Ю.Ю.Абросов¹, В.А.Максимюк¹, И.С.Чернышенко²

ВЛИЯНИЕ ЭЛЛИПТИЧНОСТИ ПОПЕРЕЧНОГО СЕЧЕНИЯ НА ДЕФОРМИРОВАНИЕ ДЛИННОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКИ

Институт механики им. С.П. Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: ¹desc@inmech.kiev.ua, ² prikl@inmech.kiev.ua

Abstract. A phenomenon of the membrane locking in the variational-difference method is demonstrated. A delayed but stable convergence of numerical calculations of the stress-strain state to the analytical solution is shown. This problem can supplement a collection of so-called pathological tests.

Key words: elliptical cylinder, stress-strain state, membrane locking, variational-difference method.

Введение.

Цилиндрические оболочки некругового поперечного сечения широко [14] применяются в современном инженерном деле. Так, в строительстве эллиптические полые профили сочетают в себе преимущества круглых и прямоугольных профилей [4]. В авиационной технике фюзеляжи [2] и гермокабины [16] современных самолетов часто из соображений аэродинамичности, компоновки технологических соединений, эффективности использования внутреннего объема также имеют некруговое поперечное сечение. Представляет интерес исследование напряженно-деформированного состояния (НДС) [6, 2], устойчивости [4, 16], колебаний [13] и динамики [11] таких видов конструкций и их элементов.

Одномерная задача о деформировании под внутренним давлением длинной цилиндрической оболочки эллиптического сечения (фактически кольца) имеет 150-ти летнюю историю [3, с. 326 – 338]. Однако первые аналитические решения были весьма упрощенными. Упомянутое решение [3] для оболочки под внутренней давлением давало разного знака (что является правильным при значительной эллиптичности), но равные по абсолютной величине (что является упрощенным) моменты и перемещения в двух сечениях плоскостями симметрии.

Корректные результаты, очевидно впервые (1930), были получены С.П. Тимошенко и опубликованы в первом издании монографии [12]. Моменты вычислены при помощи таблицы некоторых коэффициентов для ряда значений соотношений полуосей эллипса. Процедура получения коэффициентов не приведена и осталась неизвестной. В дальнейшем (1965) Р.Дж. Роарк (R.J.Roark) [15] представил более обширные аналогичные таблицы и привел формулы для вычисления поправок в случае неоднородного момента инерции кольца (переменной толщины). Дальнейшая история развития аналитических и графических методов кратко изложена в работе [7].

В работе [1] продемонстрировано вычислительное явление мембранного запирания [10], присущее рассматриваемой задаче вследствие больших изгибов при малых растяжениях. Показано замедленную, но устойчивую сходимость численных расчетов НДС к аналитическому решению [12]. Особый интерес представляет появление отрицательных прогибов возле длинной полуоси при малой эллиптичности.

1. Постановка задач.

Пусть [1] в декартовой системе координат (x, y, z) уравнение срединной поверхности замкнутой длинной цилиндрической оболочки эллиптического поперечного сечения (рис. 1) имеет вид

Puc. I

$$F(x,y) = \left(\frac{x}{a}\right)^{2} + \left(\frac{y}{b}\right)^{2} - 1 = 0,$$
(1)

где *а* и *b* – полуоси эллипса.

Эту поверхность отнесем к криволинейной системе координат (s, z, γ), в которой координата γ направлена по нормали к поверхности, а s – длина дуги эллипса, которая отсчитывается от точки (x = 0, y = b) по часовой стрелкой (рис. 1). Очевидно, что оба коэффициента первой квадратичной формы в этой системе будут равными единице ($A_s = A_z = 1$), а кривизна образующей – нулевая.

С помощью оригинального алгоритма численной дискретизации плоской кривой [5] уравнение (1) можно представить в параметрическом виде

$$x = x(s); \quad y = y(s), \tag{2}$$

причем форма зависимостей (2) может быть как табличной, так и алгоритмической. Тогда кривизна эллипса будет вычисляться по формуле

$$k = x'y'' - x''y' . (3)$$

Символ «штрих» в (3) и далее обозначает дифференцирование по координате s.

В длинных оболочках НДС в произвольном поперечном сечении можно принять одинаковым, поэтому задача статики будет одномерной. Пусть тогда под действием постоянного и равномерного внутреннего давления p в изотропной однородной упругой тонкой оболочке постоянной толщины h возникают малые перемещения в поперечном сечении, а вдоль оси z перемещения отсутствуют. В этом случае компоненты НДС будут зависимы только от координаты s. Очевидно, замкнутая оболочка будет стремиться к близкой к круговой форме, что приведет к большим изгибам вблизи точек пересечения эллипса плоскостями симметрии. Для расчетов НДС при таких условиях целесообразно использовать геометрически линейную теорию тонких оболочек с привлечением смешанного функционала для упрощения реализации гипотез Кирхгофа – Лява [10].

2. Основные уравнения и метод решения задачи.

Геометрические соотношения между компонентами деформаций срединной поверхности и перемещениями и углом поворота определяются формулами [1]

$$\varepsilon = u' + kw; \quad \kappa = \varphi', \tag{4}$$

где u, w – компоненты вектора перемещений вдоль осей (s, γ), соответственно. Для гипотез Кирхгофа – Лява угол φ в (4) задаем [10] с помощью метода множителей Ла-гранжа из условий равенства нулю деформации поперечного сдвига, т.е.

$$\mathcal{E}_{s\nu} = \varphi + w' - ku = 0.$$
⁽⁵⁾

Мембранная деформация произвольной точки по толщине ($\gamma = \text{const}$) оболочки, когда не учитывается изменение метрики по толщине, определяется формулой

$$e = \varepsilon + \gamma \kappa . \tag{6}$$

В длинной оболочке возникают поперечные

$$\sigma_s = Ee / \left(1 - v^2 \right) \tag{7}$$

и продольные $\sigma_z = v\sigma_s$ напряжения, где E и v – модуль упругости и коэффициент поперечной деформации изотропного материала. Напряжения (7) заменяются средними по толщине внутренними усилием и моментом

$$T = \frac{Eh}{1 - \nu^2} \varepsilon; \quad M = \frac{Eh^3}{12(1 - \nu^2)} \kappa .$$
(8)

Численный метод строим на основе вариационных принципов с использованием смешанного функционала [10]

$$\Pi\left(u, w, \varphi, T_{s\gamma}^{f}\right) = \frac{1}{2} \iint_{\Omega} \left(T\varepsilon + M\kappa - 2pw\right) d\Omega + \iint_{\Omega} T_{s\gamma}^{f} \varepsilon_{s\gamma} d\Omega .$$
⁽⁹⁾

Функционал (9) является суммой энергии деформации оболочки и дополнительного условия для реализации геометрической части (5) гипотез Кирхгофа – Лява методом множителей (T_{sy}^{f}) Лагранжа. Он зависит от четырех варьируемых функций: двух перемещений, угла поворота и усилия T_{sy}^{f} , которое имеет физическое смысл перерезывающей силы. Преимущества такого построения функционала изложены в [10].

Следует отметить использование в (9) обозначений верхним индексом для усилия, что подчеркивает отличие между усилием-формулой и усилием-функцией и имеет определенное методологическое значение при записи краевых условий и во время построения алгоритма.

Из условия стационарности функционала $\delta \prod = 0$ следуют естественные статические краевые условия, а главные геометрические условия [10] в случае симметрии, например, имеют вид

$$u = 0; \quad \varphi = 0; \quad T_{s\gamma}^{f} = 0.$$
 (10)

Для определения стационарных значений функционала (9) используем вариационно-разностный метод (ВРМ), который приводит к системе линейных алгебраических разрешающих уравнений с симметричной матрицей [10].

3. Числовые результаты и их анализ.

Выполнен расчет НДС оболочки с такими геометрическими параметрами [1]: h = 0,01 м; a = 1 м; b = 0,5 м. Материал оболочки – сталь с E = 210 ГПа; v = 0,3. Нагрузка – p = 10 кПа. Вследствие симметрии задачи (рис. 1) относительно плоскостей x = 0 и y = 0 рассмотрена область $s \in [0, s_k]$, где $s_k = 1,211$ м – четверть периметра эллипса, который вычислялся упомянутым алгоритмом [5] численной дискретизации кривой (1). Тем же алгоритмом эта дуга эллипса разбивалась на *К* узловых точек с равномерным шагом. Дифференцирование в (3) выполнялось численно по разностным формулам.

Практическая сходимость результатов расчетов НДС [1] с увеличением количества узлов *K* показана в табл. 1, где приведены безразмерные прогибы ($\tilde{w} = w/h$), напряжения на внешней (σ^+), в срединной (σ^0) и на внутренней (σ^-) поверхностях оболочки и моменты в точках $\tilde{s} = s/s_k = 0$ (короткая полуось) и $\tilde{s} = 1$ (длинная полуось).

В двух последних строках табл. 1 приведено: точные значения напряжений $\sigma^0(0) = pb/h$ и $\sigma^0(s_k) = pa/h$; моменты $M(0) = 0,629 pb^2$ и $M(s_k) = -0,870 pb^2$, куда входят табличные числовые коэффициенты (из монографии [12]) для случая b/a = 0,5; вычисленные согласно (6) и (8), соответственно, по предыдущим величинам (σ^0 , M) напряжения $\sigma^+ = \sigma^0 + 6M/h^2$ и $\sigma^- = \sigma^0 - 6M/h^2$.

Таблица 1

K	ŝ	ŵ	$\sigma^{\scriptscriptstyle +}$, МПа	σ^0 , МПа	σ^- , МПа	M , H
641	0	2,20	87,88	0,5794	-86,72	1455
	1	-1,01	-109,4	0,6081	110,6	-1833
1281	0	2,36	93,03	0,5273	-91,97	1541
	1	-1,10	-124,0	0,8922	125,7	-2080
2561	0	2,41	94,47	0,5127	-93,45	1566
	1	-1,12	-128,0	0,9724	130,0	-2150
5121	0	2,42	94,85	0,5088	-93,84	1572
	1	-1,13	-129,1	0,9931	131,1	-2168
10241	0	2,42	94,96	0,5077	-93,94	1574
	1	-1,13	-129,3	0,9981	131,3	-2171
[12]	0	-	94,85	0,5	-93,85	1572,5
	1	-	-129,5	1,0	131,5	-2175

Результаты расчетов в табл. 1 демонстрируют замедленную, но устойчивую сходимость со сгущением сетки рассчитанных ВРМ компонент НДС к аналитическому решению [12]. Совпадение в двух значащих цифрах максимальных величин прогибов, напряжений или моментов достигается при K = 2561, а совпадение мембранных напряжений σ^0 в срединной поверхности – несколько позднее при K = 5121. При K < 321 настолько проявляется завышенная фиктивная жесткость оболочки, что в вычисленных моментах возле большей полуоси меняется знак. Такие нежелательные вычислительные эффекты обусловлены большими изгибами при малых растяжениях и называются мембранным запиранием или вырождением [10].

Распределение прогибов \tilde{w} в поперечном сечении \tilde{s} для b/a = 0,5 (кривая 1) и b/a = 0,9 (кривая 2) показано на рис. 2. При таком значительном уменьшении эллиптичности разность прогибов возле длинной и короткой полуосей уменьшается незначительно. Видно, что под внутренним давлением оболочка эллиптического поперечного сечения стремится к круговой форме, что обусловливает отрицательные прогибы возле длинной полуоси.

Особый интерес представляет появление отрицательных прогибов возле длинной полуоси при малой эллиптичности. Влияние эллиптичности поперечного сечения на деформирование оболочки показано в табл. 2, где приведено распределение прогибов \tilde{w} в поперечном сечении \tilde{s} для ряда малых значений эллиптичности $b/a = = 0.9; \dots 0.999999$. В последней строке табл. 2 дана четверть периметра эллипса (s_k/h).

Вычисления проведены с последовательным десятикратным уменьшением эллиптичности, начиная с незначительного, на первый взгляд, значения b/a = 0.9. Оказалось, что на третьем шаге уменьшения прогибы по всему сечению были положительными. Это позволило предположить, что значение $b/a \sim 0.99995$ в данном случае представляет собой критическую эллиптичность, выше которой будут иметь место отрицательные прогибы возле длинной полуоси, что и подтверждает предпоследний столбец табл. 2. Здесь прогиб возле длинной оси положительный, но на три порядка меньший, чем возле малой полуоси.

Отметим, что в случае кругового цилиндра (b/a=1) имеем: $\frac{w}{h} = \frac{a^2}{h^2} (1-v^2) \frac{p}{E} \approx 4,33 \cdot 10^{-4}, s_k/h = \pi a/2h \approx 157,0796.$

Таблииа 2

b/a	0,9	0,99	0,9999	0,99995	0,99999
0	7,85·10 ⁻¹	8,62·10 ⁻²	1,30.10-3	8,66.10-4	5,20.10-4
0,1	7,51·10 ⁻¹	8,20·10 ⁻²	1,26.10-3	8,45.10-4	5,16.10-4
0,2	6,53·10 ⁻¹	7,00·10 ⁻²	1,13.10-3	7,83.10-4	5,03.10-4
0,3	4,98·10 ⁻¹	5,12·10 ⁻²	9,42·10 ⁻⁴	6,88·10 ⁻⁴	4,84.10-4
0,4	2,99·10 ⁻¹	2,76·10 ⁻²	7,01.10-4	5,67.10-4	4,60.10-4
0,5	7,43·10 ⁻²	1,24.10-3	4,33.10-4	4,33.10-4	4,33.10-4
0,6	-1,57·10 ⁻¹	-2,51·10 ⁻²	1,66.10-4	3,00.10-4	4,07.10-4
0,7	-3,71·10 ⁻¹	-4,90·10 ⁻²	-7,53·10 ⁻⁵	1,79.10-4	3,82.10-4
0,8	-5,45·10 ⁻¹	-6,80·10 ⁻²	-2,67·10 ⁻⁴	8,32.10-5	3,63.10-4
0,9	-6,59·10 ⁻¹	-8,02·10 ⁻²	-3,90·10 ⁻⁴	2,18.10-5	3,51.10-4
1	-6,98·10 ⁻¹	-8,44·10 ⁻²	-4,32·10 ⁻⁴	5,86.10-7	3,47.10-4
s_k/h	149,3290	156,2952	157,0718	157,0757	157,0788

Из результатов на рис. 2 и табл. 2 следует, что с уменьшением эллиптичности изменение области отрицательных прогибов происходит немонотонно. Сначала она несколько увеличивается (рис. 2), а затем уменьшается и исчезает (табл. 2).

Заключение.

Продемонстрировано вычислительное явление мембранного запирания в ВРМ на основе смешанного функционала, в котором геометрическая часть гипотез Кирхгофа – Лява реализована методом множителей Лагранжа. Показано замедленную, но устойчивую сходимость численных расчетов НДС к аналитическому решению. Численно обнаружен эффект смены знака прогибов при незначительной, на первый взгляд,

эллиптичности. Данная задача может пополнить коллекцию, так называемых, патологических тестов [8]. С точки зрения явлений запирания двумерное деформирование цилиндрической оболочки с закрепленными торцами будет более простой задачей за счет уменьшения изгибов вследствие подкрепляющего действия торцов. Следует ожидать, что в случае гибких цилиндрических оболочек с отверстиями [9] эффект эллиптичности поперечного сечения проявится еще в большей степени. Очевидно, для улучшения сходимости целесообразно использовать смешанные функционалы, в которых дополнительно варьируется мембранная деформация.

Р Е З Ю М Е. Продемонстровано обчислювальне явище мембранного «замикання» в варіаційно-різницевому методі. Показано сповільнену, але стійку збіжність чисельних розрахунків напружено-деформованого стану до аналітичного розв'язку. Дана задача може доповнити колекцію так званих патологічних тестів.

- Абросов Ю.Ю., Максимюк В.А., Тарасюк В.С. Деформування довгої тонкої циліндричної оболонки еліптичного перерізу // Вісник Запорізького національного університету. Фізико-математичні науки. – 2015. – № 2. – С. 5 – 10.
- Boulle A., Dubé M., Gosselin F.P. Parametric study of an elliptical fuselage made of a sandwich composite structure // Mech. Res. Comm. – 2015. – 69. – P. 129 – 135.
- Bresse J. A. C. H. Cours de mécanique appliquée. Première partie. Résistance des matériaux et stabilité des constructions. – Deuxième Édition. – Paris: Gauthier-Villars, 1866. – 536 p.
- Chan T.M., Gardner L., Law K.H. Structural design of elliptical hollow sections: a review // Proc. Inst. Civil. Engrs.: Struct. Build. – 2010. – 163, N 6. – P. 391 – 402.
- Chernyshenko I.S., Maksimyuk V.A. On the Stress-Strain State of Toroidal Shells of Elliptical Cross Section Formed From Nonlinear Elastic Orthotropic Materials // Int. Appl. Mech. – 2000. – 36, N 1. – P. 90 – 97.
- Grigorenko Ya. M., Rozhok L. S. Applying Discrete Fourier Series to Solve Problems of the Stress State of Hollow Noncircular Cylinders // Int. Appl. Mech. – 2014. – 50, N 2. – P. 105 – 127.
- Holland M. Pressurized member with elliptic median line: effect of radial thickness function // J. Mech. Engng Sci. – 1976. – 18, N 5. – P. 245 – 253.
- Mallikarjuna Rao K., Shrinivasa U. A set of pathological tests to validate new finite elements // Sadhana. – 2001. – 26. – P. 549 – 590.
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Stress–Strain State of Flexible Orthotropic Cylindrical Shells with a Reinforced Circular Hole // Int. Appl. Mech. – 2015. – 51, N 4. – P. 425–433.
- Maksimyuk V.A., Storozhuk E.A., Chernyshenko I.S. Variational Finite-Difference Methods in Linear and Nonlinear Problems of the Deformation of Metallic and Composite Shells (review) // Int. Appl. Mech. - 2012. - 48, N 6. - P. 613 - 687.
- 11. *Meish V. F., Kepenach M. P.* Nonstationary Dynamics of Longitudinally Reinforced Elliptic Cylindrical Shells // Int. Appl. Mech. 2014. **50**, N 6. P. 677 682.
- Timoshenko S. Strength of materials. Part II, Advanced theory and problems. 2nd Ed. New York: D. Van Nostrand Company, 1941. – 510 p.
- Tornabene F, Fantuzzi N, Bacciocchi M, Dimitri R. Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method // Thin Walled Struct. 2015.–97. P. 114–129.
- Soldatos K. P. Mechanics of cylindrical shells with non-circular cross-section: a survey // Appl. Mech. Rev. – 1999. – 52, N 8. – P. 237 – 274.
- 15. Young W.C., Budynas R.G. Roark's Formulas for Stress and Strain. 7th ed. New York: McGraw-Hill, 2002. 852 p.
- Zheleznov L.P., Kabanov V.V., Boiko D.V. Nonlinear deformation and stability of oval cylindrical shells under pure bending and internal pressure // J. Appl. Mech. Tech. Phys. – 2006. – 47, N 3. – P. 406 – 411.

Поступила 28.12.2015

Утверждена в печать 05.07.2016