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Abstract. By the method of combining the matrix-valued Lyapunov functional and 
comparison theorem, connected Lyapunov stability and practical stability of large scale de-
lay system are studied deeply. A series of new sufficient conditions are proposed. These 
results are not only of theoretical but also of practical value. 
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1. Designations. 

Let 0 0([ , 0], ), [ , ), 0nC C R J t t     . For any C  the norm 
0

sup ( )
s

s


 
  

  is 

used. For nx R , max rx x , 1, 2,...,r n . If 0([ , ), )nx C t R   , then tx C is de-

termined as ( ) ( )tx s x t s  , 0s   . We designate  :H
nC C H    , where 

0H   or H   . 

2. Description of the system and decomposition. 
Consider the large scale system modeled by functional differential equation 

0 0( , ), ,H
t t n

dx
f t x x C

dt
                                                  (1) 

where : H n
nf J C R  . Provided that the vector-function f  maps the bounded sets into 

the bounded sets, for each 0t J  and 0
H
nC   there exists a unique solution 

00( , )( )tx t x t determined on some interval 0[ , ]t t  , 0  , and if 1H H  is such that 

0 0 1( , ( )x t t H  , then    . 

The system (1) is decomposed into m  interconnected subsystems 

1( )
( , ) ( , , , ),

i
i m

i t i t t

dx t
f t x g t x x

dt
                                            (2) 

where  1, 2,...,mi I m  , ( , )i i

i

H n
i nf J C R  , ( , )inH

i ng C J C R   and i
i

n n . We 

assume that the functions ( , )i tg t x depend on m m -matrix of interconnections [ ]ij
t tE e , 

1 1 2 2( , ) ( , , , , ),i i im m
i t i t t t t t tg t x g t e x e x e x                                           (3) 
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when mi I , where the elements ([ ,0],[0,1])ij
te C    depend in general case on the delay 

( ) ( ), [ ,0].ij ij i
t te x e t x t         

We designate by tE  the fundamental matrix of interactions with the elements 1
ij

te   if 

jx  is contained in ( , )i tg t x ; 0
ij

te   if jx  is not contained in ( , )i tg t x . 

For 0tE   we get from system (2) the independent subsystems of functional differen-

tial equations of smaller dimensions 

0 0

( )
( , ), ,

i
i i i

i t t

dx t
f t x x C

dt
                                                    (4) 

where in
ix R and i i

i

H n
i nf J C R   . Moreover, we assume ( ,0) 0if t   and for subsys-

tems (2) ( ,0) ( ,0) 0i if t g t   for all t J and mi I , i.e. the state 1 ... 0mx x x     is the 

unique equilibrium state of system (1) and subsystems (2). 
For subsystem (2), whose functions ( , ), 1, 2,...,i tg t x i m , depend on the matrix of in-

teractions tE , the problem on practical stability of motion is reduced to the establishment of 

conditions under which the solution
00( , ) ( )tx t x t of system (2) possesses certain qualitative 

properties for given estimates of initial and subsequent deviations on the infinite interval. 

3. Matrix-valued functional. 
For system (2) we construct the matrix-valued functional 

( , ) [ ( , )], ,ij mU t t i j I                                                (5) 

with the elements satisfying the following conditions. 

1H . The elements ( , ) ( , )i i

i

H mi
ii nt C J C R    , 1 i im n  , ( ,0) 0,ii t   are locally 

Lipschitz in i ; 

2H .The elements ( , , ) ( , ),i jI I

i i

m mH Hi j
ij n nt C J C C R       are locally Lipschitz in i  

and j  for all ( ) mi j I  . 

By means of the real vector , 0mR   , we construct the functional  

( , , ) ( , ) ,TV t U t                                                      (6) 

which is continuous and definite on the set H
nJ C  by conditions 1 2H H . The upper de-

rivative of functional (6) along solutions of system (2) is determined by the formula 

( , , ) ( , ) ,TD V t D U t                                                  (7) 

where ( , )D U t    
0

1
lim sup ( , ( , )) ( , ) .tU t x t U t


  
 


   Note that ( , )D U t   is com-

puted element-wise. 

4. Definitions of connected stability of system (2). 
Taking into account the results of paper [3] we shall cite the definitions of stability no-

tion incorporated in this paper. 
Definition 1. The equilibrium state 0x   of system (1) is called 

a) connectedly stable if for every 0   and 0 0t   there exists 0( , ),t    such that 

0( , )( )x t t   whenever 0[ , ]nC t t    for all t tE E ; 

b) uniformly connectedly stable if in definition (a) the value   does not depend on 0t ; 
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c) asymptotically connectedly stable if it is connectedly stable and for any 0 0t   there 

exists 0  such that 0( , ( ) 0,x t t   as ,t   whenever ,nC  for all t tE E ; 

d) uniformly asymptotically connectedly stable if it is uniformly connectedly stable and 
there exists some 0   and for every 0   there exists 0   such that 0( , ( ) ,x t t   

whenever 0 0[ , ]nC t t   for all t tE E . 

5. Conditions of connected stability of system (2). 
Using matrix-valued functional (5) and its derivative (7) and applying the theorems of 

comparison principle for functional-differential equations (see [1]) we shall set out a series 
of sufficient conditions for connected stability of the equilibrium state 0x   of system (1). 

Theorem 1. Let system of functional-differential equations (1) be such that 

1) there exists the matrix-valued functional ( , ) ( , )H m m
nU t C J C R   , ( ,0) 0U t   for 

all t J  and ( , )U t   is locally Lipschitz in   for every t J ; 

2) there exist m m  constant matrices 1( )A   and 1( )B  , real vector mR  , 0   

and comparison functions 1 2( (0) ), ( ),i i
i i mu u i I   , of Hahn class K  so that 

1 1 1( (0) ) ( ) ( (0) )Tu A u  
, 1

( , )
m

i j ij
i j

u t 


  2 1 2( ) ( ) ( )Tu B u    for all t J  and H
nC  ; 

3) there exists the comparison function ( , )W C J R R   such that 

( , , ) ( , ( , , ))D V t W t V t                                                (8) 

for all ( , ) H
nt J C    and all matrices of interaction t tE E . Then the certain type of sta-

bility of zero solution to the comparison equation 

0 0( , ), ( ) 0
du

W t u u t u
dt

                                                (9) 

and the restrictions on the matrices 1 1( ), ( )A B   imply the corresponding type of connected 

stability of the equilibrium state of system (1) with decomposition (2). 
Proof. Provided that the matrices 1( )A   and 1( )B   are positive definite, functional (6) 

is positive definite and decreasing. Further, we apply Theorem 4.4.3 from [1] and determine 
certain type of connected stability of system (1). 

Corollary 1. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrix 1( )A   be positive definite, the matrix 1( ) 0B    and the comparison func-

tion ( , ( , , )) 0W t V t    . 

Then the equilibrium state 0x   of system (1) with decomposition (2) is connectedly 
stable. 

Corollary 2. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrices 1( )A   and 1( )B   be positive definite and the comparison function 

( , ( , , )) 0W t V t    . 

Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly 
connectedly stable. 

Corollary 3. Let 
1) conditions (1) and (2) of Theorem 1 be satisfied; 
2) the matrices 1( )A   and 1( )B   be positive definite; 

3) the zero solution of comparison equation (9) be uniformly asymptotically stable. 
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Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-
ymptotically connectedly stable. 

 
Theorem 2. Let system of functional differential equations (1) be such that  
1) conditions (1) and (2) of Theorem 1 are satisfied; 

2) there exist a constant m m  matrix 1( ), , 0mC R     and functions 3 ( )i
i tu x , 

3iu  is of class K  for all mi I , such that 3 1 3( , , ) ( ) ( ) ( )T
t tD V t u x C u x     for any 

( , ) H
nt J C    and any matrices of interactions t tE E , where 3 ( )T

tu x = 

31 3( ( ),..., ( ))l m
t m tu x u x ; 

3) the matrices 1( )A   and 1( )B   are positive definite and the matrix 1( )C   is negative 

definite. 
Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-

ymptotically connectedly stable. 

Theorem 3. Let in system of equations (1) the vector function ( , )f t   be bounded in   

and 
1) conditions (1) and (2) of Theorem 1 are satisfied; 

2) there exist a constant m m  matrix 2 ( ), , 0mC R     and functions 4 ( )i
i tu x  of 

class K  for all mi I  such that 4 2 4( , , ) ( ) ( ) ( )T
t tD V t u x C u x     for all ( , ) H

nt J C    

and any matrices of interconnections t tE E ; 

3) the matrices 1( )A   and 1( )B   are positive definite and the matrix 2 ( )C   is negative 

definite. 
Then the equilibrium state 0x   of system (1) with decomposition (2) is uniformly as-

ymptotically connectedly stable. 

6. Matrix-valued function on space product. 
For system (4) we construct the matrix-valued function 

( , , ) [ ( , , )], , 1, 2,...,t ij tU t x x v t x x i j m   ,                             (10) 

with the elements satisfying the following conditions. 

3H . The elements ( , ), ( , 0, 0) 0i

i

H
ii iinv C J C C R v t     are locally Lipschitz in ix ; 

4H . The elements ( , ),ji

i j

HH
ij n nv C J C C C C R      ( , 0, 0, 0) 0ijv t   are locally 

Lipschitz in ,i jx x  for all ( ) mi j I  . 

By means of the real vector , 0mR   , we construct the function 

( , , , ) ( , , ) ,T
t tV t x x U t x x                                           (11) 

which is definite on the space product nR C  and locally Lipschitz in x , providing condi-
tions of assumptions 3H  and 4H  are satisfied. Further we define 

( , , , ) ( , , ) ,T
t tD V t x x D U t x x                                    (12) 

where  

( , , ) lim sup ( ,tD U t x x U t    1( , ), ( )) ( , , )] :t t h tx f t x x U t x x  
   0  .   (13) 

Note that when formula (12) is properly applied, ( , , )tD U t x x  is computed element-wise. 

7. Conditions of connected practical stability of system (2). 
In view of the results from [1, 4] we shall formulate the following definitions. 
Definition 2. System (2) is called 
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a) connectedly practically stable, if given estimates of ( , ), 0A A   , the condition 

0 nC   implies 0 0( , )( )x t t A   for all 0t t  and all t tE E ; 

b) connectedly asymptotically practically stable, if conditions of definition (a) are satis-
fied and 0 0lim ( , )( ) 0

t
x t t


 . 

The other definitions of connected practical stability can be formulated in terms of 
Definition 2. 

Theorem 4. Let system of functional differentional equations (1) be such that 

1) there exists a matrix-valued function ( , )H m m
nU C J C C R    , ( ,0,0) 0U t   for all 

t J  and ( , , )tU t x x  is locally Lipschitz in x  for ( , , ) ( ) ( )tt x x J S A C A   ; 

2) there exist a real vector , 0R   , constant m m  matrices ( )A   and ( )B   and a 

comparison function 1 2( ), ( ( ) ), 1, 2,...,i i tu x u x i m  , 1 2,i iu u K , such that 1 1( ) ( ) ( )Tu x A u x   

, 1

( , , )
m

i j ij t
i j

v t x x


     2 2( ) ( ) ( )T
t tu x B u x   for all ( , , ) ( ) ( )tt x x J S A C A   ; 

3) there exists a comparison function ( , )W C J R R   such that ( , , , )tD V t x x    

( , ( , , , ))tW t V t x x   for all ( , , ) ( ) ( )tt x x J S A C A    and all matrices of interactions 

t tE E ; 

4) the matrices A and B are positive definite and ( ) ( ) ( ) ( )M mB a A b     where 

( )m A  is the minimal and ( )M B  is the maximal eigenvalues of the matrices A and B re-

spectively and ,a b  are of class K . 
Then the certain type of practical stability of zero solution to the equation 

0 0( , ), ( ) 0
du

W t u u t u
dt

                                             (14) 

implies the certain type of connected practical stability of system (2). 
Proof. Note first that under conditions (1) and (2) of Theorem 4 for the function 

( , , )tV t x x  determined by (11) the estimate 

( ) ( ) ( , , ) ( ) ( ( ) )m t M tA b x V t x x B a x                               (15) 

is true. This follows from the fact that for function 1 2, , 1, 2,...,i iu u K i m  , there exist 

functions ( ( ) )ta x   and ( )b x  of class K  such that 1 1( ) ( ) ( )Tb x u x u x  and 

2 2( ( ) ) ( ( ) ) ( ( ) ).T
t t ta x u x u x     Further we have from condition (3) of Theorem 4 for the 

function 
0 00 0( ) ( , ( , )( ), ( , ))t tm t V t x t x t x t x  ( ) ( , ( ))D m t W t m t   which together with the 

condition
00 0( , , )tV t x x u  yield the estimate 

0 00 0 0 0( , ( , )( ), ( , )) ( , , ),t t tV t x t x t x t x r t t u 0t t                            (16) 

according to the comparison principle (see[1] Theorem 4.1.1). Let the zero solution of equa-
tion (14) be practically stable. Given ( ( ) ( ), ( ) ( ))M mB a A b A   , we have  

0 0( , , ) ( ) ( )mu t t u A b A ,                                           (17) 

provided that 

0 ( ) ( )Mu B a  .                                                  (18) 
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Let  

0x   and 
0
( )tx   .                                               (19) 

We shall demonstrate that 
00( , )( )tx t x t A  for all 0 .t t  

Assume that this is not true and that there exists 1 0t t  such that for the solution 

00( , ) ( )tx t x t  with initial condition (19) the correlations 
00 1( , ) ( )tx t x t A  and 

00( , ) ( )tx t x t A  hold for 0 1t t t  . 

Estimate (15) yields 

0 1 01 0 1 0( , ( , )( ), ( , )) ( ) ( )t t t mV t x t x t x t x A b A                                (20) 

Let 
0 0 00 0 0 0 0( , ( , )( ), ( , ))t t tu V t x t x t x t x . Then for all 0 1t t t  , estimate (16) is valid, 

where 0 0( , , )r t t u  is the maximal solution of equation (14). Since 0 2( ) T
Mu B u   

0 02( ( ) ) ( ( ) )t tx u x   ( ) ( ),M B a   we find by the comparison principle and inequalities (15). 

 1 0 1 0( ) ( ) ( ) ( ) ( )T
m mA b A A u x u x    

0 1 01 0 1 0( , ( , )( ), ( , ))t t tV t x t x t x t x 1 0 0( , , ) ( ) ( )mr t t u A b A  .               
(21)

  

The obtained contradiction shows that 1t J  and therefore system (2) is connectedly practi-

cally stable. 
 
 
Р Е ЗЮМ Е .  Методом об‘єднання матрично-значних функціоналів Ляпунова і теореми порів-

няння досліджено зв‘язну стійкість за Ляпуновим і практичну стійкість великих систем з запізнен-
ням. Запропоновано ряд нових достатніх умов. Результати мають не лише теоретичний сенс, але 
також практичне значення. 
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