А.В.Подворный¹, Н.П.Семенюк², В.М.Трач¹

УСТОЙЧИВОСТЬ НЕОДНОРОДНЫХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК ПРИ РАСПРЕДЕЛЕННОМ ВНЕШНЕМ ДАВЛЕНИИ В ПРОСТРАНСТВЕННОЙ ПОСТАНОВКЕ

¹Национальный университет водного хозяйства и природопользования; ул. Соборная, 11, 33018, Ровно, Украина; e-mail: trach-vm@ukr.net; ²Институт механики им. С.П.Тимошенко НАН Украины, ул. Нестерова, 3, 03057, Киев, Украина; compos@inmech.kiev.ua

Abstract. A numerical solution of the problem on stability of the anisotropic cylindrical shells under external pressure in three-dimensional statement is obtained. It is assumed that the anisotropic material has one only plane of elastic symmetry. The using of Bubnow – Galiorkin method in approximation of unknown functions by trigonometric series by the longitudinal coordinate permitted to reduce the three-dimensional problem to one-dimensional one. To solve the reduced system the method of discrete orthogonalization is used. The testing of obtained results is carried out.

Key words: cylindrical shells, buckling, distributed pressure, anisotropic material, discrete-orthogo-nalization method, Bubnov – Galerkin method, three-dimentional statement.

Введение.

Исследованию напряженно-деформированного состояния (НДС) и устойчивости оболочечных конструкций из материалов с различной степенью анизотропии посвящено значительное количество работ [1 - 9, 12 - 16 и др.]. Критические значения для анизотропных оболочек на основе двухмерных теорий обстоятельно исследованы в работе [1]. НДС и устойчивость оболочек вращения из изотропных и ортотропных материалов в трехмерной постановке детально рассмотрены в работах [2 - 9, 12 - 16 и др.]. В работах [4, 5] решена задача трехмерной устойчивости цилиндров из ортотропных материалов при разных нагрузках. Некоторые подходы к расчету устойчивости цилиндрических анизотропных оболочек в пространственной постановке на основе метода конечных элементов реализованы в [2, 9] только для отдельных случаев механических свойств материалов.

Отсутствие всесторонних исследований устойчивости анизотропных оболочек в трехмерной постановке, в частности, изготовленных из композитов, упругие свойства которых имеют одну плоскость упругой симметрии, связано со сложностью решения таких задач, что, как известно, вызвано связанностью деформаций растяжения и сдвига, изгиба и кручения. Их учет в расчетных моделях приводит к более громоздким разрешающим уравнениям по сравнению с уравнениями устойчивости для ортотропных оболочек. Однако это позволяет конструировать из таких материалов оболочечные системы, которые могут безопасно воспринимать эксплуатационные нагрузки и быть при этом оптимальными как по критическим нагрузкам, так и по весу. Кроме того, важным аргументом является также то, что полученные трехмерные решения могут быть использованы в качестве эталонных при расчете устойчивости оболочечных конструкций на основе численных методов с использованием двумерных теорий.

ISSN0032-8243. Прикл. механика, 2017, **53**, № 6

1. Постановка задачи.

Рассмотрим упругие цилиндрические оболочки, отнесенные к цилиндрической системе координат r, z, θ . Оси z и θ совпадают с линиями главных кривизн, r – нормальная координата по толщине цилиндра. Анизотропия материала обусловлена поворотом главных направлений упругости материала относительно оси z принятой системы координат (см. рис.1).

Нелинейные уравнения равновесия запишем в проекциях напряжений на оси недеформированной поверхности оболочки согласно работе [9]:

$$\frac{\partial \hat{\sigma}_{rr}}{\partial r} = -\frac{1}{r} \left[\hat{\sigma}_{rr} + r \frac{\partial}{\partial z} (\hat{\tau}_{zr}) + \frac{\partial}{\partial \theta} (\hat{\tau}_{\theta r}) - \hat{\sigma}_{\theta \theta} + rF_r \right];$$

$$\frac{\partial \hat{\tau}_{rz}}{\partial r} = -\frac{1}{r} \left[\hat{\tau}_{rz} + r \frac{\partial}{\partial z} (\hat{\sigma}_{zz}) + \frac{\partial}{\partial \theta} (\hat{\tau}_{\theta z}) + rF_z \right];$$

$$\frac{\partial \hat{\tau}_{r\theta}}{\partial r} = -\frac{1}{r} \left[\hat{\tau}_{r\theta} + \hat{\tau}_{\theta r} + r \frac{\partial}{\partial z} (\hat{\tau}_{z\theta}) + \frac{\partial}{\partial \theta} (\hat{\sigma}_{\theta \theta}) + rF_{\theta} \right],$$
(1)

где $\hat{\sigma}$, $\hat{\tau}$ – проекции, связанные с напряжениями в криволинейной системе координат выражениями:

$$\begin{aligned} \hat{\sigma}_{zz} &= \left(1 + e_{zz}\right) \sigma_{zz} + \left(\frac{1}{2}e_{z\theta} - \omega_{r}\right) \tau_{z\theta} + \left(\frac{1}{2}e_{zr} + \omega_{\theta}\right) \tau_{zr}; \\ \hat{\sigma}_{z\theta} &= \left(\frac{1}{2}e_{z\theta} + \omega_{3}\right) \sigma_{zz} + \left(1 + e_{\theta\theta}\right) \tau_{z\theta} + \left(\frac{1}{2}e_{\theta r} - \omega_{z}\right) \tau_{zr}; \\ \hat{\sigma}_{zr} &= \left(\frac{1}{2}e_{zr} - \omega_{\theta}\right) \sigma_{zz} + \left(\frac{1}{2}e_{\theta r} + \omega_{z}\right) \tau_{z\theta} + \left(1 + e_{rr}\right) \tau_{zr}; \\ \hat{\sigma}_{\theta z} &= \left(1 + e_{zz}\right) \tau_{z\theta} + \left(\frac{1}{2}e_{z\theta} - \omega_{r}\right) \sigma_{\theta\theta} + \left(\frac{1}{2}e_{zr} + \omega_{\theta}\right) \tau_{\theta r}; \\ \hat{\sigma}_{\theta\theta} &= \left(\frac{1}{2}e_{z\theta} + \omega_{3}\right) \tau_{z\theta} + \left(1 + e_{\theta\theta}\right) \sigma_{\theta\theta} + \left(\frac{1}{2}e_{\theta r} - \omega_{z}\right) \tau_{\theta r}; \end{aligned}$$
(2)
$$\hat{\sigma}_{\theta r} &= \left(\frac{1}{2}e_{zr} - \omega_{\theta}\right) \tau_{z\theta} + \left(\frac{1}{2}e_{\theta r} + \omega_{z}\right) \sigma_{\theta\theta} + \left(1 + e_{rr}\right) \tau_{\theta r}; \end{aligned}$$

$$\begin{split} \hat{\sigma}_{rz} &= \left(1 + e_{zz}\right) \tau_{zr} + \left(\frac{1}{2}e_{z\theta} - \omega_r\right) \tau_{\theta r} + \left(\frac{1}{2}e_{zr} + \omega_{\theta}\right) \sigma_{rr} ;\\ \hat{\sigma}_{r\theta} &= \left(\frac{1}{2}e_{z\theta} + \omega_3\right) \tau_{zr} + \left(1 + e_{\theta\theta}\right) \tau_{\theta r} + \left(\frac{1}{2}e_{\theta r} - \omega_z\right) \sigma_{rr} ;\\ \hat{\sigma}_{rr} &= \left(\frac{1}{2}e_{zr} - \omega_{\theta}\right) \tau_{zr} + \left(\frac{1}{2}e_{\theta r} + \omega_z\right) \tau_{\theta r} + \left(1 + e_{rr}\right) \sigma_{rr} .\end{split}$$

Линейные деформации и углы поворотов вокруг осей (2) определяются согласно [9]:

$$e_{zz} = \frac{\partial u_z}{\partial z}; \quad e_{\theta\theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{1}{r} u_r; \quad e_{rr} = \frac{\partial u_r}{\partial r};$$

$$e_{z\theta} = \frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial u_z}{\partial \theta}; \quad e_{rz} = \frac{\partial u_r}{\partial z} + \frac{\partial u_z}{\partial r}; \quad e_{r\theta} = \frac{\partial u_{\theta}}{\partial r} - \frac{1}{r} u_{\theta} + \frac{1}{r} \frac{\partial u_r}{\partial \theta};$$

$$\omega_z = \frac{1}{2r} \frac{\partial u_r}{\partial \theta} - \frac{1}{2r} u_{\theta} - \frac{1}{2} \frac{\partial u_{\theta}}{\partial r}; \quad \omega_{\theta} = \frac{1}{2} \frac{\partial u_z}{\partial r} - \frac{1}{2} \frac{\partial u_r}{\partial z}; \quad \omega_r = \frac{1}{2} \frac{\partial u_{\theta}}{\partial z} - \frac{1}{2r} \frac{\partial u_z}{\partial \theta}.$$
(3)

Проекции напряжений на оси принятой системы координат при использовании выражений (3) принимают такой вид:

$$\begin{split} \hat{\sigma}_{rr} &= \sigma_{rr} + \sigma_{rr} \frac{\partial u_r}{\partial r} + \tau_{rz} \frac{\partial u_r}{\partial z} + \tau_{r\theta} \frac{1}{r} \frac{\partial u_r}{\partial \theta} - \tau_{r\theta} \frac{1}{r} u_{\theta} ; \\ \hat{\sigma}_{zz} &= \sigma_{zz} + \sigma_{zz} \frac{\partial u_z}{\partial z} + \tau_{z\theta} \frac{1}{r} \frac{\partial u_z}{\partial \theta} + \tau_{rz} \frac{\partial u_z}{\partial r} ; \\ \hat{\sigma}_{\theta\theta} &= \sigma_{\theta\theta} + \sigma_{\theta\theta} \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \sigma_{\theta\theta} \frac{1}{r} u_r + \tau_{z\theta} \frac{\partial u_{\theta}}{\partial z} + \tau_{r\theta} \frac{\partial u_{\theta}}{\partial z} ; \\ \hat{\tau}_{rz} &= \tau_{rz} + \tau_{rz} \frac{\partial u_z}{\partial z} + \sigma_{rr} \frac{\partial u_z}{\partial r} + \tau_{r\theta} \frac{1}{r} \frac{\partial u_z}{\partial \theta} ; \\ \hat{\tau}_{zr} &= \tau_{rz} + \tau_{rz} \frac{\partial u_r}{\partial r} + \sigma_{zz} \frac{\partial u_r}{\partial z} + \tau_{z\theta} \frac{1}{r} \frac{\partial u_r}{\partial \theta} - \tau_{z\theta} \frac{1}{r} u_{\theta} ; \\ \hat{\tau}_{r\theta} &= \tau_{r\theta} + \tau_{r\theta} \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \tau_{r\theta} \frac{1}{r} u_r + \sigma_{rr} \frac{\partial u_{\theta}}{\partial r} + \tau_{rz} \frac{\partial u_{\theta}}{\partial z} ; \\ \hat{\tau}_{\thetar} &= \tau_{z\theta} + \tau_{r\theta} \frac{\partial u_r}{\partial r} + \tau_{z\theta} \frac{\partial u_r}{\partial z} + \sigma_{\theta\theta} \frac{1}{r} \frac{\partial u_r}{\partial \theta} - \sigma_{\theta\theta} \frac{1}{r} u_{\theta} ; \\ \hat{\tau}_{z\theta} &= \tau_{z\theta} + \tau_{z\theta} \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \tau_{z\theta} \frac{1}{r} u_r + \sigma_{zz} \frac{\partial u_{\theta}}{\partial z} + \tau_{rz} \frac{\partial u_{\theta}}{\partial z} ; \\ \hat{\tau}_{\thetaz} &= \tau_{z\theta} + \tau_{z\theta} \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \tau_{z\theta} \frac{1}{r} u_r + \sigma_{zz} \frac{\partial u_{\theta}}{\partial z} + \tau_{rz} \frac{\partial u_{\theta}}{\partial r} ; \\ \hat{\tau}_{\thetaz} &= \tau_{z\theta} + \tau_{z\theta} \frac{1}{r} \frac{\partial u_z}{\partial z} + \tau_{r\theta} \frac{\partial u_z}{\partial r} + \sigma_{\theta\theta} \frac{1}{r} \frac{\partial u_z}{\partial z} . \end{split}$$

Здесь u_z , u_{θ} , u_r – перемещения точек цилиндра в направлении осей z, θ , r, соответственно.

Соотношения обобщенного закона Гука, связывающие компоненты деформаций и напряжений, в случае материала с одной плоскостью симметрии имеют вид:

$$e_{zz} = a_{11}\sigma_{zz} + a_{12}\sigma_{\theta\theta} + a_{13}\sigma_{rr} + a_{16}\tau_{z\theta} ; \quad e_{\theta\theta} = a_{12}\sigma_{zz} + a_{22}\sigma_{\theta\theta} + a_{23}\sigma_{rr} + a_{26}\tau_{z\theta} ;$$

$$e_{rr} = a_{13}\sigma_{zz} + a_{23}\sigma_{\theta\theta} + a_{33}\sigma_{rr} + a_{36}\tau_{z\theta} ; \quad e_{r\theta} = a_{44}\tau_{r\theta} + a_{45}\tau_{rz} ; \quad (5)$$

$$e_{rz} = a_{45}\tau_{r\theta} + a_{55}\tau_{rz} ; \quad e_{z\theta} = a_{16}\sigma_{zz} + a_{26}\sigma_{\theta\theta} + a_{36}\sigma_{rr} + a_{66}\tau_{z\theta} .$$

В (5) a_{ij} ($i, j = \overline{1, 6}$) – константы упругости анизотропного материала, которые определим согласно формул [7]:

$$a_{11} = a'_{11} \cos^4 \psi + (2a'_{12} + a'_{66}) \cos^2 \psi \sin^2 \psi + a'_{22} \sin^4 \psi ;$$

$$a_{22} = a'_{22} \cos^4 \psi + (2a'_{12} + a'_{66}) \cos^2 \psi \sin^2 \psi + a'_{11} \sin^4 \psi ;$$

$$a_{12} = a'_{12} + (a'_{11} + a'_{22} - 2a'_{12} - a'_{66}) \sin^2 \psi \cos^2 \psi ;$$

$$a_{66} = a'_{66} + 4(a'_{11} + a'_{22} - 2a'_{12} - a'_{66}) \cos^2 \psi \sin^2 \psi ;$$

$$a_{16} = \left[2a'_{22} \sin^2 \psi - 2a'_{11} \cos^2 \psi + (2a'_{12} + a'_{66}) (\cos^2 \psi - \sin^2 \psi) \right] \cos \psi \sin \psi ;$$

$$a_{26} = \left[2a'_{22} \cos^2 \psi - 2a'_{11} \sin^2 \psi - (2a'_{12} + a'_{66}) (\cos^2 \psi - \sin^2 \psi) \right] \cos \psi \sin \psi ;$$

$$a_{13} = a'_{13} \cos^2 \psi + a'_{23} \sin^2 \psi ; \quad a_{23} = a'_{23} \cos^2 \psi + a'_{13} \sin^2 \psi ;$$

$$(6)$$

$$a_{36} = 2(a'_{23} - a'_{13}) \cos \psi \sin \psi ; \quad a_{33} = a'_{33}; \quad a_{44} = a'_{44} \cos^2 \psi + a'_{55} \sin^2 \psi ;$$

$$a_{55} = a'_{55} \cos^2 \psi + a'_{44} \sin^2 \psi ; \quad a_{45} = (a'_{44} - a'_{55}) \cos \psi \sin \psi ,$$

где ψ – угол поворота главных направлений упругости исходного ортотропного материала с константами упругости a'_{ij} относительно оси r принятой системы координат (см. рис. 1).

Соотношения обобщенного закона Гука для материала с одной плоскостью упругой симметрии (5) приведем к виду [3], который будем использовать для решения системы (1), т.е.

$$\sigma_{zz} = b_{11}e_{zz} + b_{12}e_{\theta\theta} + b_{16}e_{z\theta} + c_{1}\sigma_{rr}; \quad \sigma_{\theta\theta} = b_{12}e_{zz} + b_{22}e_{\theta\theta} + b_{26}e_{z\theta} + c_{2}\sigma_{rr};$$

$$\tau_{z\theta} = b_{16}e_{zz} + b_{26}e_{\theta\theta} + b_{66}e_{z\theta} + c_{3}\sigma_{rr}; \quad e_{rr} = -c_{1}e_{zz} - c_{2}e_{\theta\theta} - c_{3}e_{z\theta} + c_{4}\sigma_{rr}; \quad (7)$$

$$e_{rz} = a_{45}\tau_{r\theta} + a_{55}\tau_{rz}; \quad e_{r\theta} = a_{44}\tau_{r\theta} + a_{45}\tau_{rz},$$

где b_{ij} (i, j = 1, 2, 6), c_i ($i = \overline{1, 4}$) – характеристики, которые определяются с использованием механических констант a_{ij} ($i, j = \overline{1, 3}; 5; 6$) материала оболочки [3].

2. Решение задачи о докритическом состоянии оболочки.

Для решения задачи о докритическом состоянии предположим, что до момента потери устойчивости оболочка деформируется с сохранением осевой симметрии. В этом случае уравнения равновесия (1) для решения линейной задачи запишем в виде:

$$\frac{\partial \sigma_{rr}^{0}}{\partial r} = -\frac{1}{r} \bigg[\sigma_{rr}^{0} + r \frac{\partial}{\partial z} (\tau_{rz}^{0}) - \sigma_{\theta\theta}^{0} + rF_{r}^{0} \bigg]; \quad \frac{\partial \tau_{rz}^{0}}{\partial r} = -\frac{1}{r} \bigg[\tau_{rz}^{0} + r \frac{\partial}{\partial z} (\sigma_{zz}^{0}) + rF_{z}^{0} \bigg]; \\ \frac{\partial \tau_{r\theta}^{0}}{\partial r} = -\frac{1}{r} \bigg[2\tau_{r\theta}^{0} + r \frac{\partial}{\partial z} (\tau_{z\theta}^{0}) + rF_{\theta}^{0} \bigg].$$

$$\tag{8}$$

Связь между составляющими линейных деформаций и перемещениями (3) принимает вид:

$$e_{zz}^{0} = \frac{\partial u_{z}^{0}}{\partial z}; \quad e_{\theta\theta}^{0} = \frac{1}{r}u_{r}^{0}; \quad e_{rr}^{0} = \frac{\partial u_{r}^{0}}{\partial r};$$
$$e_{z\theta}^{0} = \frac{\partial u_{\theta}^{0}}{\partial z}; \quad e_{rz}^{0} = \frac{\partial u_{r}^{0}}{\partial z} + \frac{\partial u_{z}^{0}}{\partial r}; \quad e_{r\theta}^{0} = \frac{\partial u_{\theta}^{0}}{\partial r} - \frac{1}{r}u_{\theta}^{0}.$$

$$(9)$$

Заменяя в (7) деформации e_{zz} , $e_{\theta\theta}$, $e_{z\theta}$ выражениями (9), получим полную систему дифференциальных уравнений в частных производных:

$$\frac{\partial \sigma_{rr}^{0}}{\partial r} = \frac{c_{2} - 1}{r} \sigma_{rr}^{0} - \frac{\partial \tau_{rz}^{0}}{\partial z} + \frac{b_{22}}{r^{2}} u_{r}^{0} + \frac{b_{12}}{r} \frac{\partial u_{z}^{0}}{\partial z} + \frac{b_{26}}{r} \frac{\partial u_{\theta}^{0}}{\partial z};$$

$$\frac{\partial \tau_{rz}^{0}}{\partial r} = -c_{1} \frac{\partial \sigma_{rr}^{0}}{\partial z} - \frac{1}{r} \tau_{rz}^{0} - \frac{b_{12}}{r} \frac{\partial u_{r}^{0}}{\partial z} - b_{11} \frac{\partial^{2} u_{z}^{0}}{\partial z^{2}} - b_{16} \frac{\partial^{2} u_{\theta}^{0}}{\partial z^{2}};$$

$$\frac{\partial \tau_{r\theta}^{0}}{\partial r} = -\frac{2}{r} \tau_{r\theta}^{0} - b_{66} \frac{\partial^{2} u_{\theta}^{0}}{\partial z^{2}} - c_{3} \frac{\partial \sigma_{rr}^{0}}{\partial z} - \frac{b_{26}}{r} \frac{\partial u_{r}^{0}}{\partial z} - b_{16} \frac{\partial^{2} u_{\theta}^{0}}{\partial z^{2}};$$

$$\frac{\partial u_{r}^{0}}{\partial r} = c_{4} \sigma_{rr}^{0} - \frac{c_{2}}{r} u_{r}^{0} - c_{1} \frac{\partial u_{z}^{0}}{\partial z} - c_{3} \frac{\partial u_{\theta}^{0}}{\partial z}; \quad \frac{\partial u_{z}^{0}}{\partial r} = a_{55} \tau_{rz}^{0} + a_{45} \tau_{r\theta}^{0} - \frac{\partial u_{r}^{0}}{\partial z};$$

$$\frac{\partial u_{\theta}^{0}}{\partial r} = a_{45} \tau_{rz}^{0} + a_{44} \tau_{r\theta}^{0} + \frac{1}{r} u_{\theta}^{0}.$$
(10)

Решение системы (10) должно удовлетворять условиям на боковых поверхностях оболочки ($r = r_0$, $r = r_n$):

$$\sigma_{rr}(r,z) = \pm q_{r0}(z); \quad \tau_{rz0}(r,z) = 0; \quad \tau_{r\theta0}(r,z) = 0;$$

$$\sigma_{rr}(r,z) = \pm q_{rn}(z); \quad \tau_{rzn}(r,z) = 0; \quad \tau_{r\theta n}(r,z) = 0 \quad (11)$$

и условиям на торцах (z = 0, z = l):

$$\sigma_{zz} = 0; \quad u_r = u_\theta = 0 , \tag{12}$$

что может соответствовать наличию на них диафрагм абсолютно жестких в своих плоскостях и гибких – из них.

В выражениях (11) $q_{r0}(z)$, $q_{rn}(z)$ – распределенное по боковым поверхностям оболочки внутреннее и внешнее давления, соответственно.

Приведем систему (10) к нормальному виду Коши [3]. Для приведения двухмерной задачи к одномерной используем метод Бубнова – Галеркина. Разложим все функции в тригонометрические ряды по координате вдоль образующей *z* так, чтобы они удовлетворяли граничным условиям (12):

$$\sigma_{rr}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{1}^{0},_{p}(r) + y_{1}^{\prime},_{m}^{0}(r) \right] \sin l_{m}z ;$$

$$\tau_{rz}^{0}(r,z) = \sum_{m=0}^{\infty} \left[y_{2}^{0},_{p}(r) + y_{2}^{\prime},_{m}^{0}(r) \right] \cos l_{m}z ;$$

$$\tau_{r\theta}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{3}^{0},_{p}(r) + y_{3}^{\prime},_{m}^{0}(r) \right] \sin l_{m}z ;$$

$$u_{r}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{4}^{0},_{p}(r) + y_{4}^{\prime},_{m}^{0}(r) \right] \sin l_{m}z ;$$

$$u_{z}^{0}(r,z) = \sum_{m=0}^{\infty} \left[y_{5}^{0},_{p}(r) + y_{5}^{\prime},_{m}^{0}(r) \right] \cos l_{m}z ;$$

$$u_{\theta}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{6}^{0},_{p}(r) + y_{6}^{\prime},_{m}^{0}(r) \right] \sin l_{m}z .$$
(13)

После выполнения процедуры метода Бубнова – Галеркина получим систему обыкновенных дифференциальных уравнений двенадцатого порядка в нормальной форме Коши:

$$\frac{d\overline{y}^{0}}{dr} = T(r)\overline{y}^{0}, \quad T(r) = t_{i,j}^{0}(r) \quad (i, j = \overline{1, 12}),$$

$$\overline{y}^{0} = \left\{ y_{1}^{0},_{p}; y_{2}^{0},_{p}; y_{3}^{0},_{p}; y_{4}^{0},_{p}; y_{5}^{0},_{p}; y_{6}^{0},_{p}; y_{1}^{/0},_{m}; y_{2}^{/0},_{m}; y_{3}^{/0},_{m}; y_{4}^{/0},_{m}; y_{5}^{/0},_{m}; y_{6}^{/0},_{m} \right\},$$

$$(14)$$

где ненулевые элементы матрицы T(r) принимают следующий вид:

$$t_{1,1}^{0} = \frac{c_2 - 1}{r}; \quad t_{1,2}^{0} = l_p; \quad t_{1,4}^{0} = \frac{b_{22}}{r^2}; \quad t_{1,5}^{0} = -l_p \frac{b_{12}}{r}; \quad t_{1,12}^{0} = \sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_m;$$

$$t_{2,1}^{0} = -c_1 l_p; \quad t_{2,2}^{0} = -\frac{1}{r}; \quad t_{2,4}^{0} = -\frac{b_{12}}{r} l_p; \quad t_{2,5}^{0} = b_{11} l_p^2; \quad t_{2,12}^{0} = \sum_{m=0}^{\infty} \varphi(m,p) b_{16} l_m^2; \quad t_{3,3}^{0} = -\frac{2}{r};$$

$$t_{3,6}^{0} = b_{66} l_p^2; \quad t_{3,7}^{0} = -\sum_{m=1}^{\infty} \varphi(p,m) c_3 l_m; \quad t_{3,10}^{0} = -\sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_m; \quad t_{3,11}^{0} = \sum_{m=1}^{\infty} \varphi(p,m) b_{16} l_m^2; \quad t_{3,2}^{0} = a_{55};$$

$$\begin{split} t^{0}_{5,4} &= -l_{p} \; ; \; t^{0}_{5,9} = \sum_{m=0}^{\infty} \varphi(m,p) \, a_{45} \; ; \; t^{0}_{6,3} = a_{44} \; ; \; t^{0}_{6,6} = \frac{1}{r} \; ; \; t^{0}_{6,8} = \sum_{m=1}^{\infty} \varphi(p,m) \, a_{45} \; ; \\ t^{0}_{7,6} &= \sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m} \; ; \; t^{0}_{7,7} = \frac{c_{2}-1}{r} \; ; \; t^{0}_{7,8} = l_{p} \; ; \; t^{0}_{7,10} = \frac{b_{22}}{r^{2}} \; ; \; t^{0}_{7,11} = -l_{p} \frac{b_{12}}{r} \; ; \\ t^{0}_{8,6} &= \sum_{m=0}^{\infty} \varphi(m,p) \frac{b_{26}}{r} l_{m} \; ; \; t^{0}_{8,7} = -c_{1}l_{p} \; ; \; t^{0}_{8,8} = -\frac{1}{r} \; ; \; t^{0}_{8,10} = -\frac{b_{12}}{r} l_{p} \; ; \; t^{0}_{8,11} = b_{11}l_{p}^{2} \; ; \; (15) \\ t^{0}_{9,1} &= -\sum_{m=1}^{\infty} \varphi(p,m) c_{3}l_{m} \; ; \; t^{0}_{9,4} = -\sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m} \; ; \; t^{0}_{9,5} = \sum_{m=1}^{\infty} \varphi(p,m) b_{16}l_{m}^{2} \; ; \; t^{0}_{9,9} = -\frac{2}{r} \; ; \\ t^{0}_{9,12} &= b_{66}l_{p}^{2} \; ; \; t^{0}_{10,6} = -\sum_{m=1}^{\infty} \varphi(p,m) c_{3}l_{m} \; ; \; t^{0}_{1,0} = -c_{4} \; ; \; t^{0}_{1,0,10} = -\frac{c_{2}}{r} \; ; \; t^{0}_{1,0,11} = c_{1}l_{p} \; ; \\ t^{0}_{1,13} &= \sum_{m=0}^{\infty} \varphi(m,p) \, a_{45} \; ; \; t^{0}_{1,8} = a_{55} \; ; \; t^{0}_{1,10} = -l_{p} \; ; \; t^{0}_{1,22} = \sum_{m=1}^{\infty} \varphi(p,m) a_{45} \; ; \; t^{0}_{1,29} = a_{44} \; ; \; t^{0}_{1,2,12} = \frac{1}{r} \; . \end{split}$$

Здесь $l_m = m\pi / L$; $l_p = p\pi / L$; L – длина образующей; p, m – волновые числа в рядах Фурье (13).

Функции $\varphi(p, m)$ и $\varphi(m, p)$ зависят от целых численных параметров p и m и определяются формулами:

$$\varphi(p,m) = \begin{cases} 0, \\ \frac{2}{\pi} \left(\frac{1}{p-m} + \frac{1}{p+m} \right); & \varphi(m,p) = \begin{cases} 0, \\ \frac{2}{\pi} \left(\frac{1}{m-p} + \frac{1}{m+p} \right). \end{cases}$$
(16)

Знаменатели в выражениях (16) не могут быть равными нулю, так как в этом случае выполняется условие, при котором функции φ равны нулю.

После решения системы (14) определение компонентов НДС проведем с использованием соотношений соответствующих граничным условиям (12):

$$\sigma_{zz}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{\sigma_{zz}}^{0}, p(r) + y_{\sigma_{zz}}^{\prime}, m(r) \right] \sin l_{m}z ;$$

$$\sigma_{\theta\theta}^{0}(r,z) = \sum_{m=1}^{\infty} \left[y_{\sigma_{\theta\theta}}^{0}, p(r) + y_{\sigma_{\theta\theta}}^{\prime}, m(r) \right] \sin l_{m}z ; \qquad (17)$$

$$\tau_{z\theta}^{0}(r,z) = \sum_{m=0}^{\infty} \left[y_{\tau_{z\theta}}^{0}, p(r) + y_{\tau_{z\theta}}^{\prime}, m(r) \right] \cos l_{m}z .$$

3. Решение задачи устойчивости слоистых оболочек.

Для решения задачи устойчивости цилиндрических слоистых оболочек запишем уравнения устойчивости на основе статического критерия Эйлера при использовании системы (1) с учетом зависимостей (3), (4):

$$\begin{split} \frac{\partial \sigma_{rr}}{\partial r} &= -\frac{1}{r} \Bigg[\sigma_{rr} + r \frac{\partial}{\partial z} \Bigg(\tau_{rz} + \sigma_{zz}^{0} \left(\frac{\partial u_{r}}{\partial z} \right) + \tau_{z\theta}^{0} \left(\frac{1}{r} \frac{\partial u_{r}}{\partial \theta} - \frac{1}{r} u_{\theta} \right) \Bigg) + \\ &+ \frac{\partial}{\partial \theta} \Bigg(\tau_{r\theta} + \tau_{z\theta}^{0} \left(\frac{\partial u_{r}}{\partial z} \right) + \sigma_{\theta\theta}^{0} \left(\frac{1}{r} \left(\frac{\partial u_{r}}{\partial \theta} \right) - \frac{1}{r} u_{\theta} \right) \Bigg) - \Bigg(\sigma_{\theta\theta} + \sigma_{\theta\theta} \left(\frac{1}{r} \left(\frac{\partial u_{\theta}}{\partial \theta} \right) + \frac{1}{r} u_{r} \right) + \tau_{z\theta}^{0} \left(\frac{\partial u_{\theta}}{\partial z} \right) \Bigg) \Bigg]; \\ &\frac{\partial \tau_{rz}}{\partial r} = -\frac{1}{r} \Bigg[\tau_{rz} + r \frac{\partial}{\partial z} \Bigg(\sigma_{zz} + \sigma_{zz}^{0} \frac{\partial u_{z}}{\partial z} + \tau_{z\theta}^{0} \left(\frac{1}{r} \frac{\partial u_{z}}{\partial \theta} \right) \Bigg) + \frac{\partial}{\partial \theta} \Bigg(\tau_{z\theta} + \tau_{z\theta}^{0} \frac{\partial u_{z}}{\partial z} + \sigma_{\theta\theta} \frac{1}{r} \left(\frac{\partial u_{z}}{\partial \theta} \right) \Bigg) \Bigg]; \\ &\frac{\partial \tau_{r\theta}}{\partial r} = -\frac{1}{r} \Bigg[\tau_{r\theta} + \left(\tau_{r\theta} + \tau_{z\theta}^{0} \frac{\partial u_{r}}{\partial z} \right) + r \frac{\partial}{\partial z} \Bigg(\tau_{z\theta} + \tau_{z\theta}^{0} \left(\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{1}{r} u_{r} \right) + \sigma_{zz}^{0} \frac{\partial u_{\theta}}{\partial z} \Bigg) + \quad (18) \\ &+ \frac{\partial}{\partial \theta} \Bigg(\sigma_{\theta\theta} + \sigma_{\theta\theta}^{0} \left(\frac{1}{r} \left(\frac{\partial u_{\theta}}{\partial \theta} \right) + \frac{1}{r} u_{r} \right) + \tau_{z\theta}^{0} \frac{\partial u_{\theta}}{\partial z} \Bigg) \Bigg], \end{split}$$

где $\sigma_{zz}^0, \sigma_{\theta\theta}^0$ и $\tau_{z\theta}^0$ – докритические значения напряжений.

Заменяя в (7) деформации e_{zz} , $e_{\theta\theta}$, $e_{z\theta}$, e_{rz} , $e_{r\theta}$, e_{rr} их выражениями (3) и подставляя полученные зависимости для σ_{zz} , $\sigma_{\theta\theta}$, $\tau_{z\theta}$ в (18), получим систему уравнений устойчивости:

$$\frac{\partial \sigma_{rr}}{\partial r} = \frac{c_2 - 1}{r} \sigma_{rr} - \frac{\partial \tau_{rz}}{\partial z} - \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{b_{22}}{r^2} u_r + \frac{b_{12}}{r} \frac{\partial u_z}{\partial z} + \frac{b_{26}}{r^2} \frac{\partial u_z}{\partial \theta} + \frac{b_{26}}{r} \frac{\partial u_{\theta}}{\partial z} + \frac{b_{22}}{r^2} \frac{\partial u_{\theta}}{\partial \theta} - \sigma_{22}^0 \frac{1}{r^2} \frac{\partial^2 u_r}{\partial \theta^2} + \sigma_{22}^0 \frac{1}{r^2} u_r - \frac{2}{r} \tau_{z\theta}^0 \frac{\partial^2 u_r}{\partial z \partial \theta} + \frac{2}{r} \tau_{z\theta}^0 \frac{\partial u_{\theta}}{\partial z};$$

$$\frac{\partial \tau_{rz}}{\partial r} = -c_1 \frac{\partial \sigma_{rr}}{\partial z} - \frac{1}{r} \tau_{rz} - \frac{b_{12}}{r} \frac{\partial u_r}{\partial z} - b_{11} \frac{\partial^2 u_z}{\partial z^2} - \frac{b_{66}}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \frac{b_{12} + b_{66}}{r} \frac{\partial^2 u_{\theta}}{\partial z \partial \theta} - \frac{c_3}{r} \frac{\partial \sigma_{rr}}{\partial \theta} - \frac{1}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z \partial \theta} - b_{16} \frac{\partial^2 u_{\theta}}{\partial z^2} - \frac{b_{26}}{r^2} \frac{\partial^2 u_{\theta}}{\partial \theta^2} - \sigma_{zz}^0 \frac{\partial^2 u_z}{\partial z^2} - \sigma_{22}^0 \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z \partial \theta} - \frac{c_3}{r} \frac{\partial \sigma_{rr}}{\partial \theta} - \frac{1}{r} \tau_{\theta}^0 \frac{\partial^2 u_{\theta}}{\partial z^2} - \frac{b_{26}}{r^2} \frac{\partial^2 u_{\theta}}{\partial \theta^2} - \sigma_{zz}^0 \frac{\partial^2 u_z}{\partial z^2} - \sigma_{22}^0 \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z \partial \theta} - \frac{c_3}{r} \frac{\partial \sigma_{rr}}{\partial \theta} - \frac{1}{r^2} \frac{\partial u_z}{\partial \theta^2} - \frac{b_{12} + b_{66}}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \sigma_{22}^0 \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z \partial \theta};$$

$$\frac{\partial \tau_{r\theta}}{\partial r} - \frac{2}{r} \frac{\partial \sigma_{rr}}{\partial \theta} - \frac{2}{r} \tau_{r\theta} - \frac{b_{22}}{r^2} \frac{\partial u_r}{\partial \theta} - \frac{b_{12} + b_{66}}{r} \frac{\partial^2 u_z}{\partial z^2} - \sigma_{22}^0 \frac{1}{r^2} \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial z^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_z}{\partial \theta^2} - \frac{2}{r} \tau_{\theta}^0 \frac{\partial^2 u_$$

Решение системы (19) выполним при граничных условиях на внутренней $r = r_0$ и на внешней $r = r_n$ поверхностях оболочки

$$\sigma_{rr} = 0; \ \tau_{rz} = 0; \ \tau_{r\theta} = 0 \tag{20}$$

и условиях на торцах z = 0, z = l в виде (12).

Для преобразования трехмерной задачи к одномерной используем метод Бубнова – Галеркина. Разложим все функции в тригонометрические ряды по координате вдоль образующей z так, чтобы они удовлетворяли граничным условиям (12), а также учтем их периодичность по окружной координате θ :

$$\sigma_{rr}(r,z,\theta) = \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \left[y_{1,pk}(r) \cos k\theta + y_{1,mk}'(r) \sin k\theta \right] \sin l_{m}z;$$

$$\tau_{rz}(r,z,\theta) = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \left[y_{2,pk}(r) \cos k\theta + y_{2,mk}'(r) \sin k\theta \right] \cos l_{m}z;$$

$$\tau_{r\theta}(r,z,\theta) = \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \left[y_{3,pk}(r) \sin k\theta + y_{3,mk}'(r) \cos k\theta \right] \sin l_{m}z;$$

$$u_{r}(r,z,\theta) = \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \left[y_{4,pk}(r) \cos k\theta + y_{4,mk}'(r) \sin k\theta \right] \sin l_{m}z;$$

$$u_{z}(r,z,\theta) = \sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \left[y_{5,pk}(r) \cos k\theta + y_{5,mk}'(r) \sin k\theta \right] \cos l_{m}z;$$

$$u_{\theta}(r,z,\theta) = \sum_{m=1}^{\infty} \sum_{k=0}^{\infty} \left[y_{6,pk}(r) \sin k\theta + y_{6,mk}'(r) \cos k\theta \right] \sin l_{m}z.$$
(21)

После некоторых математических преобразований и разделения переменных в уравнениях (19) при помощи соотношений (21) получим бесконечную систему обыкновенных дифференциальных уравнений устойчивости в нормальной форме Коши:

$$\frac{d\overline{y}}{dr} = T(r)\overline{y}, \quad T(r) = t_{i,j}(r) \quad (i = \overline{1,\infty}, \ j = \overline{1,\infty}),$$
(22)

где

$$\overline{y} = \left\{ y_{1,pk}; y_{2,pk}; y_{3,pk}; y_{4,pk}; y_{5,pk}; y_{6,pk}; y_{1,mk}'; y_{2,mk}'; y_{3,mk}'; y_{4,mk}'; y_{5,mk}'; y_{6,mk}' \right\}$$

- разрешающая вектор-функция.

Ненулевые элементы матрицы T(r) имеют вид:

$$t_{1,1} = \frac{c_2 - 1}{r}; \quad t_{1,2} = l_p; \quad t_{1,3} = -\frac{k}{r};$$

$$t_{1,4} = \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p, m_1, m) \sigma_{zz}^0 l_{m_2}^2 + \sum_{m=1}^{\infty} \varphi_2(p, m_1, m) \sigma_{\theta\theta}^0 \frac{k^2}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p, m_1, m) \sigma_{\theta\theta}^0 \frac{1}{r^2};$$

$$t_{1,5} = -l_p \frac{b_{12}}{r}; \quad t_{1,6} = k \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p, m_1, m) \sigma_{\theta\theta}^0 \frac{2k}{r^2}; \quad t_{1,10} = -\sum_{m=1}^{\infty} \varphi_5(p, m_1, m) 2\frac{k}{r} \tau_{z\theta}^0 l_{m_2};$$

$$31$$

$$\begin{split} t_{1,11} &= \sum_{m=1}^{\infty} \varphi(p,m) k \frac{b_{26}}{r^2}; \quad t_{1,12} &= \sum_{m=1}^{\infty} \gamma(p,m) \frac{b_{26}}{r} l_{m_2} + \sum_{m=1}^{\infty} \varphi_5(p,m_1,m) \frac{2}{r} t_{20}^9 l_{m_2}; \\ & t_{2,1} = -c_1 l_p; \quad t_{2,2} = -\frac{1}{r}; \quad t_{2,4} = -\frac{b_{12}}{r} l_p; \\ t_{2,5} &= b_{11} l_p^2 + k^2 \frac{b_{66}}{r^2} + \sum_{m=0}^{\infty} \varphi_3(p,m_1,m) \sigma_{22}^0 t_{m_2}^2 + \sum_{m=0}^{\infty} \varphi_3(p,m_1,m) \sigma_{00}^0 \frac{k^2}{r^2}; \\ t_{2,6} &= -k \frac{b_{12} + b_{66}}{r} l_p; \quad t_{2,7} = -\sum_{m=0}^{\infty} \varphi(m,p) k \frac{c_3}{r}; \quad t_{2,10} = -\sum_{m=0}^{\infty} \varphi(m,p) k \frac{b_{26}}{r^2}; \\ t_{2,11} &= \sum_{m=0}^{\infty} \varphi(m,p) 2 \frac{kb_{16}}{r} l_{m_2} + \sum_{m=0}^{\infty} \varphi(q,p,n_1,m) 2 \frac{k}{r} t_{20}^0 l_{m_2}; \\ t_{2,112} &= \sum_{m=0}^{\infty} \varphi(m,p) b_{16} l_{m_2}^2 + \sum_{m=0}^{\infty} \varphi(m,p) k^2 \frac{b_{26}}{r^2}; \\ t_{3,1} &= k \frac{c_2}{r}; \quad t_{3,3} = -\frac{2}{r}; \quad t_{3,4} = k \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi(p,m_1,m) \sigma_{00}^0 \frac{2k}{r^2}; \quad t_{3,5} = -k \frac{b_{12} + b_{66}}{r} l_p; \\ t_{3,6} &= b_{66} l_p^2 + k^2 \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{20}^0 t_{m_2}^2; \quad t_{3,5} = -k \frac{b_{12} + b_{66}}{r} l_p; \\ t_{3,6} &= b_{66} l_p^2 + k^2 \frac{b_{22}}{r^2}; \quad t_{3,7} = -\sum_{m=1}^{\infty} \varphi(p,m) c_3 l_{m_2}; \quad t_{3,10} = -\sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m_2} - \\ &- \sum_{m=1}^{\infty} \varphi_5(p,m_1,m) \sigma_{00}^0 \frac{1}{r^2}; \quad t_{3,7} = -\sum_{m=1}^{\infty} \varphi(p,m) c_3 l_{m_2}; \quad t_{3,10} = -\sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m_2} - \\ &- \sum_{m=1}^{\infty} \varphi(p,m) 2 \frac{kb_{26}}{r} l_{m_2}; \quad t_{3,11} = \sum_{m=1}^{\infty} \varphi(p,m) \left(b_{16} l_{m_2}^2 + k^2 \frac{b_{26}}{r^2} \right); \\ t_{4,12} &= \sum_{m=1}^{\infty} \varphi(p,m) 2 \frac{kb_{26}}{r} l_{m_2} + \sum_{m=1}^{\infty} \varphi_5(p,m_1,m) 2 \frac{k}{r} t_{20}^0 l_{m_2}; \\ t_{4,12} &= -\sum_{m=1}^{\infty} \varphi(p,m) c_3 l_{m_2}; \quad t_{3,2} = a_{55}; \quad t_{5,4} = -l_p; \quad t_{5,9} = \sum_{m=0}^{\infty} \varphi(m,p) a_{45}; \\ t_{6,3} &= a_{44}; \quad t_{6,4} &= \frac{k}{r}; \quad t_{6,6} &= \frac{1}{r}; \quad t_{6,8} &= \sum_{m=1}^{\infty} \varphi(p,m) a_{45}; \quad t_{7,4} &= \sum_{m=1}^{\infty} \varphi_5(p,m_1,m) 2 \frac{k}{r} t_{20}^0 l_{m_2}; \end{cases}$$

$$\begin{split} t_{7,5} &= -\sum_{m=1}^{\infty} \varphi(p,m) k \frac{b_{26}}{r^2} ; \quad t_{7,6} &= \sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m_2} + \sum_{m=1}^{\infty} \varphi_5(p,m_1,m) \frac{2}{r} t_{20}^0 l_{m_2} ; \\ t_{7,7} &= \frac{c_2 - 1}{r} ; \quad t_{7,8} = l_p ; \quad t_{7,9} = \frac{k}{r} ; \\ t_{7,10} &= \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{21}^0 l_{m_2}^2 + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{00}^0 \frac{k^2}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{00}^0 \frac{1}{r^2} ; \\ t_{7,11} &= -l_p \frac{b_{12}}{r} ; \quad t_{7,12} &= -k \frac{b_{22}}{r^2} - \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{00}^0 \frac{2k}{r^2} ; \quad t_{8,1} = \sum_{m=0}^{\infty} \varphi_1(m,p) k \frac{k_{26}}{r^2} ; \\ t_{8,4} &= \sum_{m=0}^{\infty} \varphi_1(m,p) k \frac{b_{26}}{r^2} ; \quad t_{8,5} &= -\sum_{m=0}^{\infty} \varphi_1(m,p) 2 \frac{k b_{16}}{r} l_{m_2} - \sum_{m=0}^{\infty} \varphi_4(p,m_1,m) 2 \frac{k}{r} t_{20}^0 l_{m_2} ; \\ t_{8,6} &= \sum_{m=0}^{\infty} \varphi_1(m,p) b_{16} l_{m_2}^2 + \sum_{m=0}^{\infty} \varphi_1(m,p) k^2 \frac{b_{26}}{r^2} ; \quad t_{8,7} &= -c_1 l_p ; \quad t_{8,8} &= -\frac{1}{r} ; \quad t_{8,10} &= -\frac{b_{12}}{r} l_p ; \\ t_{8,11} &= b_{11} l_p^2 + k^2 \frac{b_{66}}{r^2} + \sum_{m=0}^{\infty} \varphi_3(p,m_1,m) \sigma_{2x} l_{m_2}^2 + \sum_{m=0}^{\infty} \varphi_3(p,m_1,m) \sigma_{\theta\theta}^0 \frac{k^2}{r^2} ; \\ t_{8,12} &= k \frac{b_{12} + b_{66}}{r} l_p ; \quad t_{9,1} &= -\sum_{m=1}^{\infty} \varphi(p,m) c_{3} l_{m_2} ; \quad t_{9,4} &= -\sum_{m=1}^{\infty} \varphi(p,m) \frac{b_{26}}{r} l_{m_2} - \\ -\sum_{m=1}^{\infty} \varphi_8(p,m_1,m) \frac{2}{r} t_{20}^0 l_{m_2} ; \quad t_{9,5} &= \sum_{m=1}^{\infty} \varphi(p,m) \left(b_{16} l_{m_2}^2 + k^2 \frac{b_{26}}{r^2} \right) ; \\ t_{9,6} &= -\sum_{m=1}^{\infty} \varphi(p,m) 2 \frac{k b_{26}}{r} l_{m_2} - \sum_{m=1}^{\infty} \varphi_3(p,m_1,m) \sigma_{\theta\theta}^0 \frac{2k}{r^2} ; \quad t_{9,11} &= k \frac{b_{12} + b_{66}}{r} l_p ; \quad (23) \\ t_{9,12} &= b_{66} l_p^2 + k^2 \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{\theta\theta}^0 \frac{k^2}{r^2} ; \quad t_{9,9} &= -\frac{2}{r} ; \\ t_{9,10} &= -k \frac{b_{22}}{r^2} + \sum_{m=1}^{\infty} \varphi_2(p,m_1,m) \sigma_{\theta\theta}^0 \frac{k^2}{r^2} ; \quad t_{10,5} &= \sum_{m=1}^{\infty} \varphi(p,m) k \frac{c_3}{r} ; \quad t_{10,6} &= -\sum_{m=1}^{\infty} \varphi(m,p) a_{3} l_{m_2} ; \\ t_{10,7} &= c_4 ; \quad t_{10,10} &= -\frac{c_2}{r} ; \quad t_{10,11} &= c_1 l_p ; \quad t_{10,12} &= k \frac{c_2}{r} ; \quad t_{11,3} &= \sum_{m=0}^{\infty} \varphi(m,p) a_{45} ; \\ t_{11,8} &= a_{55} ; \quad t_{11,10} &= -l_p ; \quad t_{12,2} &= \sum_{m=1}^{\infty} \varphi(p,m) a_{45} ; \quad t_{12,9} &= a_{4$$

Здесь $l_m = m\pi / L$; $l_p = p\pi / L$; L – длина образующей; p, m, m_1 – волновые числа в рядах Фурье (21).

Функции $\varphi(p,m)$ и $\varphi(m,p)$ зависят от целых численных параметров p и m и определяются формулами (16).

Для функций $\varphi_2(p,m_1,m)$, $\varphi_3(p,m_1,m)$, $\varphi_4(p,m_1,m)$ и $\varphi_5(p,m_1,m)$ получены выражения

$$\varphi_{2}(p,m_{1},m) = \frac{1}{\pi} \left(\frac{1}{m+m_{1}-p} + \frac{1}{m-m_{1}+p} + \frac{1}{-m+m_{1}+p} - \frac{1}{m+m_{1}+p} \right);$$

$$\varphi_{3}(p,m_{1},m) = \frac{1}{\pi} \left(\frac{1}{m+m_{1}-p} - \frac{1}{m-m_{1}+p} + \frac{1}{-m+m_{1}+p} - \frac{1}{m+m_{1}+p} \right);$$

$$\varphi_{4}(p,m_{1},m) = \frac{1}{\pi} \left(\frac{1}{m+m_{1}-p} + \frac{1}{m-m_{1}+p} - \frac{1}{-m+m_{1}+p} - \frac{1}{m+m_{1}+p} \right);$$

$$\varphi_{5}(p,m_{1},m) = \frac{1}{\pi} \left(-\frac{1}{m+m_{1}-p} + \frac{1}{m-m_{1}+p} + \frac{1}{-m+m_{1}+p} - \frac{1}{m+m_{1}+p} \right);$$
(24)

(при не равных нулю знаменателях).

Алгоритм решения задачи о НДС и устойчивости оболочек вращения под действием распределенного по боковым поверхностям $r = r_0$, $r = r_n$ внешнего или внутреннего давления осуществляется с помощью метода дискретной ортогонализации [10, 11] и реализован в виде пакетов прикладных программ для ПК.

4. Численные результаты и их анализ.

При тестировании результатов решения задачи о НДС цилиндров под распределенным боковым давлением полученные значения сопоставлены с величинами, приведенными в [3].

Рассмотрены изотропные цилиндрические оболочки со следующими геометрическими и механическими характеристиками: R = 0,6 м, L=1,2 м, h = 0,03 м; 0,12 м; 0,2 м, $\nu = 0,3$. Их внутренняя поверхность подвергалась давлению, изменяющемуся по закону $q = q_0 \sin \pi n z / L$, где n=1, 5, 20. В табл. 1 приведено сравнение амплитудных значений прогиба $\tilde{w} = q_0 E^{-1} w$ на внутренней ($\xi = -1$), срединной ($\xi = 0$) и внешней ($\xi = 1$) поверхностях цилиндра.

Таблица 1

		~	h/R =	1/20	$h_R =$	1/5	$h/_R = \frac{1}{3}$		
ŵ	п	ξ	Метод [3]	[3] Предло- женная Метод [3] 1,187 0,283 1,177 0,271	Предло- женная модель	Метод [3]	Предло- женная модель		
$\frac{\tilde{w}}{10^3}$	1	-1 0 1	1,187 1,177 1,168	1,187 1,177 1,168	0,283 0,271 0,262	0,283 0,271 0,262	0,160 0,148 0,138	0,160 0,148 0,138	
$\frac{\tilde{w}}{10^2}$	5	-1 0 1	6,447 6,436 6,338	6,447 6,436 6,338	0,317 0,288 0,249	0,317 0,288 0,249	0,158 0,097 0,068	0,158 0,097 0,068	

Рассмотрено также НДС ортотропной оболочки, нагруженной на внешней поверхности давлением $q = -q_0 \sin \pi z / L$. Расчеты выполнены для $r_0 = 0,09$ м, $r_n = 0,11$ м,

L = 0,1 м при следующих значениях механических характеристик материала: $E_z = 1,9 E_0$, $E_{\theta} = 1,2 E_0$, $E_r = 0,45 E_0$, $G_{z\theta} = 0,3 E_0$, $G_{r\theta} = 0,23 E_0$, $G_{rz} = 0,23 E_0$, $v_{z\theta} = 0,15$, $v_{r\theta} = 0,3$, $v_{rz} = 0,07$, $E_0 = 100$ МПа.

В табл. 2 проведено сравнение полученных по предложенной модели значений напряжений $\sigma_{\theta\theta}$ и σ_{rr} с данными представленными в [3].

Таблица 2	2
-----------	---

$\frac{r-r_0}{r_0}$	-σ	$\frac{1}{q_0}$	$-\sigma_{\scriptscriptstyle heta ho} / \hspace{-1.5cm} q_{\scriptscriptstyle 0}$		
$r_n - r_0$	Метод [3]	Предложенная модель	Метод [3]	Предложенная модель	
0,0	0,355	0,353	0	0	
0,2	0,374	0,370	0,187	0,187	
0,4	0,393	0,386	0,407	0,408	
0,6	0,414	0,404	0,632	0,634	
0,8	0,437	0,426	0,838	0,839	
1,0	0,463	0,455	1,0	1,0	

Для ортотропной оболочки при равномерном внешнем давлении и с такими же механическими характеристиками при $r_0 = 0,59$ м, $r_n = 0,61$ м величины напряжений $\sigma_{\theta\theta}$, рассчитанные по предложенной методике, сопоставлены с напряжениями, полученными согласно методу [7]. Изменяемой величиной принято длину оболочки вдоль образующей L = 0,6 м, 1,2 м, 2,4 м, 3,6 м. Результаты сравнения в точках по толщине стенки оболочки приведены в табл. 3.

T (2
Iannu	$na \prec$
Tuonn	ли э

	$-\sigma_{_{\theta\theta}}/_{q_0}$ L=0,6M					$-\sigma_{\theta\theta}/q_0$		$-\sigma_{\theta\theta}/q_0$		$-\sigma_{\theta\theta}/q_0$		$-\sigma_{\theta\theta}/q_0$	
$\frac{r-r_0}{r_n-r_0}$	Метод [7]	Предложен- ная модель	· Δ, %	Предложен-	Δ , %	Предложен- ная модель	· Δ, %	Предложен- ная модель	Δ, %	Предложен- ная модель	Δ, %		
0,0	30,999	29,361	5,3	30,677	1,0	30,933	0,2	30,977	0,07	30,992	0,02		
0,1	30,894	29,500	4,5	30,632	0,8	30,842	0,2	30,877	0,06	30,889	0,02		
0,2	30,791	29,639	3,7	30,588	0,7	30,752	0,1	30,779	0,04	30,788	0,01		
0,3	30,690	29,779	3,0	30,546	0,5	30,664	0,1	30,682	0,03	30,688	0,01		
0,4	30,591	29,919	2,2	30,506	0,3	30,577	0,05	30,587	0,01	30,590	0		
0,5	30,493	30,061	1,4	30,467	0,1	30,492	0	30,493	0	30,493	0		
0,6	30,397	30,203	0,6	30,429	0,1	30,409	0,04	30,401	0,01	30,398	0		
0,7	30,303	30,347	0,1	30,393	0,3	30,327	0,08	30,311	0,03	30,305	0,01		
0,8	30,210	30,493	0,9	30,359	0,5	30,246	0,1	30,222	0,04	30,213	0,01		
0,9	30,118	30,640	1,7	30,326	0,7	30,167	0,2	30,134	0,05	30,123	0,02		
1,0	30,027	30,789	2,5	30,294	0,9	30,090	0,2	30,049	0,07	30,034	0,02		

Тестирование результатов решения задачи устойчивости по предложенной методике проведено для ортотропной оболочки, нагруженной внешним боковым распределенным давлением [5]. Расчеты выполнены для цилиндров: R = 0,6 м, L = 1,2 м, h = 0,024 м; механические характеристики материала: $E_z = 1 E_0$, $E_\theta = 1 E_0$, $E_r = 0,5 E_0$, $G_{z\theta} = 0,1 E_0$, $v_{z\theta} = 0,2$, $v_{r\theta} = 0,3$, $v_{rz} = 0,25$, $E_0 = 1000$ МПа. Изменяемыми значениями при определении критических величин распределенного давления являются значения поперечных модулей сдвига $G_{r\theta} = G_{rz} = 0,01 E_0$, $0,02 E_0$, $0,05 E_0$, $0,2 E_0$. Результаты сравнения представлены в табл. 4.

		7	аблица 4
G = G	q_{cr} ,	МПа	Δ , %
- <i>FO</i> - <i>F</i> 2	Метод [8]	Предложенная мо- дель	
0,01 E ₀	0,1212	0,1232	1,7
0,02 E ₀	0,1316	0,1341	1,9
0,05 E ₀	0,1381	0,1420	2,8
0,2 <i>E</i> ₀	0,1428	0,1465	2,6

Тестирование и анализ результатов решения по предложенному подходу задачи устойчивости цилиндрических одно- и двухслойных оболочек из анизотропных материалов при распределенном боковом давлении проведено путем сравнения их с результатами, полученными на основе классической теории [1]. Рассмотрены оболочки: радиус R = 0,6 м, длина l = 1,2 м; механические характеристики материала: $E_{11} = 1900$ МПа, $E_{22} = 1200$ МПа, $E_{33} = 450$ МПа, $G_{12} = 300$ МПа, $G_{13} = G_{23} = 230$ МПа, $v_{12} = 0,15$, $v_{32} = 0,3$, $v_{31} = 0,07$, под распределенной нагрузкой $q = -q \cdot \sin(\pi x / l)$. Результаты сравнения полученных значений критических напряжений представлены в табл. 5 и на рис. 2 для оболочки с толщиной стенки h = 0,01м, в табл. 6 и на рис. 3 - для h = 0,02 м, в табл. 7 и на рис. 4 - для h = 0,03 м.

Т	26 70 10 10	~ 4
1	аолица	ι.

	Oz	нослойная об	болочк	а <i>h</i> = 0,01м		Двухслойная перекрестно намотанная оболочка $h_1 = h_2 = \frac{h_2}{2} = 0,005$ м					
ψ,	Предлагаемая методика		Классическая теория		Δ,	П	оедлагаемая методика	Клас т	Δ,%		
град	n	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, МПа	%0	п	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, МПа		
0	6	2,570	5	2,637	2,6	6	2,570	5	2,637	2,6	
10	6	2,557	5	2,615	2,3	6	2,563	6	2,627	2,5	
20	6	2,539	5	2,571	1,3	6	2,547	6	2,604	2,2	
30	5	2,542	5	2,545	0,1	6	2,547	6	2,603	2,2	
40	5	2,546	5	2,573	1,0	5	2,553	5	2,563	0,4	
50	5	2,624	5	2,676	2,0	5	2,603	5	2,581	-0,8	
60	5	2,770	5	2,841	2,6	5	2,748	5	2,684	-2,3	
70	5	2,936	5	3,017	2,8	5	2,926	5	2,865	-2,1	
80	5	3,072	5	3,154	2,7	5	3,069	5	3,085	0,5	
90	5	3,128	5	3,207	2,5	5	3,128	5	3,207	2,5	

Таблица б

		Однослойна	ая обс	олочка <i>h</i> = 0,02	М	Двухслойная перекрестно намотанная оболочка $h_1 = h_2 = \frac{h_2}{2} = 0,01 \text{ м}$					
ψ, град	Пр	едлагаемая методика	К	Классическая теория Δ ,		Предлагаемая методика		Классическая теория		Δ,	
	п	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, МПа	70	$n \qquad \begin{array}{c} q_{cr} \cdot 10^{-4} \ , \\ M \Pi a \end{array}$		n	$q_{cr} \cdot 10^{-4}$, МПа	70	
0	5	14,64	5	15,51	5,9	5	14,64	5	15,51	5,9	
10	5	14,71	5	15,51	5,4	5	14,70	5	15,51	5,5	
20	5	14,88	5	15,57	4,6	5	14,83	5	15,58	5,1	
30	5	15,16	5	15,82	4,4	5	15,05	5	15,79	4,9	
40	5	15,60	5	16,43	5,3	5	15,52	5	16,21	4,4	
50	5	16,35	4	17,02	4,1	5	16,32	4	16,48	1,0	
60	4	16,92	4	17,61	4,1	4	16,81	4	16,77	-0,2	
70	4	17,37	4	18,15	4,5	4	17,35	4	17,38	0,2	
80	4	17,69	4	18,51	4,6	4	17,69	4	18,18	2,8	
90	4	17,80	4	18,64	4,7	4	17,80	4	18,64	4,7	

Из анализа результатов, представленных в табл. 5 – 7, следует, что критические значения, полученные по предложенной методике, меньше рассчитанных по классической теории [1], даже при отношении толщины оболочки к радиусу h/R = 1/60, однако для более тонких оболочек отмечается некоторое несовпадение количества волн в окружном направлении, соответствующих потере устойчивости. Также видно, что с увеличением толщины от h/R = 1/60 до h/R = 1/20 отличие между кри-

q_{cr} 10⁻⁴, МПа

тическими нагрузками, полученными по представленным двум методикам, увеличивается. Причем описанные свойства проявляются как для однослойных, так и для двухслойных перекрестно намотанных оболочек.

Таблица 7

		Односл	ойная h = 0,02	оболочка Зм	Двухслойная перекрестно намотанная оболочка $h_1 = h_2 = h_2' = 0,015$ м					
ψ, град	Предлагаемая методика		К	Классическая теория		П	редлагаемая методика	Классическая теория		Δ
	п	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, МПа	70	п	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, МПа	%
0	4	39,32	4	42,13	7,1	4	39,32	4	42,13	7,1
10	4	40,02	4	42,43	6,0	4	40,03	4	42,65	6,5
20	4	41,48	4	43,25	4,3	4	41,40	4	43,76	5,7
30	4	42,71	4	44,47	4,1	4	42,46	4	44,75	5,4
40	4	43,55	4	46,15	5,9	4	43,27	4	45,59	5,4
50	4	44,69	4	48,34	8,2	4	44,37	4	46,40	4,6
60	4	46,32	4	50,73	9,5	4	45,98	4	47,55	3,4
70	4	48,02	4	52,80	9,9	4	47,79	4	49,72	4,0
80	4	49,35	4	54,20	9,8	4	49,26	4	52,86	7,3
90	4	49,88	4	54,71	9,7	4	49,88	4	54,71	9,7

Таблица 8

±ψ,	Однослойная оболочка		Двухслойная оболочка		Четырехслойная оболочка		Восьмислойная оболочка		Ортотропный вариант, без констант $a_{16}, a_{26}, a_{36}, a_{45}$ фор-	
трад	n	$q_{cr} \cdot 10^{-4}$, МПа	n	$q_{cr} \cdot 10^{-4}$, МПа	n	$q_{cr} \cdot 10^{-4}$, МПа	n	$q_{cr} \cdot 10^{-4}$, МПа	п	$q_{cr} \cdot 10^{-4}$, MIIa
0	5	14,64	5	14,64	5	14,64	5	14,64	5	14,64
10	5	14,71	5	14,70	5	14,73	5	14,74	5	14,74
20	5	14,88	5	14,83	5	14,90	5	14,92	5	14,93
30	5	15,16	5	15,05	5	15,13	5	15,15	5	15,16
40	5	15,60	5	15,52	5	15,60	5	15,62	5	15,62
50	5	16,35	5	16,32	5	16,50	4	16,54	4	16,55
60	4	16,92	4	16,81	4	17,09	4	17,17	4	17,19
70	4	17,37	4	17,35	4	17,63	4	17,71	4	17,73
80	4	17,69	4	17,69	4	17,81	4	17,84	4	17,85
90	4	17,80	4	17,80	4	17,80	4	17,80	4	17,80

Puc. 5

Также в табл. 8 и на рис. 5 представлены результаты исследования влияния увеличения количества перекрестно намотанных равных по толщине слоев для вышерассмотренной оболочки с общей толщиной стенки h = 0,02 м на ее критические числа. Отметим, что при достижении восьми слоев критические величины и количество волн практически равны полученным без учета дополнительных механических констант материала a_{16} , a_{26} , a_{36} , a_{45} (6), что подтверждается исследованиями [1].

Заключение.

Развит подход к решению задачи устойчивости неоднородных в радиальном направлении цилиндров из материалов с одной плоскостью упругой симметрии в пространственной постановке. Использование процедуры метода Бубнова – Галеркина позволяет свести трехмерную задачу к одномерной. Система обыкновенных дифференциальных уравнений в этом случае не распадается. Для решения редуцированной системы использован метод Годунова (дискретной ортогонализации). Проведено тестирование получаемых результатов. Получено решение задач устойчивости композитных оболочек, которые ранее рассматривались только в рамках теории оболочек.

Р Е З Ю М Е. Отримано чисельний розв'язок задачі стійкості анізотропних циліндричних оболонок в тривимірній постановці. Прийнято, що анізотропний матеріал має тільки одну площину пружної симетрії. Використання методу Бубнова – Гальоркіна при апроксимації розв'язувальних функцій по поздовжній координаті тригонометричними рядами дозволило звести тривимірну задачу до одномірної. Для розв'язання отриманої системи використано метод дискретної ортогоналізації. Проведено тестування отриманих результатів.

- 1. Баженов В.А., Семенюк М.П., Трач В.М. Нелінійне деформування, стійкість і закритична поведінка анізотропних оболонок. К.: Каравела, 2010. 352 с.
- 2. Григолюк Э.И., Носатенко П.Я. К эффекту анизотропии в перекрестно армированных оболочках // Проблемы механики деформируемого твердого тела / Калининский гос. ун-т. – 1986. – № 1 – С. 120 – 129.
- 3. Григоренко Я.М., Василенко А.Т., Панкратова Н.Д. Статика анизотропных толстостенных оболочек. – К.: Вища школа, 1985. – 190 с.
- 4. Гузь А.Н. Основы трехмерной теории устойчивости деформируемых тел. К.: Вища школа, 1986. 511 с.
- 5. *Гузь А.Н., Бабич И.Ю*. Трехмерная теория устойчивости стержней, пластин и оболочек. К.: Вища школа, 1980. 168 с.
- Колтунов М.А., Васильев Ю.Н., Пасько Д.А. Прочность полых цилиндров. М.: Машиностроение, 1981. – 264 с.
- 7. Лехницкий С.Г. Теория упругости анизотропного тела. 2-е изд., испр. и доп. М.: Наука, 1977. 415 с.
- 8. Новожилов В.В. Теория упругости. Л.: Судпромгиз, 1958. 370 с.
- Носатенко П.Я., Омельченко М.Н. Трехмерный анализ устойчивости слоистых анизотропных оболочек вращения из композитных материалов // Механика композитных материалов. – 1992. – № 4. – С. 495 – 507.
- Grigorenko A.Ya., Rozhok L.S. Influence of Curvature on Stress State of Hollow Cylinders with Cross-Section on the Form of Convex Semi-Corrugations // Int. Appl. Mech. – 2016. – 52, N 1. – P. 49 – 55.
- 11.Grigorenko A.Ya., Rozhok L.S. An effect of Changing the Parameters of Orthotropy on the Stress-state of Hollow Cylinders with the Convex Corrugated Cross Section // Int. Appl. Mech. – 2016. – 52, N 2. – P. 147–154.
- Kardomateas G.A. Effect of normal strains in buckling of thick orthotropic shells // J. of Aerospase Eng. - 2000. - 13 (3). - P. 85 - 91.
- Kardomateas G.A., Simitses G.J. Buckling of long sandwich cylindrical shells under external pressnre // J. of Appl. Mech. Trans. ASME. – 2005. – 72. – P. 493 – 499.
- Takano A. Improvement of Flugge's equations for buckling of moderately thick anisotropic cylindrical shells //AIAA J. – 2008. – 46 (4). – P. 903 – 911.
- Papadakis G. Buckling of thick cylindrical shells under external pressure: A new analytical expression for the critical load and comparison with elasticity solutions // Int. J. Solids and Struct. - 2008. - 45, N 20. - P. 5308 - 5321.
- Semenuk M.P., Trach V.M., Podvornyi A.V. Stability of cylindrical anisotropic shells under axial pressure in three-dimensional statement // Зб. наук. пр. «Опір матеріалів і теорія споруд» / КНУБА. – N 94. – 2015. – С. 192 – 206.

Поступила 30.03.2016

Утверждена в печать 30.05.2017