}}(\cdot)\right|<\lambda . \tag{19}
\end{equation*}
$$

We shall demonstrate that $\left|x\left(t_{0}, x_{t_{0}}\right)(t)\right|<A$ for all $t \geq t_{0}$.
Assume that this is not true and that there exists $t_{1}>t_{0}$ such that for the solution $x\left(t_{0}, x_{t_{0}}\right)(t)$ with initial condition (19) the correlations $\left|x\left(t_{0}, x_{t_{0}}\right)\left(t_{1}\right)\right|=A$ and $\left|x\left(t_{0}, x_{t_{0}}\right)(t)\right| \leq A$ hold for $t_{0} \leq t \leq t_{1}$.

Estimate (15) yields

$$
\begin{equation*}
V\left(t_{1}, x\left(t_{0}, x_{t_{0}}\right)\left(t_{1}\right), x_{t_{1}}\left(t_{0}, x_{t_{0}}\right)\right) \geq \lambda_{m}(A) b(A) \tag{20}
\end{equation*}
$$

Let $u_{0}=V\left(t_{0}, x\left(t_{0}, x_{t_{0}}\right)\left(t_{0}\right), x_{t_{0}}\left(t_{0}, x_{t_{0}}\right)\right)$. Then for all $t_{0} \leq t \leq t_{1}$, estimate (16) is valid, where $r\left(t, t_{0}, u_{0}\right)$ is the maximal solution of equation (14). Since $u_{0}<\lambda_{M}(B) u_{2}^{T} \times$ $\times\left(\left|x_{t_{0}}(\cdot)\right|\right) u_{2}\left(\left|x_{t_{0}}(\cdot)\right|\right)<\lambda_{M}(B) a(\lambda)$, we find by the comparison principle and inequalities (15).

$$
\begin{gather*}
\lambda_{m}(A) b(A) \leq \lambda_{m}(A) u_{1}^{T}\left(\left|x_{0}\right|\right) u_{1}\left(\left|x_{0}\right|\right) \leq \\
\leq V\left(t_{1}, x\left(t_{0}, x_{t_{0}}\right)\left(t_{1}\right), x_{t_{1}}\left(t_{0}, x_{t_{0}}\right)\right) \leq r\left(t_{1}, t_{0}, u_{0}\right)<\lambda_{m}(A) b(A) . \tag{21}
\end{gather*}
$$

The obtained contradiction shows that $t_{1} \notin J$ and therefore system (2) is connectedly practically stable.

Р ЕЗ ЮМЕ. Методом об‘єднання матрично-значних функціоналів Ляпунова і теореми порівняння досліджено зв‘язну стійкість за Ляпуновим і практичну стійкість великих систем з запізненням. Запропоновано ряд нових достатніх умов. Результати мають не лише теоретичний сенс, але також практичне значення.

1. Lakshimikantham V., Leela S., Martynyuk A.A. Practical Stability of Nonlinear Systems. - Singapore: World Scientific, 1990. - 215 p.
2. Lakshmikantham V.,Leela S., Sivasundaram S. Lyapunov functions on product spaces and theory of delay differential equation // J. Math. Anal. and Appl. - 1991. - 154 - P. 391-402.
3. Martynyuk A.A., Sun Z.Q. A matrix-valued Lyapunov functional and stability of systems with delay // Dokl. Akad. Nauk. - 1998. - 359, N 2. -P. 165 - 167.
4. Martynyuk A.A., Sun Z.Q. On Connected Practical Stability of Motion of Systems with Delay// Int. Appl. Mech. - 1999. - 35, N 1. - P. 87 - 92.
5. .Martynyuk A.A., Sun Z.Q. Stability analysis for nonlinear system with small parameter. - Beijin: Science Publishing House, 2006. - P. 212 - 214.
6. Martynyuk. A.A., Martynyuk-Chernienko Yu.A. Uncertain Dynamical Systems: Stability and Motion Control. - Boca - Raton: CRC Press, 2012. - 237 p.

From the Editorial Board: The article corresponds completely to submitted manuscript.

