Е.И. Беспалова

О МЕТОДЕ КОНЕЧНЫХ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ В ЗАДАЧАХ СТАТИКИ НЕОДНОРОДНЫХ ПЛАСТИН

Институт механики им. С.П. Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: metod@inmech.kiev.ua

Abstract. The new variant of finite integral transform method for solving twodimensional linear boundary-value problems of general form is proposed. This variant is based on construction of two integral transformations with respect to different variables of a domain in such a way that a kernel of one of the transformations is the transform (image) of other one and vice versa. The approach proposed is verified by solving bending problems for homogeneous and inhomogeneous plates.

Key words: finite integral transform method, new variant, two-dimensional problems, rectangular plate, nonhomogeneity, analysis.

Введение.

Методы интегральных преобразований в конечных и бесконечных пределах являются эффективным средством решения классических многомерных ($N \ge 2$) линейных задач математической физики путем понижения их размерности вплоть до обыкновенных дифференциальных или алгебраических уравнений. Достигается такое упрощение за счет операции интегрирования (интегрального преобразования) по отдельной переменной с некоторым ядром преобразования, которую затем последовательно можно применить по N-1-ой или всем N переменным области. Этими методами получены известные аналитические решения многих классических задач теории теплопроводности и теории упругости.

Наиболее полно и детально теория метода конечных интегральных преобразований (КИП) была разработана в трудах Н.С. Кошлякова Г.А. Гринберга, И.Снеддона, К.Трантера и в дальнейшем нашла ряд важных приложений в разных областях физики и техники [2, 16, 18]. Развитие метода КИП в работах Ю.Э. Сеницкого дало возможность получить замкнутое решение многих новых задач механики деформируемого тела. Это, в частности, динамическая задача для трехслойной ортотропной упругой цилиндрической оболочки при общих условиях ее нагружения и закрепления на контуре, о напряженном состоянии вращающегося неоднородного анизотропного цилиндра с переменной плотностью, о колебаниях непрерывнонеоднородной цилиндрической оболочки с произвольными законами изменения упругих и инерционных характеристик материала при специальных условиях на торцах и др. [3, 14, 15]. Задача о контакте трансверсально-изотропных слоев при ударных нагрузках решена в [8] предложенным автором методом и, в качестве эталона для сравнения – методом интегральных преобразований. Двойное интегральное преобразование использовано в работе [13] для решения задачи изгиба консольно закрепленной ортотропной прямоугольной пластины при различных распределенных и контурных нагрузках.

Относительно теоретических основ метода КИП необходимо подчеркнуть следующее. Нахождение ядра интегрального преобразования, как краеугольного камня

ISSN0032–8243. Прикл. механика, 2014, **50**, № 6

этой процедуры, подчинено определенным требованиям. Эти требования сводятся, фактически, к условиям возможности разделения переменных в исходной задаче. Как показано во многих работах [2, 4 и др.], метод КИП по области своего применения эквивалентен методу собственных функций в том смысле, что построение КИП для данной области и данного типа краевых задач основано на возможности разложения искомого решения в ряды по ортогональным функциям соответствующей однородной задачи. Это требование изначально сужает класс решаемых задач, накладывая указанные ограничения на операторы исходной задачи.

В данной работе в рамках идеологии метода КИП предложен его новый вариант, свободный от этих ограничений и допускающий применение к задачам с неотделяющимися переменными.

§1. Основные положения предлагаемого варианта метода КИП.

Рассмотрим основные положения разработанного варианта метода КИП в сопоставлении с его классическим изложением на примере следующей двумерной линейной краевой задачи:

$$Du = f(x, y) \in \Omega; \qquad (1.1)$$

$$Ru = \varphi \ (x, y) \in \partial \Omega. \tag{1.2}$$

Здесь D – дифференциальный оператор общего вида с переменными коэффициентами, определенный в области $\Omega + \partial \Omega = \{x, y : x \in [0, a], y \in [0, b]\}$; R – дифференциальный или алгебраический оператор граничных условий, определенный на контуре области $\partial \Omega$; u = u(x, y) – искомое решение задачи; f = f(x, y) и $\varphi = \varphi(x, y)$ – известные функции, заданные соответственно внутри области и на ее границе.

Общая схема применения метода КИП к задаче (1.1) - (1.2) по одной переменной (пусть для определенности по переменной y) состоит в последовательном выполнении следующих операций [2].

1. Преобразование исходной задачи (1.1) - (1.2) путем операции интегрирования по переменной преобразования *у* в пределах ее изменения с некоторым ядром $K(y, \lambda)$

$$\int_{0}^{b} (Du - f) K(y, \lambda) dy \ x \in (0, a);$$
(1.3)

$$\int_{0}^{b} (Ru - \phi) K(y, \lambda) dy \quad x = 0, \ x = a.$$
(1.4)

2. Определение ядра преобразования $K(y, \lambda)$ из условия, что преобразованная задача (1.3) – (1.4) не содержит дифференциальных или интегральных операций по переменной *y* и может быть сформулирована относительно функции $\tilde{u}(x, \lambda)$ – так называемые трансформанты (изображения) искомой функции u(x, y), т.е.

$$\tilde{u}(x,\lambda) = \int_{0}^{b} u(x,y)K(y,\lambda)dy .$$
(1.5)

Эти условия сводятся к следующим требованиям, накладываемым на исходную задачу (1.1) – (1.2).

2.1. Дифференциальное выражение Du должно быть представимо в виде $Du = D_y u + D_x u$, где D_y содержит операции дифференцирования только по переменной y, а D_x – не содержит операций дифференцирования по y и зависящих от нее коэффициентов.

2.2. Граничные условия должны распадаться на две группы, их которых одна выражает условия по переменной преобразования у через заданные функции переменной x (т.е при y=0; y=b), а вторая не содержит производных по переменной преобразования у и имеет независящие от нее коэффициенты $(a_{ii} = a_{ii}(x), \text{ Ho He } a_{ii} \neq a_{ii}(y)).$

Сформулированные условия являются, по существу, условиями разделения переменных в исходной задаче (1.1) – (1.2). Их выполнение позволяет сформулировать задачу Штурма – Лиувилля и определить из нее функции ядра преобразования $K(y,\lambda)$ как собственные функции этой задачи $K_i(y)$ по переменной преобразования, T.e. $K(y,\lambda) = \{K_i(y)\} \ (i = 1, 2, ...).$

3. Решение преобразованной задачи (1.3) – (1.4) с полученными собственными функциями ядра $K_i(y)$ относительно функций трансформанты $\tilde{u}_i(x) = \int u(x, y) K_i(y) dy$.

4. Определение искомого решения задачи (1.1) – (1.2) по полученному решению преобразованной задачи (1.3) – (1.4) (функциям $\tilde{u}_i(x)$) в результате обратного преобразования

$$u(x, y) = \sum_{i=1,2,...} \tilde{u}_i(x) \overline{K}_i(y)$$
(1.6)

 $(\overline{K}_i(y))$ – собственные функции ядра преобразования $K_i(y)$ или связанные с ними определенными соотношениями [2]).

Таким образом, для задач, допускающих разделение переменных, применение метода КИП сводится к определению функций ядра как собственных функций исходной задачи по переменной преобразования, построению с их использованием преобразованной задачи (1.3) – (1.4), ее решению относительно компонент трансформанты (1.5) и определению искомого решения u(x, y) путем обратного преобразования в форме ряда (1.6).

Основное отличие предлагаемого варианта метода КИП (обозначим его КИП*) состоит в ином подходе к определению функций $K_i(y)$ ядра преобразования $K(y,\lambda)$ при построении преобразованной задачи (1.3) – (1.4).

Для их определения аналогично построенному интегральному преобразованию по переменной преобразования у (задача (1.3) – (1.4)) параллельно строим новое интегральное преобразование задачи (1.1) - (1.2) по переменной x в пределах ее изменения $x \in [0, a]$. Функциями ядра этого нового преобразования $K_i(x)$ служат компоненты $\tilde{u}_i(x)$ (*i* = 1, 2,...) трансформанты (1.5)

$$\int_{0}^{a} (Du - f)\tilde{u}_{i}(x) dx \quad y \in (0, b);$$
(1.7)

$$\int_{0}^{a} (Ru - \varphi) \tilde{u}_{i}(x) dx \quad y = 0, \ y = b.$$
(1.8)

Эту преобразованную задачу формулируем относительно новой трансформанты $\tilde{\tilde{u}}_i(y) = \int u(x, y)\tilde{u}_i(x)dx$, а искомое решение задачи (1.1) – (1.2) – оригинал u(x, y) –

определяем аналогично (1.6) в форме конечного отрезка следующего ряда:

$$u(x, y) = \sum_{i=1,2,..I.} \tilde{u}_i(x) \tilde{\tilde{u}}_i(y) .$$
(1.9)

Таким образом, в предлагаемом варианте метода КИП исходная двумерная задача подвергается параллельно двум интегральным преобразованиям: по переменной y (первое преобразование) и по переменной x (второе). В первом преобразования вании функциями ядра $K_i(y)$ служат трансформанты второго преобразования $K_i(y) = \tilde{u}_i(y)$, а функциями ядра второго преобразования $K_i(x)$ являются трансформанты первого $K_i(x) = \tilde{u}_i(x)$.

В результате проведенных операций решение задачи (1.1) – (1.2) с учетом (1.9) сводится к системе двух связанных интегральных преобразований по двум разным переменным

$$\int_{0}^{b} \left(D \sum_{i=1,.,I} \tilde{u}_{i}(x) \tilde{\tilde{u}}_{i}(y) - f(x,y)\right) \tilde{\tilde{u}}_{i}(y) \, dy = 0, \quad x \in (0,a) \, ; \tag{1.10}$$

$$\int_{0}^{b} (R_{0,a} \sum_{i=1,,I} \tilde{u}_{i}(x)\tilde{\tilde{u}}_{i}(y) - \varphi_{0,a}(x,y))\tilde{\tilde{u}}_{i}(y)dy = 0, \quad x = 0, \ x = a;$$
(1.11)

$$\int_{0}^{a} (D \sum_{i=1,.,N} \tilde{u}_{i}(x) \tilde{\tilde{u}}_{i}(y) - f(x,y)) \tilde{u}_{i}(x) dx = 0, \quad y \in (0,b); \quad (1.12)$$

$$\int_{0}^{a} (R_{0,b} \sum_{i=1,.,N} \tilde{u}_{i}(x)\tilde{\tilde{u}}_{i}(y) - \varphi_{0,b}(x,y))\tilde{u}_{i}(x)dx = 0, \quad y = 0, \quad y = b.$$
(1.13)

(Метод решения этой системы обсужден ниже).

В этом варианте метода КИП функции $\tilde{u}_i(x)$ и $\tilde{\tilde{u}}_i(y)$ играют попеременно роль трансформант и ядер преобразований. В построенных для их определения интегральных преобразованиях равнозначно учтена исходная информация по обеим переменным области. При таком подходе к решению задачи не накладываются какие-либо ограничения типа 2.1, 2.2 на вид дифференциального уравнения и граничных условий, необходимые для применения классического метода КИП. Класс решаемых задач существенно расширяется за счет снятия требования построения собственных функций задачи, как ядра преобразования, и этот вариант метода КИП может быть применен к задачам с неразделяющимися переменными.

В предложенном варианте КИП исходная двумерная задача упрощается за счет понижения ее размерности, хотя отчасти усложняется за счет необходимости решения связанной системы интегральных преобразований (1.10) – (1.11), (1.12) – (1.13). Впрочем, при современном уровне развития численного анализа и вычислительных средств, этот вопрос, как будет показано далее, не является проблематичным.

Классический вариант метода КИП позволяет получить точное аналитическое решение для класса задач с отделяющимися переменными. Предложенный вариант метода дает приближенное решение задачи для широкого класса задач математической физики с произвольными граничными условиями и изменяющимися свойствами среды.

§2. Алгоритмизация предложенного подхода (изгиб неоднородной пластины).

Технику применения основных положений изложенного варианта метода КИП проиллюстрируем на задаче изгиба неоднородной изотропной прямоугольной пластины ($\Omega + \partial \Omega = \{x, y : x \in [x_0, x_1], y \in [y_0, y_1]\}$) при различных условиях на граничном контуре. Неоднородность пластины является конструктивной и порождена нали-

чием упругого Винклеровского основания, коэффициент постели которого выражается функцией обеих переменных области P = P(x, y). Пластина находится под воздействием распределенной нагрузки q = q(x, y) и контурных усилий-моментов, приложенных произвольным образом на границе области. Задачу изгиба такой пластины описываем следующими известными соотношениями [17]:

$$Q_{1,x} + Q_{2,y} - P(x,y)w = -q ; \qquad (2.1)$$

$$Q_1 = M_{1,x} + H_{y}; \quad Q_2 = M_{2,y} + H_{x};$$
 (2.2)

$$M_1 = -D_M(w_{,xx} + \mu w_{,yy}); M_2 = -D_M(w_{,yy} + \mu w_{,xx}); H = -(1-\mu)D_Mw_{,xy}.$$
(2.3)

Здесь Q_1 , Q_2 – перерезывающие усилия в сечениях x = const; y = const, соответственно; M_1, M_2 и H – изгибающие и крутящий моменты; w – нормальный прогиб точек срединной плоскости пластины; $D_M = Eh^3/12(1-\mu^2)$; h – изгибная жесткость и толщина пластины; E, μ – модуль Юнга и коэффициент Пуассона изотропного материала; запятая в нижнем индексе означает дифференцирование по указанным за ней переменным.

На основе приведенных соотношений уравнение изгиба пластины на неоднородном упругом основании относительно функции прогиба w = w(x, y) запишем в виде [17]

$$Dw = \Delta \Delta w + P(x, y) = q. \qquad (2.4)$$

На граничном контуре могут быть приняты различные физически непротиворечивые комбинации следующих условий:

статических -

$$M_1 = M_{1p}^*(y); V_1 = Q_1 + H_{,y} = -D_M(w_{,xx} + (2-\mu)w_{,yy})_{,x} = V_{1p}^*(y)$$
при $x = x_p$ ($p = 0; 1$),

$$M_2 = M_{2p}^*(x); V_2 = Q_2 + H_{,x} = -D_M(w_{,yy} + (2-\mu)w_{,xx})_{,y} = V_{2p}^*(x)$$

при $y = y_p$ ($p = 0; 1$) (2.5)

и кинематических -

$$w = 0$$
; $w_{,x} = 0$ при $x = x_p (p = 0; 1)$; $w = 0$; $w_{,y} = 0$ при $y = y_p (p = 0; 1)$ (2.6)

 $(V_1, V_2 -$ обобщенные переразывающие усилия в соответствующих сечениях; кинематические условия без ограничения общности приняты однородными, поскольку они могут быть сведены к таковым определенной заменой искомой функции).

Следует заметить, что решение поставленной задачи в различных ее вариантах может быть получено многими методами: методом Ритца, МКЭ, сплайн-коллокаций, методом Канторовича – Дородницына сведения к обыкновенным дифференциальным уравнениям, обобщенным методом Канторовича – Власова и др., изложенными в работах [5 – 7, 10 – 13, 17]. Здесь эта задача выбрана для иллюстрации всех процедур предложенного варианта метода конечных интегральных преобразований.

Согласно изложенной в §1 общей схеме разработанного варианта метода КИП поставленная двумерная задача (2.1) – (2.6) подвергается параллельно двум интегральным преобразованиям: по переменной преобразования y и по переменной преобразования x. Каждое из них, как уже отмечалось, полностью соответствует интегральному преобразованию по классическому методу КИП, за исключением построения ядер этих преобразований. *I. Интегральное преобразование по переменной у*. Построим интегральное преобразование поставленной задачи по переменной *у* в пределах ее изменения $y \in [y_0, y_1]$ с пока еще неизвестными функциями ядра $Y_k(y)$ ($k = \overline{1, I}$). Обозначим трансформанту этого преобразования функцией

$$X_i(x) = \int_{y_0}^{y_1} w(x, y) Y_i(y) \, dy \,, \qquad (2.7)$$

так что оригинал – искомый прогиб w(x, y) – представится в виде (см. (1.6))

$$w(x, y) = \sum_{i=1}^{l} X_i(x) Y_i(y) .$$
(2.8)

Применим к уравнению (2.1) указанное преобразование, предварительно заменив усилие Q_2 его выражением через обобщенное перерезывающее усилие V_2 по (2.5),

$$\int_{y_0}^{y_1} Q_{1,x} Y_k dy + \int_{y_0}^{y_1} V_{2,y} Y_k dy - \int_{y_0}^{y_1} H_{xy} Y_k dy - \int_{y_0}^{y_1} P(x,y) w Y_k dy = -\int_{y_0}^{y_1} q(x,y) Y_k dy.$$
(2.9)

Дважды интегрируя по частям второй член в (2.9) и заменяя с учетом (2.2) и (2.5) функции V_2 и M_2 на краях $y = y_p$ (p = 0; 1) их значениями $V_{2p}^*(x)$ и $M_{2p}^*(x)$, получим

$$\int_{y_{0}}^{y_{1}} V_{2,y} Y_{k} dy = V_{2} Y_{k} \Big|_{y_{0}}^{y_{1}} - \int_{y_{0}}^{y_{1}} V_{2} Y_{k}' dy = V_{2p}^{*}(x) Y_{k} \Big|_{y_{0}}^{y_{1}} - \int_{y_{0}}^{y_{1}} Q_{2} Y_{k}' dy - \int_{y_{0}}^{y_{1}} H_{,x} Y_{k}' dy =$$

$$= V_{2p}^{*}(x) Y_{k} \Big|_{y_{0}}^{y_{1}} - \int_{y_{0}}^{y_{1}} (M_{2,y} + H_{,x}) Y_{k}' dy - \int_{y_{0}}^{y_{1}} H_{,x} Y_{k}' dy =$$

$$= V_{2p}^{*}(x) Y_{k} \Big|_{y_{0}}^{y_{1}} - M_{2p}^{*}(x) Y_{k}' \Big|_{y_{0}}^{y_{1}} + \int_{y_{0}}^{y_{1}} M_{2} Y_{k}'' dy - 2 \int_{y_{0}}^{y_{1}} H_{,x} Y_{k}' dy$$
(2.10)

(верхние штрихи означают соответствующие производные функции по ее переменной; $Y_k^{"} = d^2 Y_k / dy^2$).

Выражая затем в (2.9) все функции через w(x, y) по зависимостям (2.2), (2.3) с учетом (2.10) и (2.8), приходим к системе обыкновенных дифференциальных уравнений относительно трансформанты $X_i(x)$ (2.7). Соответствующие граничные условия при $x = x_0$ и $x = x_1$ получим в результате применения описанного преобразования по переменной y к заданным условиям (2.5) или (2.6) на сторонах $x = x_p$ (p = 0; 1).

Отметим, что коэффициенты уравнения, граничных условий и их правые части в силу примененного преобразования выражены через неизвестные функции ядра $Y_k(y)$ и их производные (конкретный вид этих зависимостей приведен ниже). Для определения функций ядра $Y_k(y)$ аналогичное преобразование исходной задачи строим по переменной преобразования x (в отличие от классического варианта метода КИП, где они определяются как собственные функции однородной задачи по y).

II. Интегральное преобразование по переменной х. Подвергнем исходную задачу (2.1) - (2.6) интегральному преобразованию по переменной *x* в пределах ее изменения $x \in [x_0, x_1]$. В качестве ядра этого преобразования выберем трансформанту предыдущего преобразования $X_k(x)$ (2.7), а его трансформантой в силу (2.8) будут функции $Y_i(y)$ ядра предыдущего преобразования по переменной *y*

$$Y_i(y) = \int_{x_0}^{x_1} w(x, y) X_i(x) dx \,. \tag{2.11}$$

Преобразования II реализуется по той же схеме, что и преобразование I. Уравнение (2.1) после замены в нем перерезывающего усилия Q_1 через обобщенное усилие V_1 по (2.5) и применения интегрирования по переменной *x* преобразуется к виду

$$\int_{x_0}^{x_1} V_{1,x} X_k dx - \int_{x_0}^{x_1} H_{xy} X_k dx + \int_{x_0}^{x_1} Q_{2,y} X_k dx - \int_{x_0}^{x_1} P(x,y) w X_k dx = -\int_{x_0}^{x_1} q(x,y) X_k dx.$$
(2.12)

Аналогично (2.10), интегрирование первого члена по частям с заменой функций V_1 и M_1 на краях $x = x_p$ (p = 0; 1) их значениями $V_{1p}^*(x)$ и $M_{1p}^*(x)$ приводит к следующему выражению:

$$\int_{x_0}^{x_1} V_{1,x} X_k dx = V_{1p}^*(y) X_k \Big|_{x_0}^{x_1} - M_{1p}^*(y) X_k' \Big|_{x_0}^{x_1} + \int_{x_0}^{x_1} M_1 X_k^* dx - 2 \int_{x_0}^{x_1} H_{y} X_k' dx$$
(2.13)

(верхние штрихи, как и в (2.10), означают соответствующие производные функции по ее переменной – $X_k^{"} = d^2 X_k / dx^2$).

Выражая затем в (2.12) все функции через w(x, y) по зависимостям (2.2), (2.3) с учетом (2.13) и (2.8), приходим к системе обыкновенных дифференциальных уравнений относительно трансформанты $Y_i(y)$ (2.11). Соответствующие граничные условия при $y = y_0$ и $y = y_1$ получим в результате применения описанного преобразования по переменной x к заданным условиям (2.5) или (2.6) на сторонах $y = y_p$ (p = 0; 1).

В результате применения к исходной задаче двух описанных совершенно аналогичных интегральных преобразований I (по переменной y) и II (по переменной x) приходим к следующей системе двух задач относительно неизвестных функций $X_i(x)$ (трансформанта преобразования I и ядро преобразования II) и $Y_i(y)$ (трансформанта преобразования II и ядро преобразования I):

$$\sum_{i=1}^{I} (A_{4ik} X_i^{IV} + A_{2ik} X_i^{"} + A_{0ik} X_i) = q_{xk} , \quad x \in (x_0, x_1) ;$$
(2.14)

$$\sum_{i=1}^{l} (a_{3ik} X_i^{"} + a_{1ik} X_i) = V_{1pk} , \sum_{i=1}^{l} (a_{2ik} X_i^{"} + a_{0ik} X_i) = M_{1pk} , x = x_p (p = 0; 1), (условия (2.5))$$

или
$$X_k = 0$$
, $X'_k = 0$, $x = x_p (p = 0; 1)$, (условия (2.6)); (2.15)

$$\sum_{i=1}^{I} (B_{4ik} Y_i^{IV} + B_{2ik} Y_i^{"} + B_{0ik} Y_i) = q_{yk} , \quad y \in (y_0, y_1);$$
(2.16)

$$\sum_{i=1}^{I} (b_{3ik}Y_{i}^{"} + b_{1ik}Y_{i}^{'}) = V_{2pk} , \sum_{i=1}^{I} (b_{2ik}Y_{i}^{"} + b_{0ik}Y_{i}) = M_{2pk} , y = y_{p} (p = 0; 1), (условия (2.5))$$

или
$$Y_k = 0$$
, $Y'_k = 0$, $y = y_p$ ($p = 0; 1$), (условия (2.6)). (2.17)

Интегральные преобразования (2.14) – (2.15) и (2.16) – (2.17) связаны между собой посредством коэффициентов уравнений, граничных условий и их правых частей следующими зависимостями:

$$A_{4ik} = \int_{y_0}^{y_1} Y_i Y_k dy, \ A_{2ik} = \mu (\int_{y_0}^{y_1} Y_i^{"} Y_k dy + \int_{y_0}^{y_1} Y_i Y_k^{"} dy) - 2(1-\mu) \int_{y_0}^{y_1} Y_i Y_k^{'} dy;$$

61

$$\begin{aligned} A_{0ik} &= \int_{y_0}^{y_1} Y_i^* Y_k^* dy - \int_{y_0}^{y_1} P(x, y) Y_i Y_k dy / D_M ; \\ q_{xk} &= -(\int_{y_0}^{y_1} q(x, y) Y_k dy - V_{21}^*(x) Y_k (y_1) + V_{20}^*(x) Y_k (y_0) + M_{21}^*(x) Y_k^{'}(y_1) - M_{20}^*(x) Y_k^{'}(y_0)) / D_M ; \\ a_{3ik} &= A_{4ik}, \ a_{1ik} &= (2 - \mu) \int_{y_0}^{y_1} Y_i^* Y_k dy , \ a_{2ik} &= a_{3ik}, \ a_{0ik} &= \mu \int_{y_0}^{y_1} Y_i^* Y_k dy ; \\ V_{1pk} &= -\int_{y_0}^{y_1} V_{1p}^*(y) Y_k dy / D_M , \ M_{1pk} &= -\int_{y_0}^{y_1} M_{1p}^*(y) Y_k dy ; \\ B_{4ik} &= \int_{x_0}^{x_1} X_i X_k dx , \ B_{2ik} &= \mu (\int_{x_0}^{x_1} X_i^* X_k dx + \int_{x_0}^{x_1} X_i X_k^* dx) - 2(1 - \mu) \int_{x_0}^{x_1} X_i^* X_k^* dx ; \\ B_{0ik} &= \int_{x_0}^{x_1} X_i^* X_k^* dx - \int_{x_0}^{x_0} P(x, y) X_i X_k dx / D_M ; \\ q_{yk} &= -(\int_{x_0}^{x_1} q(x, y) X_k dx - V_{11}^*(y) X_k (x_1) + V_{10}^*(y) X_k (x_0) + M_{11}^*(y) X_k^{'}(x_1) - M_{10}^*(y) X_k^{'}(x_0)) / D_M ; \\ b_{3ik} &= B_{4ik}, \ b_{1ik} = (2 - \mu) \int_{x_0}^{x_1} X_i^* X_k dx , \ b_{2ik} &= b_{3ik}, \ b_{0ik} = \mu \int_{x_0}^{x_1} X_i^* X_k dx ; \\ V_{2pk} &= -\int_{y}^{x_1} V_{2p}^*(x) X_k dx / D_M , \ M_{2pk} &= -\int_{y}^{x_1} M_{2p}^*(x) X_k dx . \end{aligned}$$

Следует заметить, что прием классического метода КИП по учету граничных функций по переменной преобразования (см. (2.10)), распространен здесь и на вторую переменную в интегральном преобразовании II (см.(2.13)). В результате функции $M_{1p}^{*}(y)$, $V_{1p}^{*}(y)$, $M_{2p}^{*}(x)$, $V_{2p}^{*}(x)$ (p = 0;1), задающие воздействия на границе области (2.5), фигурируют в построенной системе (2.14) – (2.16) в континуальном виде по обеим переменным (см. $q_{xk} = q_{xk}(x)$ и $q_{yk} = q_{yk}(y)$).

Трансформанта и ядро в каждом из преобразований I и II определяются из системы двух идентично построенных интегральных преобразований по разным переменным области.

Взаимосвязанная система интегральных преобразований по разным переменным области (2.14) – (2.17) позволяет определить трансформанты $X_i(x)$ и $Y_i(y)$ без какихлибо дополнительных упрощений или ограничений на исходную постановку задачи. Для ее решения используем следующий итерационный процесс (параметр j = 1, 2, ...):

$$\sum_{i=1}^{I} (A_{4ik}^{j-1}(X_i^j)^{IV} + A_{2ik}^{j-1}(X_i^j)^{"} + A_{0ik}^{j-1}X_i^j) = q_{xk}^{j-1}, \ x \in (x_0, x_1) ;$$

$$\sum_{i=1}^{I} (a_{3ik}^{j-1}(X_i^j)^{"} + a_{1ik}^{j-1}(X_i^j)^{'}) = V_{1pk}^{j-1}, \sum_{i=1}^{I} (a_{2ik}^{j-1}(X_i^j)^{"} + a_{0ik}^{j-1}X_i^j) = M_{1pk}^{j-1},$$

$$x = x_p (p = 0; 1) (\text{условие (2.5)});$$

$$(2.20)$$

62

или
$$X_k^j = 0$$
, $(X_k^j)' = 0$, $x = x_p (p = 0; 1)$ (условие (2.6), (2.21)

$$\sum_{i=1}^{I} (B_{4ik}^{j} (Y_{i}^{j})^{IV} + B_{2ik}^{j} (Y_{i}^{j})^{"} + B_{0ik}^{j} Y_{i}^{j}) = q_{yk}^{j}, \ y \in (y_{0}, y_{1});$$
(2.22)

$$\begin{split} \sum_{i=1}^{I} (b_{3ik}^{j}(Y_{i}^{j})^{"} + b_{1ik}^{j}(Y_{i}^{j})^{'}) = V_{2ik}^{j} , \quad \sum_{i=1}^{I} (b_{2ik}^{j}(Y_{i}^{j})^{"} + b_{0ik}^{j}Y_{i}^{j}) = M_{2ik}^{j} , \\ y = y_{p} \ (\ p = 0; 1) \ (\text{условия (2.5)}) \end{split}$$

или $Y_k^j = 0$, $(Y_k^j)' = 0$, $y = y_p$ (p = 0; 1) (условия (2.6)). (2.23)

На каждом фиксированном шаге итерационного процесса j = fixed верхние индексы j-1 при коэффициентах уравнения (2.20), граничных условий (2.21) и их правых частях означают, что для их вычисления по формулам (2.18) функции Y_k и их производные берем с предыдущего шага итерации. Индексы j при коэффициентах уравнений (2.22), граничных условий (2.23) и их правых частях означают, что необходимые для их вычисления по формулам (2.19) функции X_k и их производные берем из решения задачи (2.20) – (2.21). Каждую из задач (2.20) – (2.21) и (2.22) – (2.23), таким образом, решаем независимо друг от друга аналитически или каким-либо численным методом. Процесс завершаем при достижении заданной точности искомой функции (2.8) по выбранному критерию сходимость (сходимость в среднеквадратичной норме, равномерная сходимость, сходимость по максимальному значению и т.п.). В качестве начального приближения этого процесса $Y_k^0(y)$ ($k = \overline{1, I}$) может быть выбрана любая система линейно независимых функций (степенные, тригонометрические, полиномы и т.п.).

Заметим, что аналогичная структура вида (2.14) – (2.17) была получена в обобщенном методе Канторовича – Власова при решении бигармонической задачи [5]. Используемый итерационный процесс ее решения показал быструю сходимость и высокую точность получаемых результатов.

Таким образом, двумерная задача изгиба неоднородной прямоугольной пластины по предлагаемому варианту метода КИП сведена к системе двух интегральных преобразований по разным переменным, которая решается итерационно.

§3. Тестирование разработанного подхода.

Апробация предложенного подхода проведена индуктивно путем сравнения либо с точным решением для отдельных задач, либо с решениями, полученными другими методами. Выбор тестовых примеров определен имеющимися в литературе данными. В первом из них апробация разработанного варианта КИП проведена для изотропной однородной консольной пластины при различных видах нагружения, во втором – для неоднородной пластины при шарнирном опирании на контуре.

Пример 1. Квадратная пластина постоянной жесткости D_M со стороной a, край x = 0 которой жестко закреплен, остальные – свободны, рассматривается при двух видах нагрузки 1) равномерно распределенной с интенсивностью q_0 и 2) под действием силы P, сосредоточенной в центре пластины ($x = x_0 = a/2$; $y = y_0 = a/2$).

Результаты решения задачи при равномерной нагрузке представлены (табл. 1) для прогиба в ряде точек на свободной стороне x = a. Значения изгибающего момента в точках закрепленной стороны x = 0 приведены в табл. 2. Здесь же содержатся результаты, полученные методом двойных интегральных преобразований [13] и методом конечных элементов [6], FEM* (FEM* – решение получено Wu Liang-tze, цитируем по [13]).

Таблица 1

	$w(q_0 a^4 / D_M)$				
Методы			y / a		
	0	0,125	0,25	0,375	0,5
[13]	0,12722	0,12797	0,12857	0,12895	0,12908
[6]	0,12933	0,12998	0,13056	0,13091	0,13102
FEM [*]	0,12708	0,12788	0,12851	0,12892	0,12905
КИП*	0,12724	0,12798	0,12857	0,12895	0,12908

Таблица 2

	$-M_1(q_0a^2)$					
Методы	тоды у/а					
	0,125	0,25	0,375	0,5		
[13]	0,51240	0,52959	0,53135	0,53136		
[6]	0,51270	0,53353	0,53550	0,53560		
FEM*	0,50399	0,52760	0,53058	0,53092		
КИП*	0,51148	0,52809	0,53008	0,53074		

Таблица 3

		w(a, a/2)(q)			$\overline{D_0a^4}/D_M$)		
I j			$Y_k^0(y) = y^k$		$Y_k^0(y) = \sin\frac{k\pi}{a}y$		
		k=0, 1, 2,	k=3, 4, 5,	k=6, 7, 8,	k=1, 2, 3,	k=1, 3, 5,	k=4, 5, 6,
	1	0,12500	0,03398	0,02846	0,11295	0,11295	3,0.10-8
	2	0,12599	0,06324	0,16545	0,05538	0,05538	0,00168
	3	0,12696	0,12467	0,12259	0,12582	0,12582	0,12555
1	4	0,12631	0,12517	0,12589	0,12617	0,12617	0,12614
	5	0,12631	0,12627	0,12631	0,12631	0,12631	0,12628
	6	0,12631	0,12631	0,12631	0,12631	0,12631	0,12631
	7	0,12631	0,12631	0,12631	0,12631	0,12631	0,12631
	1	0,12785	0,04353	0,02692	0,11232	0,11236	0,00056
	2	0,12808	0,11071	0,09231	0,10173	0,09744	0,00865
	3	0,12798	0,12904	0,12893	0,12903	0,12879	0,11211
4	4	0,12823	0,12907	0,12907	0,12907	0,12905	0,12579
	5	0,12898	0,12908	0,12908	0,12908	0,12908	0,12901
	6	0,12908	0,12908	0,12908	0,12908	0,12908	0,12908
	7	0,12908	0,12908	0,12908	0,12908	0,12908	0,12908

Значения прогиба, полученные по КИП^{*} и по методу двойных интегральных преобразований совпадают в 4 – 5 знаках, а для момента – различия всех приведенных данных находятся в пределах 1%. Это различие незначительно увеличивается для МКЭ вблизи угловой точки x = 0; y = 0 ($\approx 2\%$).

На примере этой же задачи проиллюстрируем зависимость ее решения от выбора функций начального приближения $Y_k^0(y)$ в построенном итерационном процессе (2.20) – (2.23). В качестве таковых приняты разные отрезки степенного ($Y_k^0(y) = y^k$) и тригонометрического ($Y_k^0(y) = \sin \frac{k\pi}{a}y$) рядов. Решение задачи для максимального значения прогиба при одном (I = 1) и четырех (I = 4) членах в представлении (2.8)

приведены в табл. 3 в зависимости от шага итерационного процесса *j* для разных вариантов выбора начального приближения.

Как видно из приведенных данных, влияние различных функций, выбранных в качестве исходного приближения, имеет место лишь на нескольких начальных шагах итерационного процесса. В целом, при любом фиксированном числе членов *I* в представления (2.8) используемый итерационный процесс сходится достаточно быстро и дает установившееся решение, как правило, в пределах 10 итераций.

Результаты решения задачи при сосредоточенной нагрузке приведены для прогиба в точках сторон x = a и y = 0 (табл. 4) и для изгибающего момента на стороне x = 0 (табл. 5) (сравнение проведено с результатами работ [13, 7]).

<i>x</i> , <i>y</i>	$w(Pa^2 / D_M)$					
	Метоли	y / a				
	методы	0	0,125	0,25	0,375	0,5
x = a	[13]	0,10563	0,10780	0,10971	0,11105	0,11154
	[7]	0,10353	0,10577	0,10773	0,10904	0,10957
	КИП*	0,10539	0,10755	0,10946	0,11079	0,11127
		x / a				
		0	0,25	0,5	0,75	1,0
y = 0	[13]	0	0,01018	0,03765	0,07132	0,10563
	[7]	0	0,01004	0,03712	0,06995	0,10353
	КИП*	0	0,010186	0,03759	0,07113	0,10539

Таблица 4

7	аблина	5
	aosiniqu	~

	$-M_1(P)$					
Методы	y / a					
	0,125 0,25		0,375	0,5		
[13]	0,47254	0,53571	0,57703	0,59030		
[7]	0,46448	0,52839	0,56979	0,58645		
КИП*	0,47256	0,52777	0,58405	0,61694		

Аналогичная картина по точности решения имеет место и в случае действия сосредоточенной силы. Наилучшее совпадение получено с результатами [13].

Пример 2. Алгоритм разработанного варианта метода КИП для упрощения выкладок в §2 приведен для конструктивно неоднородной пластины, когда переменным коэффициентом в уравнении изгиба был только коэффициент постели P = P(x, y). Здесь задача изгиба решена для пластины с переменной в двух направлениях толщиной [1].

На свободно опертую по контуру изотропную квадратную пластину со стороной *а* действует нормальная нагрузка вида $q(x, y) = q_0 \sin(\pi x / a) \sin(\pi y / a)$. Толщина пластины переменна в двух направлениях и изменяется по закону

$$h(\varsigma, \eta) = 16(1 + 4\varsigma(1 - \varsigma))(1 + 4\eta(1 - \eta))$$
 ($\varsigma = x/a, \eta = y/a$).

Задача решена в [1] методом Канторовича – Власова (сведения к обыкновенным дифференциальным уравнениям) при аппроксимации искомого прогиба в виде

$$w(\varsigma,\eta) = \sum_{i=1}^{I} w_i(\varsigma) \sin(i\pi\eta) \, .$$

65

Результаты решения [1] при одном (I = 1) и четырех (I = 4) членах аппроксимации и при одном члене обратного преобразования (1.9) по разработанному варианту метода КИП (КИП*) представлены в табл. 6 для значений прогиба wE/q_0 ($\mu = 0,3$).

m	~		
Ta	ัวกน	ua (Ć

Метол	n	ς		
мстод	'/	0,1	0,3	0,5
[1], I=1		0,0344	0,0901	0,1114
[1], I=4	0,1	0,0312	0,0999	0,1394
КИП*		0,0312	0,0998	0,1394
[1], I=1		0,1135	0,2972	0,3674
[1], I=4	0,3	0,1000	0,3208	0,4509
КИП*		0,0998	0,3208	0,4509
[1], I=1		0,1617	0,4232	0,5232
[1], I=4	0,5	0,1394	0,4509	0,6370
КИП*	7	0,1394	0,4509	0,6371

На рис.1 показаны графики изгибающего момента $M_y(\eta)$ в сечении пластины $\varsigma = 0,5$, полученные этими же методами. Для обеих функций ($w(\varsigma,\eta)$ и $M_y(0,5;\eta)$)

Puc. 1

результаты одночленного обратного преобразования по КИП^{*} и методу Канторовича – Власова при четырех членах аппроксимации практически совпадают.

§4. Анализ деформирования структурно неоднородной пластины.

Рассмотрим деформирование квадратной изотропной пластины со стороной *a*, лежащей на упругом основании, коэффициент постели которого задан следующей функцией:

$$P(x, y) = \begin{cases} c_0, & (x, y) \in \Omega_0; \\ 0, & (x, y) \notin \Omega_0, \end{cases}$$

где $\Omega_0 = \{x, y : |x - x_0| \le r_x, |y - y_0| \le r_y\}$ прямоугольная область площадью $2r_x \times 2r_y$ с цен-

тром в точке $x = x_0$, $y = y_0$. Наличие такого

основания можно трактовать как упругую опору с жесткостью c_0 в области Ω_0 , так что в целом пластина является структурно неоднородной.

Пластина нагружена равномерно распределенным нормальным давлением интенсивности q = const.

Изгиб такой пластины рассмотрен для двух случаев закрепления ее контура:

1) две смежные стороны x = 0 и y = 0 – жестко закреплены, две другие – свободны;

2) сторона x = 0 – жестко закреплена, остальные – свободны (консольное закрепление).

Расчет проведен при следующих значениях исходных данных: $r_x / a = r_y / a = 0,02$; $c_0 / D_M = 32,7$ и трех вариантах расположения неоднородности; *a*) отсутствие неоднородности; *б*) неоднородность находится в центре пластины – $x_0 = y_0 = a/2$ (первый случай граничных условий) или в центре свободной стороны $x = a - x_0 = a, y_0 = a/2$ (второй случай граничных условий); *в*) в незакрепленном углу – $x_0 = y_0 = a$. Деформированная срединная поверхность пластины $w(x, y) / w_{\max,0}$ для указанных вариантов расположения неоднородности *a* – *в* представлена на рис. 2 для жесткого закрепления смежных сторон и на рис. 3 для ее консольного закрепления ($w_{\max,0}$ – значение максимального прогиба однородной пластины).

 $w(x, y) / w_{\max, 0}$

Как видно, различное расположение неоднородности оказывает существенное влияние на характер деформированной поверхности в обоих случаях закрепления граничного контура.

Выводы.

Отметим основные особенности предложенного варианта метода КИП по сравнению с его классическим вариантом.

1. Классический метод КИП позволяет получить точное аналитическое решение задачи в виде бесконечного ряда при определенных ограничениях на ее постановку. Ограничения связаны с требованием выбора ядра преобразования в виде собственных функций задачи Штурма – Лиувилля по переменной преобразования. Это, с одной стороны, позволяет достаточно просто получить функции трансформанты из распавшейся системы обыкновенных дифференциальных уравнений, а с другой, – существенно сужает класс решаемых задач.

2. Предлагаемый вариант метода КИП дает приближенное решение задачи в виде конечного отрезка ряда без указанных ограничений на ее постановку. И трансформанта, и ядро в этом варианте метода определяются из взаимосвязанной системы двух идентичных интегральных преобразований по разным переменным области. Такой подход, с одной стороны, связан с дополнительными непринципиальными трудностями решения полученной системы интегральных преобразований, а с другой, – существенно расширяет класс задач, доступных решению классическим методом КИП.

3. Тестирование разработанного варианта метода КИП на ряде задач изгиба однородных и неоднородных пластин при различных граничных условиях и действующих нагрузках показало высокую точность получаемых результатов. Р Е З Ю М Е. Запропоновано новий варіант метода скінченних інтегральних перетворень для розв'язання двовимірних лінійних крайових задач загального виду. Суть цього варіанта – побудова двох інтегральних перетворень за різними змінними області таким чином, що ядро одного перетворення є трансформантою (зображенням) іншого і навпаки. Проведено тестування розробленого підходу на задачах згину однорідних і неоднорідних пластин.

- 1. Григоренко Я.М., Василенко А.Т. и др. Численное решение задач статики ортотропных оболочек с переменными параметрами. К.: Наук. думка, 1975. 183с.
- Кошляков Н.С., Глинер Э.Б., Смирнов М.М. Дифференциальные уравнения математической физики. – М.: Физматгиз, 1962. – 767 с.
- Сеницкий Ю.Э. Исследование упругого деформирования элементов конструкций при динамических воздействиях методом конечных интегральных преобразований. – Саратов: Изд-во Саратов. ун-та, 1985. – 176 с.
- Сеницкий Ю.Э. Метод конечных интегральных преобразований обобщение классической процедуры разложения по собственным вектор-функциям // Изв. Саратов. ун-та. Новая серия. Матем., механ., информатика. – 2011. – № 3 (1). – С. 61 – 89.
- Bespalova E.I., Kitaygorodskii A.B. Advanced Kantorovich's method for biharmonic problems // J. Eng. Math. – 2003. – 46. – P. 213 – 226.
- Chang F.V. Bending of uniformly cantilever rectangular plates // Appl. Math. and Mech. 1980. N 1. P. 371 – 383.
- Chang F.V. Bending of a cantilever rectangular plate loaded discontinuously // Appl. Math. and Mech. 1981. – N 2. – P. 403 – 410.
- Fabrikant V.I. Application of generalized images method to contact problems for a transversely isotropic elastic layer on a smooth half-space // Arch. Appl. Mech. – 2011. – 81, N 7. – P. 957 – 974.
- Gasymov E.A. Application of the finite integral transform method to solving a mixed problem with integrodifferential conditions for a nonclassical equation // Differential Equations. – 2011. – 47, N 3. – P. 319 – 332.
- Grigorenko A Ya., Vovkodav O.V., Yaremchenko S.N. Stress-Strain State of Nothing Orthotropic Spherical Shells of Variable Thickness // Int. Appl. Mech. – 2012. – 48, N 1. – P. 80 – 93.
- Grigorenko Ya.M., Yaremchenko S.N. Refined Design of Longitudinally Corrugated Cylindrical Shells // Int. Appl. Mech. – 2012. – 48, N 2. – P. 205 – 2011.
- Grigorenko A.Ya., Bergulev A.C., Yaremchenko S.N. Numerical Solution of Bending Problems for Rectangular Plates // Int. Appl. Mech. – 2013. – 49, N 1. – P. 81 – 94.
- Li R., Zhong Y., Tian B., Du J. Exact Bending Solutions Orthotropic Rectangular Cantilever Thin Plates Subjected to Arbitrary Loads // Int. Appl. Mech. – 2011. – 47, N 1. – P.107 – 119.
- 14. *Senitskii Yu.E.* The Dynamic Problem of Electroelasticity for a Non-homogeneous Cylinder // Appl. Math. and Mech. 1993. **57**, N 1. P. 133 139.
- Senitskii Yu. E., Dynamics of inhomogeneous non-shallow spherical shells // Mech. Solids. 2002.
 37, N 6. P. 123 133.
- 16. Sneddon I. N. Fourier Transforms. New York: McGraw Hill Book Company Inc., 1951. 542 p.
- 17. *Timoshenko S.*, Woinowsky-Krieger S. Theory of Plates and Shells. New York: McGraw Hill Book Company Inc., 1959. 634 p.
- 18. Tranter C.J. Integral transforms in mathematical physics. New York: Wiley, 1951. 204 p.

Поступила 03.07.2012

Утверджена в печать 29.05.2014