А.Я.Григоренко, Т.Л.Ефимова, Ю.А.Коротких

СВОБОДНЫЕ КОЛЕБАНИЯ НЕТОНКИХ ЦИЛИНДРИЧЕСКИХ ОБОЛОЧЕК ПЕРЕМЕННОЙ ТОЛЩИНЫ С ЭЛЛИПТИЧЕСКИМ ПОПЕРЕЧНЫМ СЕЧЕНИЕМ

Институт механики им. С.П.Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail:efimovatl@yandex.ru

Abstract. On the basis of Timoshenko – Mindlin refined theory, the problem on free vibrations of orthotropic non-circular cylindrical shells with variable thickness and elliptic cross-section is stated for different boundary conditions on ends. This problem is solved by the effective numerical approach that is based on sequential application of the methods of spline-approximation and discrete orthogonalization. An analysis of effect of the shell cross-section shape, law of changing the shell thickness, properties of shell material, and boundary conditions on distribution of the shell free vibrations spectrum is carried out.

Key words: free vibrations, Timoshenko – Mindlin theory, orthotropic thick noncircular cylindrical shell, variable thickness, spline-approximation and collocation, numerical method of discrete orthogonalization.

Введение.

Цилиндрические оболочки с различным поперечным сечением применяются в различных областях современной техники. Большой практический интерес представляет расчет резонансных частот колебаний, представление о которых дает определение частот свободных колебаний таких оболочек. В научной литературе имеется большое количество работ, посвященных изучению свободных колебаний круговых цилиндрических оболочек переменной толщины [13]. В связи со сложностью задачи колебаниям некруговых цилиндрических оболочек посвящены отдельные работы, причем исследованы, в основном, изотропные оболочки постоянной толщины. Отметим следующие работы, посвященные указанной проблеме [6, 8 – 12, 14 – 18].

В данной статье рассмотрены свободные колебания некруговых цилиндрических ортотропных оболочек с переменной толщиной на основе теории оболочек Тимошенко – Миндлина [13]. При этом используется метод сплайн-коллокации совместно с методом пошагового поиска и дискретной ортогонализации [1 – 5, 7].

1. Постановка задачи. Основные соотношения.

Рассмотрим задачу о свободных колебаниях некруговых цилиндрических оболочек произвольного поперечного сечения и переменной толщины на основе уточненной модели Тимошенко, базирующейся на гипотезе прямой линии. Согласно данной гипотезе прямолинейный элемент нормали исходной координатной поверхности при малых деформациях сохраняет свою длину и прямолинейность, но не остается нормальным к ней. В системе координат s, t, γ , связанной со срединной поверхностью оболочки (γ – координата в направлении нормали к срединной поверхности $-h/2 \le \gamma \le h/2$; s – координата в направлении направляющей $0 \le s \le L$; t – координата в направлении в направляющей $0 \le s \le L$; t – координата в направлении образующей, $t_1 \le t \le t_2$); малые перемещения точек можно записать в виде

ISSN0032-8243. Прикл. механика, 2017, **53**, № 6

$$u_{\gamma}(s,t,\gamma,\tau) = w(s,t,\tau); \quad u_{\theta}(s,t,\gamma,\tau) = v(s,t,\tau) + \gamma \psi_{\theta}(s,t,\tau);$$

$$u_{z}(s,t,\gamma,\tau) = u(s,t,\tau) + \gamma \psi_{z}(s,t,\tau),$$
(1)

где τ – время, $u(s,t,\tau)$, $v(s,t,\tau)$, $w(s,t,\tau)$ – перемещения координатной поверхности; $\psi_s(s,t,\tau)$, $\psi_t(s,t,\tau)$ – функции, характеризующие независимый полный поворот нормали.

В соответствии с (1) выражения для деформаций записываем в виде

$$e_{s}(s,t,\gamma,\tau) = \varepsilon_{s}(s,t,\tau) + \gamma \kappa_{s}(s,t,\tau); \quad e_{t}(s,t,\gamma,\tau) = \varepsilon_{t}(s,t,\tau) + \gamma \kappa_{t}(s,t,\tau);$$

$$e_{st}(s,t,\gamma,\tau) = \varepsilon_{st}(s,t,\tau) + 2\gamma \kappa_{st}(s,t,\tau); \quad e_{\gamma s}(s,t,\gamma,\tau) = \gamma_{s}(s,t,\tau); \quad (2)$$

$$e_{\gamma t}(s,t,\gamma,\tau) = \gamma_{t}(s,t,\tau); \quad e_{\gamma t}(s,t,\gamma,\tau) = \gamma_{t}(s,t,\tau).$$

Здесь $\varepsilon_s, \varepsilon_t, \varepsilon_{st}$ – тангенциальные деформации координатной поверхности; $\kappa_s, \kappa_t, \kappa_{st}$ – компоненты изгибной деформации; γ_s, γ_t – углы поворота нормали, обусловленные поперечными сдвигами.

Связь деформаций и перемещений срединной поверхности оболочки определяется формулами

$$\varepsilon_{s} = \frac{\partial u}{\partial s}; \quad \varepsilon_{t} = \frac{\partial v}{\partial t} + k(t)w; \quad \varepsilon_{st} = \frac{\partial u}{\partial t} + \frac{\partial v}{\partial s}; \quad \kappa_{s} = \frac{\partial \psi_{s}}{\partial s}; \quad \kappa_{t} = \frac{\partial \psi_{t}}{\partial t} - k(t)\left(\frac{\partial v}{\partial t} + k(t)w\right);$$

$$2\kappa_{st} = \frac{\partial \psi_{s}}{\partial t} + \frac{\partial \psi_{t}}{\partial s} - k(t)\frac{\partial u}{\partial t}; \quad \gamma_{s} = \psi_{s} + \frac{\partial w}{\partial s}; \quad \gamma_{t} = \psi_{t} + \frac{\partial w}{\partial t} - k(t)v.$$
(3)

Уравнения движения элемента координатной поверхности имеют вид

$$\frac{\partial N_{s}}{\partial s} + \frac{\partial N_{st}}{\partial t} = I_{0} \frac{\partial^{2} u}{\partial \tau^{2}} + I_{1} \frac{\partial \psi_{s}}{\partial \tau^{2}}; \quad \frac{\partial N_{t}}{\partial t} + \frac{\partial N_{st}}{\partial s} + k(t)Q_{t} = I_{0} \frac{\partial v}{\partial \tau^{2}} + I_{1} \frac{\partial^{2} \psi_{s}}{\partial \tau^{2}};$$

$$\frac{\partial Q_{s}}{\partial s} + \frac{\partial Q_{t}}{\partial t} - k(t)N_{t} = I_{0} \frac{\partial^{2} w}{\partial \tau^{2}}; \quad \frac{\partial M_{s}}{\partial s} + \frac{\partial M_{st}}{\partial t} - Q_{s} = I_{1} \frac{\partial^{2} u}{\partial \tau^{2}} + I_{2} \frac{\partial \psi_{s}}{\partial \tau^{2}}; \quad (4)$$

$$\frac{\partial M_{t}}{\partial t} + \frac{\partial M_{st}}{\partial s} - Q_{t} = I_{1} \frac{\partial v}{\partial \tau^{2}} + I_{2} \frac{\partial^{2} \psi_{s}}{\partial \tau^{2}},$$

причем $N_{st} - k(t)M_{ts} - N_{ts} = 0$. Здесь N_s , N_t , N_{st} , N_{ts} – тангенциальные усилия; Q_t , Q_s – перерезывающие усилия; M_t , M_s , M_{ts} , M_{st} – изгибающие и крутящие моменты; $\rho(s, t, \gamma)$ – плотность материала оболочки. Входящие в уравнения (4) инерционные члены уравнений I_0 , I_1 , I_2 вычисляются следующим образом:

$$I_{0} = \int_{-h/2}^{h/2} \rho(s,t,\gamma) \, d\gamma; \quad I_{1} = \int_{-h/2}^{h/2} \rho(s,t,\gamma) \gamma d\gamma; \quad I_{2} = \int_{-h/2}^{h/2} \rho(s,t,\gamma) \gamma^{2} d\gamma.$$
(5)

В том случае, когда вдоль толщинной координаты механические свойства материала оболочки не меняются, I_0, I_1, I_2 задаются формулами:

$$I_0 = \rho h; \quad I_1 = 0; \quad I_2 = \rho h^3 / 12.$$

Соотношения упругости для ортотропных некруговых цилиндрических оболочек с учетом симметрии механических свойств материала относительно срединной поверхности оболочек имеют вид

$$N_{s} = C_{11}\varepsilon_{s} + C_{12}\varepsilon_{t}; \quad N_{t} = C_{12}\varepsilon_{s} + C_{22}\varepsilon_{t}; \quad N_{st} = C_{66}\varepsilon_{st} + 2k(t)D_{66}\kappa_{st}; \quad N_{ts} = C_{66}\varepsilon_{ts};$$

$$M_{s} = K_{11}\kappa_{s} + K_{12}\kappa_{t}; \quad M_{t} = K_{12}\kappa_{s} + K_{12}\kappa_{t}; \quad M_{ts} = M_{st} = 2D_{66}\kappa_{ts}; \quad Q_{t} = K_{2}\gamma_{t}; \quad Q_{s} = K_{1}\gamma_{s},$$
(6)

где для жесткостных характеристик оболочки, приведенных к координатной поверхности, имеем формулы

$$C_{ij} = B_{11}h; D_{ij} = B_{ij}h^{3}/12; K_{1} = \frac{5}{6}hG_{13}; K_{2} = \frac{5}{6}hG_{23}; B_{11} = E_{1}/(1-v_{1}v_{2});$$

$$B_{22} = E_{2}/(1-v_{1}v_{2}); B_{12} = v_{2}E_{1}/(1-v_{1}v_{2}) = v_{1}E_{21}/(1-v_{1}v_{2}); B_{66} = G_{12}.$$
(7)

Здесь E_i , G_{ij} , v_i – модули упругости, сдвига и коэффициент Пуассона ортотропного материала, соответственно. В случае изотропной оболочки имеем: $E_1 = E_2 = E$; $G_{12} = G_{23} = G_{13} = G$; $v_1 = v_2 = v$.

Далее предполагаем, что все точки цилиндрической оболочки совершают гармонические колебания с круговой частотой ω , т. е. перемещения и полные углы поворота можно представить в виде (далее знак ~ опускается)

$$\{u(s,t,\tau), v(s,t,\tau), w(s,t,\tau), \psi_s(s,t,\tau), \psi_t(s,t,\tau)\} =$$

$$= \{u(s,t), v(s,t), w(s,t), \psi_s(s,t), \psi_t(s,t)\} e^{i\omega t} \text{ (далее знак ~ опускаем).}$$

$$(8)$$

Выбрав в качестве разрешающих функций компоненты вектора перемещений и полные углы поворота, разрешающую систему уравнений можно записать в виде

$$\frac{\partial^2 u}{\partial t^2} = a_{11} \frac{\partial^2 u}{\partial s^2} + a_{12} \frac{\partial^2 v}{\partial s \partial t} + a_{13} \frac{\partial u}{\partial s} + a_{14} \frac{\partial v}{\partial s} + a_{15} \frac{\partial w}{\partial s} + a_{16} \frac{\partial w}{\partial t} + a_{17} \frac{\partial v}{\partial t} + a_{18} w + a_{19} \omega^2 u;$$

$$\frac{\partial^2 v}{\partial t^2} = a_{21} \frac{\partial^2 u}{\partial s \partial t} + a_{22} v + a_{23} \frac{\partial^2 v}{\partial s^2} + a_{24} w + a_{25} \frac{\partial w}{\partial t} + a_{26} \frac{\partial^2 \psi_s}{\partial s \partial t} + a_{27} \psi_t + a_{28} \frac{\partial^2 \psi_t}{\partial s^2} + a_{29} \frac{\partial \psi_t}{\partial s} + a_{2,10} \frac{\partial u}{\partial s} + a_{2,11} \frac{\partial v}{\partial t} + a_{2,12} \frac{\partial u}{\partial t} + a_{2,13} \frac{\partial v}{\partial s} + a_{2,14} \frac{\partial \psi_s}{\partial t} + a_{2,15} \omega^2 v;$$

$$\frac{\partial^2 w}{\partial t^2} = a_{31} \frac{\partial u}{\partial s} + a_{32} v + a_{33} \frac{\partial v}{\partial t} + a_{34} w + a_{35} \frac{\partial^2 w}{\partial s^2} + a_{36} \frac{\partial \psi_s}{\partial s} + a_{37} \frac{\partial \psi_t}{\partial t} + a_{38} \psi_t + a_{39} \psi_s + a_{3,10} \frac{\partial w}{\partial s} + a_{3,11} \frac{\partial w}{\partial t} + a_{3,12} \omega^2 w;$$

$$\frac{\partial^2 \psi_s}{\partial t^2} = a_{41} \frac{\partial u}{\partial t} + a_{42} \frac{\partial^2 u}{\partial s^2} + a_{43} \frac{\partial^2 v}{\partial s \partial t} + a_{44} \frac{\partial w}{\partial s} + a_{45} \Psi_s + a_{46} \frac{\partial^2 \psi_s}{\partial s^2} + a_{47} \frac{\partial^2 \psi_t}{\partial s \partial t} + a_{48} \frac{\partial \psi_t}{\partial s} + a_{48} \frac{\partial \psi_$$

$$+a_{49}\frac{\partial u}{\partial s}+a_{4,10}\frac{\partial v}{\partial t}+a_{4,11}w+a_{4,12}\frac{\partial v}{\partial s}+a_{4,13}\frac{\partial \psi_s}{\partial s}+a_{4,14}\frac{\partial \psi_t}{\partial t}+b_{4,15}\frac{\partial \psi_s}{\partial t}+a_{4,16}\omega^2 u+a_{4,17}\omega^2 \psi_s;$$

$$\frac{\partial^2 \psi_t}{\partial t^2} = a_{51} \frac{\partial^2 u}{\partial s \partial t} + a_{52} v + a_{53} \frac{\partial v}{\partial t} + a_{54} \frac{\partial^2 v}{\partial s^2} + a_{55} w + a_{56} \frac{\partial w}{\partial t} + a_{57} \frac{\partial^2 \psi_s}{\partial s \partial t} + a_{58} \psi_t + a_{59} \frac{\partial^2 \psi_t}{\partial s^2} + a_{510} \frac{\partial \psi_t}{\partial t} + a_{5,10} \frac{\partial \psi_t}{\partial s} + a_{5,10} \frac{\partial \psi_s}{\partial s} + a_{5,10} \frac{\partial \psi_$$

где введены обозначения

$$\begin{split} a_{11} &= -\frac{C_{11}}{C_{66}}; \quad a_{12} = -\frac{C_{12} + C_{66}}{C_{66}}; \quad a_{13} = -k(t)\frac{C_{12}}{C_{66}}; \quad a_{14} = -\frac{1}{C_{66}}\frac{\partial C_{66}}{\partial t}; \quad a_{15} = -\frac{1}{C_{66}}\frac{\partial C_{11}}{\partial s}; \\ a_{16} &= -\frac{1}{C_{66}}\frac{\partial C_{12}}{\partial s}; \quad a_{17} = -\frac{k(t)}{C_{66}}\frac{\partial C_{12}}{\partial s}; \quad a_{18} = a_{14}; \quad a_{19} = -\frac{1}{C_{66}}; \quad a_{22} = \frac{k^2(t)K_2}{C_{22}}; \quad a_{23} = -\frac{C_{62}}{C_{22}}; \\ a_{21} &= -\frac{C_{12} + C_{66} - k^2(t)D_{66}}{C_{22}}; \quad a_{24} = -k^*(t) - \frac{k(t)}{C_{12}}\frac{\partial C_{22}}{\partial t}; \quad a_{25} = -k(t)\frac{C_{22} + K_2}{C_{22}}; \\ a_{26} &= -\frac{k(t)D_{66}}{C_{22}}; \quad a_{27} = -\frac{k(t)K_2}{C_{22}}; \quad a_{28} = a_{26}; \quad a_{29} = -\frac{k(t)}{C_{22}}\frac{\partial D_{66}}{\partial s}; \quad a_{2,10} = -\frac{1}{C_{22}}\frac{\partial C_{12}}{\partial t}; \\ a_{2,11} &= -\frac{1}{C_{22}}\frac{\partial C_{22}}{\partial t}; \quad a_{2,12} = -\frac{1}{C_{22}}\left(\frac{\partial C_{66}}{\partial s} - k^2(t)\frac{\partial D_{66}}{\partial s}\right); \quad a_{2,13} = -\frac{1}{C_{22}}\frac{\partial C_{66}}{\partial s}; \quad a_{2,14} = a_{29}; \\ a_{2,15} &= -\frac{h\rho}{C_{22}}; \quad a_{21} = -\frac{1}{C_{22}}\left(\frac{\partial C_{66}}{\partial s} - k^2(t)\frac{\partial D_{66}}{\partial s}\right); \quad a_{21} = -\frac{1}{C_{22}}\frac{\partial C_{56}}{\partial s}; \quad a_{2,14} = a_{29}; \\ a_{3,10} &= a_{39}; \quad a_{3,1} = \frac{k(t)C_{12}}{K_2}; \quad a_{36} = a_{35}; \quad a_{37} = -1; \quad a_{38} = -\frac{1}{K_2}\frac{\partial K_2}{\partial t}; \quad a_{39} = -\frac{1}{K_2}\frac{\partial K_1}{\partial s}; \\ a_{44} &= \frac{k^2(t)C_{22}}{K_2}; \quad a_{46} = -\frac{D_{11}}{K_2}; \quad a_{41} = k'(t) -\frac{k(t)}{C_{66}}\frac{\partial C_{66}}{\partial t} + \frac{k(t)}{D_{66}}\frac{\partial D_{66}}{\partial t}; \quad a_{42} = -k(t)\frac{C_{11}}{C_{66}}; \\ a_{45} &= \frac{K_1}{D_{66}}; \quad a_{46} = -\frac{D_{11}}{D_{66}}; \quad a_{47} = -\frac{D_{12} + D_{66}}{D_{66}}; \quad a_{48} = -\frac{1}{D_{66}}\frac{\partial D_{12}}{\partial t}; \quad a_{415} = a_{48}; \\ a_{411} &= \frac{k^2(t)(D_{12}C_{66} - C_{12}D_{66}) + K_{1C_{66}}}{C_{66}}\partial t}; \quad a_{4,10} &= -\frac{1}{D_{66}}\frac{\partial D_{12}}{\partial t}; \quad a_{4,15} = a_{48}; \\ a_{4,16} &= -\frac{K(t)}{C_{66}}\frac{\partial C_{12}}{\partial s}; \quad a_{4,13} = -\frac{D_{12} + D_{66}}{D_{6}}; \quad a_{4,16} = -\frac{D_{16}}{D_{66}}\frac{\partial D_{12}}{\partial t}; \quad a_{4,15} = a_{48}; \\ a_{4,16} &= -\frac{k(t)h\rho}{C_{66}}\frac{\partial C_{12}}{\partial s}; \quad a_{4,17} &= -\frac{k^2(t)h^3\rho}{D_{66}}; \quad a_{5,18} = a_{56}; \\ \end{array}$$

$$\begin{aligned} a_{51} &= k(t) \frac{D_{66}C_{22} - C_{12}D_{22} - C_{66}D_{22} + k^{2}(t)D_{66}D_{22}}{C_{22}D_{22}}; \quad a_{52} &= k(t)K_{2} \frac{k^{2}(t)D_{22} - C_{22}}{C_{22}D_{22}}; \\ a_{55} &= k(t)k'(t) - \frac{k^{2}(t)}{C_{22}}\frac{\partial C_{22}}{\partial t} + \frac{k^{2}(t)}{D_{22}}\frac{\partial D_{22}}{\partial t}; \quad a_{56} &= K_{2} \frac{C_{22} - k^{2}(t)D_{22}}{C_{22}D_{22}}; \\ a_{57} &= -\frac{k^{2}(t)D_{22}D_{66} + C_{22}D_{12} + C_{22}D_{66}}{C_{22}D_{22}}; \quad a_{59} &= -\frac{D_{66}(k^{2}(t)D_{22} + C_{22})}{C_{22}D_{22}}; \quad a_{5,10} &= -\frac{1}{D_{22}}\frac{\partial D_{22}}{\partial t}; \\ a_{5,11} &= -\frac{k(t)}{C_{22}}\frac{\partial C_{12}}{\partial t}; \quad a_{5,12} &= \frac{k^{3}(t)}{C_{22}}\frac{\partial D_{66}}{\partial s} - \frac{k(t)}{C_{22}}\frac{\partial C_{66}}{\partial s} + \frac{k(t)}{D_{22}}\frac{\partial D_{66}}{\partial s}; \quad a_{5,13} &= -\frac{k(t)}{C_{22}}\frac{\partial C_{66}}{\partial s}; \\ a_{5,15} &= a_{5,14}; \quad a_{5,14} &= -\frac{k^{2}(t)}{C_{22}}\frac{\partial D_{66}}{\partial s} - \frac{1}{D_{22}}\frac{\partial D_{66}}{\partial s}; \quad a_{5,16} &= -\frac{1}{D_{22}}\frac{\partial D_{12}}{\partial t}; \\ a_{5,17} &= -\frac{k(t)h\rho}{C_{22}}; \quad a_{5,18} &= -\frac{k^{2}(t)h^{3}\rho}{12D_{22}}. \end{aligned}$$

На криволинейных контурах s = 0 и s = L рассмотрим следующие граничные условия:

1) контур жестко закреплен – u = v = w = 0; $\psi_i = \psi_e = 0$;

2) контур шарнирно опертый и свободный в направлении образующей – $\partial u/\partial s = 0$; v = w = 0; $\partial \psi_s / \partial s = 0$; $\psi_t = 0$.

Если оболочка является незамкнутой, то на контурах t_1, t_2 задаются условия жесткого защемления u = v = w = 0; $\psi_s = \psi_t = 0$ либо шарнирного опирания $\partial u/\partial t = 0$; v = 0; $\partial w/\partial t = 0$; $\partial \psi_s/\partial t = 0$; $\psi_t = 0$.

При рассмотрении замкнутых оболочек для прямолинейных контуров $t_1 = 0$ и $t_2 = T/2$ (T – длина оболочки по направляющей) задаются условия симметрии

 $\partial u/\partial t = 0$; v = 0; $\partial w/\partial t = 0$; $\partial \psi_s/\partial t = 0$; $\psi_t = 0$.

Таким образом, уравнения (9) с соответствующими граничными условиями на контурах z = 0, z = L и t_1 , t_2 представляют собой двумерную краевую задачу на собственные значения.

2. Методика решения задач.

Если срединная поверхность оболочки имеет цилиндрическую форму поперечного сечения, то удобно рассматривать уравнение направляющей соответствующего цилиндра, заданное параметрически $x = f_1(\theta)$, $y = f_2(\theta)$, или в полярной системе $r = r(\theta)$, где θ – параметр. Тогда элемент дуги направляющей может быть представлен в виде $dt = n(\theta)dt$, причем в случае параметрического задания направляющей в прямоугольной системе координат $n(\theta)$ определяется следующим образом: $n(\theta) = \sqrt{(x'(\theta))^2 + (y'(\theta))^2}$, а в случае полярной системы координат – $n(\theta) = \sqrt{r^2 + r'^2}$. Производные по дуге направляющей определяются через производные по θ по формулам:

$$\frac{\partial}{\partial t} = \frac{1}{n} \frac{\partial}{\partial \theta}; \quad \frac{\partial^2}{\partial t^2} = \frac{1}{n^2} \frac{\partial^2}{\partial \theta^2} - \frac{n'}{n^3} \frac{\partial}{\partial \theta}.$$
 (10)

С учетом (10) уравнения (9) можно представить в виде:

$$\begin{aligned} \frac{\partial^2 u}{\partial \theta^2} &= b_{11} \frac{\partial^2 u}{\partial s^2} + b_{12} \frac{\partial^2 v}{\partial s \partial \theta} + b_{13} \frac{\partial u}{\partial s} + b_{14} \frac{\partial v}{\partial s} + b_{15} \frac{\partial w}{\partial s} + b_{16} \frac{\partial w}{\partial \theta} + b_{17} \frac{\partial v}{\partial \theta} + b_{18} w + b_{19} \omega^2 u; \\ \frac{\partial^2 v}{\partial \theta^2} &= b_{21} \frac{\partial^2 u}{\partial s \partial \theta} + b_{22} v + b_{23} \frac{\partial^2 v}{\partial s^2} + b_{24} w + b_{25} \frac{\partial w}{\partial \theta} + b_{26} \frac{\partial^2 w_s}{\partial s \partial \theta} + b_{27} \psi_{\theta} + b_{28} \frac{\partial^2 \psi_t}{\partial s^2} + \\ &+ b_{29} \frac{\partial \psi_t}{\partial s} + b_{2,10} \frac{\partial u}{\partial s} + b_{2,11} \frac{\partial v}{\partial \theta} + b_{2,12} \frac{\partial u}{\partial \theta} + b_{2,13} \frac{\partial v}{\partial s} + b_{2,14} \frac{\partial \psi_s}{\partial \theta} + b_{2,15} \omega^2 v; \\ \frac{\partial^2 w}{\partial \theta^2} &= b_{31} \frac{\partial u}{\partial s} + b_{32} v + b_{33} \frac{\partial v}{\partial \theta} + b_{34} w + b_{35} \frac{\partial^2 w}{\partial s^2} + b_{36} \frac{\partial \psi_s}{\partial s} + b_{37} \frac{\psi_t}{\partial \theta} + b_{38} \psi_t + \\ &+ b_{39} \psi_s + b_{3,10} \frac{\partial w}{\partial s} + b_{3,11} \frac{\partial w}{\partial \theta} + b_{3,12} \omega^2 w; \\ \frac{\partial^2 \psi_s}{\partial \theta^2} &= b_{41} \frac{\partial u}{\partial \theta} + b_{42} \frac{\partial^2 u}{\partial s^2} + b_{43} \frac{\partial^2 v}{\partial s \partial \theta} + b_{44} \frac{\partial \psi_s}{\partial s} + b_{45} \frac{\partial^2 \psi_s}{\partial s^2} + b_{46} \frac{\partial^2 \psi_s}{\partial s^2} + b_{47} \frac{\partial^2 \psi_t}{\partial s \partial \theta} + b_{48} \frac{\partial \psi_t}{\partial s} + (11) \\ &+ b_{49} \frac{\partial u}{\partial s} + b_{4,10} \frac{\partial v}{\partial \theta} + b_{4,12} \frac{\partial v}{\partial s} + b_{4,13} \frac{\partial v}{\partial s} + b_{4,14} \frac{\partial \psi_{t\theta}}{\partial \theta} + b_{4,15} \frac{\partial \psi_s}{\partial \theta} + b_{4,16} \omega^2 u + b_{4,17} \omega^2; \\ \frac{\partial^2 \psi_t}{\partial \theta^2} &= b_{51} \frac{\partial^2 u}{\partial s \partial \theta} + b_{53} \frac{\partial v}{\partial \theta} + b_{54} \frac{\partial^2 v}{\partial s^2} + b_{55} w + b_{56} \frac{\partial w}{\partial \theta} + b_{57} \frac{\partial^2 \psi_s}{\partial s \partial \theta} + b_{5,18} \frac{\partial^2 \psi_t}{\partial s} + b_{5,10} \frac{\partial \psi_s}{\partial s} + b_{5,10} \frac{\partial \psi_s}{\partial s} + b_{5,18} \psi_t + a_{59} \frac{\partial^2 \psi_t}{\partial s^2} + b_{5,18} \psi_t , \end{aligned}$$

где

$$\begin{split} b_{11} &= n^2 \left(\theta \right) a_{11} \,; \ b_{12} &= n \left(\theta \right) a_{12} \,; \ b_{13} &= -n^2 \left(\theta \right) k \left(\theta \right) \frac{C_{12}}{C_{66}} \,; \ b_{14} &= -\frac{n \left(\theta \right)}{C_{66}} \frac{\partial C_{66}}{\partial \theta} \,; \\ b_{16} &= n \left(\theta \right) a_{16} \,; \ b_{17} &= -\frac{n^2 \left(\theta \right) k \left(\theta \right)}{C_{66}} \frac{\partial C_{12}}{\partial s} \,; \ b_{18} &= -\frac{n' \left(\theta \right)}{n \left(\theta \right)} - \frac{1}{C_{66}} \frac{\partial C_{66}}{\partial \theta} \,; \\ b_{19} &= n^2 \left(\theta \right) a_{19} \,; \ b_{21} &= -n \left(\theta \right) \frac{C_{12} + C_{66} - k^2 \left(\theta \right) D_{66}}{C_{22}} \,; \ b_{22} &= \frac{n^2 \left(\theta \right) k^2 \left(\theta \right) K_2}{C_{22}} \,; \ b_{23} &= n^2 \left(\theta \right) a_{23} \,; \\ b_{24} &= -n \left(\theta \right) k' \left(\theta \right) - \frac{n \left(\theta \right) k \left(\theta \right)}{C_{22}} \frac{\partial C_{22}}{\partial \theta} \,; \ b_{25} &= -n \left(\theta \right) k \left(\theta \right) \frac{C_{22} + K_2}{C_{22}} \,; \ b_{26} &= -\frac{n \left(\theta \right) k \left(\theta \right) D_{66}}{C_{22}} \,; \\ b_{27} &= -\frac{n^2 \left(\theta \right) k \left(\theta \right) K_2}{C_{22}} \,; \ b_{28} &= n^2 \left(\theta \right) a_{28} \,; \ b_{29} &= -\frac{n^2 \left(\theta \right) k \left(\theta \right)}{C_{22}} \frac{\partial D_{66}}{\partial s} \,; \ b_{2,10} &= -\frac{n \left(\theta \right)}{C_{22}} \frac{\partial C_{12}}{\partial \theta} \,; \\ b_{2,11} &= \frac{n' \left(\theta \right)}{n \left(\theta \right)} - \frac{1}{C_{22}} \frac{\partial C_{22}}{\partial \theta} \,; \ b_{2,12} &= -\frac{n \left(\theta \right)}{C_{22}} \left(\frac{\partial C_{66}}{\partial s} - k^2 \left(\theta \right) \frac{\partial D_{66}}{\partial s} \,; \ b_{2,13} &= n^2 \left(\theta \right) a_{2,13} \,; \end{split}$$

$$\begin{split} b_{2,14} &= n^2 \left(\theta \right) a_{2,14}; \ b_{2,15} = n^2 \left(\theta \right) a_{2,15}; \ b_{11} = \frac{n^2 \left(\theta \right) k(\theta) C_{12}}{K_2}; \\ b_{35} &= n \left(\theta \right) k'(\theta) + n \left(\theta \right) \frac{k(\theta)}{K_2} \frac{\partial K_3}{\partial \theta}; \ b_{35} = n \left(\theta \right) k(\theta) \frac{K_2 + C_{22}}{K_2}; \ b_{34} &= \frac{n^2 \left(\theta \right) k^2 \left(\theta \right) C_{22}}{K_2}; \\ b_{35} &= n^2 a_{35}; \ b_{35} = b_{35}; \ b_{37} = -n \left(\theta \right); \ b_{38} = -n \left(\theta \right) \frac{1}{K_2} \frac{\partial K_3}{\partial \theta}; \ b_{39} = n^2 \left(\theta \right) a_{35}; \ b_{3,10} = b_{29}; \\ b_{311} &= \frac{n'(\theta)}{n(\theta)} - \frac{1}{K_2} \frac{\partial K_2}{\partial \theta}; \ b_{312} = n^2 \left(\theta \right) a_{312}; \\ b_{42} &= -n^2 \left(\theta \right) k(\theta) \frac{C_{11}}{C_{46}}; \ b_{41} = k'(\theta) - \frac{k(\theta)}{C_{46}} \frac{\partial C_{46}}{\partial \theta} + \frac{k(\theta)}{D_{46}} \frac{\partial D_{46}}{\partial \theta}; \\ b_{43} &= n \left(\theta \right) k(\theta) \frac{D_{22}C_{46} - C_{13}D_{46} - C_{46}D_{46}}{C_{46}}; \ b_{44} = n^2 \left(\theta \right) \frac{k^2 \left(\theta \right) (D_{12}C_{46} - C_{12}D_{46}) + K_1C_{46}}{C_{46} \partial d_{46}}; \\ b_{43} &= n \left(\theta \right) k(\theta) \frac{D_{22}C_{46} - C_{13}D_{46} - C_{46}D_{46}}{C_{46}}; \ b_{41} = n^2 \left(\theta \right) \frac{k^2 \left(\theta \right) (D_{12}C_{46} - C_{12}D_{46}) + K_1C_{46}}{C_{46} \partial d_{46}}; \\ b_{43} &= n^2 \left(\theta \right) k(\theta) \frac{D_{22}C_{46} - C_{13}D_{46}}{C_{46} \partial d_{46}}; \ b_{41} = n^2 \left(\theta \right) \frac{k^2 \left(\theta \right) (D_{12}C_{46} - C_{12}D_{46}) + K_1C_{46}}{C_{46} \partial d_{6}}; \\ b_{43} &= n^2 \left(\theta \right) a_{45}; \ b_{45} = n^2 \left(\theta \right) a_{46}; \ b_{47} = n \left(\theta \right) a_{47}; \ b_{38} = -\frac{n(\theta)}{D_{66}} \frac{\partial D_{66}}{\partial \theta}; \\ b_{411} &= \frac{n^2 \left(\theta \right) k(\theta)}{D_{66}} \frac{\partial C_{11}}{\partial s}; \ b_{4,10} = \frac{n(\theta)k(\theta)}{D_{66}} \frac{\partial C_{66}}{\partial t}; \ b_{4,13} = n^2 \left(\theta \right) a_{4,13}; \\ b_{4,14} &= n \left(\theta \right) a_{4,14}; \ b_{4,15} = -\frac{n(\theta)}{D_{66}} \frac{\partial D_{66}}{\partial t}; \ b_{4,16} = n^2 \left(\theta \right) a_{4,16}; \ a_{4,19} = -\frac{n^2 \left(\theta \right) k^2 \left(\theta \right) h^3 \rho}{12D_{66}}; \\ b_{51} &= n^2 \left(\theta \right) k(\theta) \frac{C_{66}}{C_{22}} - C_{22}C_{22}}; \ b_{53} = k'(\theta) - \frac{k'(\theta)}{C_{22}} \frac{\partial C_{22}}{\partial \theta} + \frac{k'(\theta)}{D_{22}} \frac{\partial D_{22}}{\partial \theta}; \\ b_{54} &= -n^2 \left(\theta \right) k(\theta) \frac{C_{46}}{C_{22}} \frac{C_{22} - C_{22}}{C_{22}}; \ b_{57} = -n(\theta) \frac{k'(\theta) D_{22} D_{66}}{C_{22}} + \frac{k'(\theta)}{D_{22}} \frac{\partial D_{22}}{\partial \theta}; \\ b_{54} &= n^2 \left(\theta \right) K_2 \frac{C_{22} - k^2 \left(\theta D_{22}}; \ b_{5$$

$$b_{5,10} = \frac{n'(\theta)}{n(\theta)} - \frac{1}{D_{22}} \frac{\partial D_{22}}{\partial \theta}; \ a_{5,11} = -n^2(\theta) \frac{k(\theta)}{C_{22}} \frac{\partial C_{12}}{\partial \theta};$$

$$b_{5,12} = n(\theta) \left(\frac{k^3(\theta)}{C_{22}} \frac{\partial D_{66}}{\partial s} - \frac{k(\theta)}{C_{22}} \frac{\partial C_{66}}{\partial s} + \frac{k(\theta)}{D_{22}} \frac{\partial D_{66}}{\partial s} \right); \ b_{5,13} = -n^2(\theta) \frac{k(\theta)}{C_{22}} \frac{\partial C_{66}}{\partial s};$$

$$b_{5,14} = -n(\theta) \left(\frac{k^2(\theta)}{C_{22}} \frac{\partial D_{66}}{\partial s} + \frac{1}{D_{22}} \frac{\partial D_{66}}{\partial s} \right); \ b_{5,15} = -n(\theta) \left(\frac{k^2(\theta)}{C_{22}} \frac{\partial D_{66}}{\partial s} + \frac{1}{D_{22}} \frac{\partial D_{66}}{\partial s} \right);$$

$$b_{5,16} = -\frac{n(\theta)}{D_{22}} \frac{\partial D_{12}}{\partial \theta}; \ a_{5,17} = -\frac{n^2(\theta)k(t)h\rho}{C_{22}}; \ a_{5,18} = -\frac{n^2(\theta)k^2(t)h^3\rho}{12D_{22}}.$$

Задачу (11) при соответствующих граничных условиях решаем с использованием метода сплайн-коллокации [2]. Разрешающие функции $u(s,\theta), v(s,\theta), w(s,\theta), \psi_s(s,\theta), \psi_s(s,\theta), \psi_t(s,\theta)$ представим в виде:

$$u(s,\theta) = \sum_{i=0}^{N} u_i(\theta)\varphi_{1i}(s) , \ v(s,\theta) = \sum_{i=0}^{N} v_i(\theta)\varphi_{2i}(s) , \ w(s,\theta) = \sum_{i=0}^{N} w_i(\theta)\varphi_{3i}(s) ,$$

$$\psi_s(s,\theta) = \sum_{i=0}^{N} \psi_{si}(\theta)\varphi_{5i}(s) , \ \psi_t(s,\theta) = \sum_{i=0}^{N} \psi_{ti}(\theta)\varphi_{4i}(s) ,$$

(12)

где $u_i(\theta), v_i(\theta), w_i(\theta), \psi_{si}(\theta), \psi_{ii}(\theta)$ – искомые функции переменной θ , $\varphi_{ji}(s)$ (j = 1, 5; $i = \overline{0, N}$) – линейные комбинации *B*-сплайнов на равномерной сетке Δ : $0 = s_0 < s_1 < ...$ $... < s_N = L$ с учетом граничных условий при s = 0 и s = L. В разрешающую систему входят производные по координате *s* от $u(s, \theta), v(s, \theta), w(s, \theta), \psi_s(s, \theta), \psi_i(s, \theta)$ не выше второго порядка и можно ограничиться аппроксимацией сплайн- функциями третьей степени. Подставляя представления (12) в уравнения (11), требуем их удовлетворения в заданных точках коллокации $\xi_k \in [0, L], k \in \overline{0, N}$.

Введем следующую операцию умножения матрицы и вектора, а также двух векторов. Пусть заданы матрица $P = [p_{ij}]$ $(i, j = \overline{0, N})$ и вектор $\overline{c} = [c_0, c_1, ..., c_N]^T$; тогда $\overline{c} * P = [c_i p_{ij}]$. Если $\overline{d} = [d_0, d_1, ..., d_N]^T$, то $\overline{c} * \overline{d} = [c_0 d_0, c_1 d_1, ..., c_N d_N]^T$.

Если обозначить $\Phi_{j\alpha} = \left[\varphi_{ji}^{(\alpha)}(\xi_k)\right]$ $(i, k = \overline{0, N}), j = \overline{1, 5}, \alpha = 0, 1, 2, \overline{u} = [u_0, ..., u_N]^T, \overline{v} = [v_0, ..., v_N]^T, \overline{w} = [w_0, ..., w_N]^T, \overline{\psi}_s = [\psi_{s0}, ..., \psi_{sN}]^T, \overline{\psi}_t = \left[\psi_{t0}, ..., \psi_{tN}\right]^T, \overline{b}_{kl}^T = \{b_{kl}(\theta, \xi_0), ..., b_{kl}(\theta, \xi_N)\}, k = \overline{1, 5}; l = \overline{0, N}$ (точки коллокации выбраны таким образом, что матрицы Φ_{j0} являются невырожденными, и построить обратные матрицы Φ_{j0}^{-1}), то получим следующую систему дифференциальных уравнений второго порядка для определения искомых функций, описывающую свободные колебания некруговой однородной цилиндрической оболочки:

$$\overline{u}'' = \Phi_{10}^{-1}(b_{11} * \Phi_{12} + b_{15} * \Phi_{11} + \rho \omega^2 b_{19} * \Phi_{10})\overline{u} + \Phi_{10}^{-1}(b_{18} * \Phi_{10})\overline{u}' + \\ + \Phi_{10}^{-1}(\overline{b}_{14} * \Phi_{21})\overline{v} + \Phi_{10}^{-1}(\overline{b}_{12} * \Phi_{21} + \overline{b}_{16} * \Phi_{20})\overline{v}' + \\ + \Phi_{10}^{-1}(\overline{b}_{13} * \Phi_{31} + \overline{b}_{17} * \Phi_{30})\overline{w} , \qquad (13)$$

$$\overline{v}'' = \Phi_{20}^{-1}(\overline{b}_{2,10} * \Phi_{11})\overline{u} + \Phi_{20}^{-1}(\overline{b}_{21} * \Phi_{11} + \overline{b}_{2,12} * \Phi_{10})\overline{u}' +$$

-

$$\begin{split} + \Phi_{20}^{-1}(\overline{b}_{22} * \Phi_{20} + \overline{b}_{23} * \Phi_{22} + \overline{b}_{2,13} * \Phi_{21} + \rho \omega^2 \overline{b}_{2,15} * \Phi_{20}) \overline{\nu} + \\ + \Phi_{20}^{-1}(\overline{b}_{2,11} * \Phi_{20}) \overline{\nu}' + \Phi_{20}^{-1}(\overline{b}_{24} * \Phi_{30}) \overline{w} + \Phi_{20}^{-1}(\overline{b}_{25} * \Phi_{30}) \overline{w}' + \\ + \Phi_{20}^{-1}(\overline{b}_{25} * \Phi_{41} + \overline{b}_{2,14} * \Phi_{40}) \overline{\psi}'_{s} + \Phi_{20}^{-1}(\overline{b}_{27} * \Phi_{50} + \overline{b}_{28} * \Phi_{52} + \overline{b}_{29} * \Phi_{51}) \overline{\psi}_{t}; \\ \overline{w}'' = \Phi_{30}^{-1}(\overline{b}_{31} * \Phi_{11}) \overline{u} + \Phi_{30}^{-1}(\overline{b}_{32} * \Phi_{20}) \overline{\nu} + \Phi_{30}^{-1}(\overline{b}_{33} * \Phi_{20}) \overline{\nu}' + \\ + \Phi_{30}^{-1}(\overline{b}_{34} * \Phi_{30} + \overline{b}_{35} * \Phi_{32} + \overline{b}_{3,10} * \Phi_{31} + \rho \omega^2 \overline{b}_{3,12} * \Phi_{30}) \overline{w} + \\ - \frac{1}{30}(\overline{b}_{3,11} * \Phi_{30}) \overline{w}' + \Phi_{30}^{-1}(\overline{b}_{36} * \Phi_{41} + \overline{b}_{39} * \Phi_{40}) \overline{\psi}_{s} + \Phi_{30}^{-1}(\overline{b}_{38} * \Phi_{50}) \overline{\psi}_{t} + \Phi_{30}^{-1}(\overline{b}_{37} * \Phi_{50}) \overline{\psi}_{t} \end{split}$$

$$\overline{\psi}_{s}^{"} = \Phi_{40}^{-1}(\overline{b}_{42} * \Phi_{12} + \overline{b}_{49} * \Phi_{11} + \rho \omega^{2} \overline{b}_{4,16} * \Phi_{10})\overline{u} + \Phi_{40}^{-1}(\overline{b}_{41} * \Phi_{10})\overline{u}' + \Phi_{40}^{-1}(\overline{b}_{4,12} * \Phi_{21})\overline{v} + \Phi_{40}^{-1}(\overline{b}_{43} * \Phi_{21} + \overline{b}_{4,10} * \Phi_{20})\overline{v}' +$$

$$+\Phi_{40}^{-1}(\overline{b}_{44}*\Phi_{31}+\overline{b}_{4,11}*\Phi_{30})\overline{w}+\Phi_{40}^{-1}(\overline{b}_{45}*\Phi_{40}+\overline{b}_{46}*\Phi_{42}+\overline{b}_{4,13}*\Phi_{41}+$$

$$+\rho\omega^{2}\overline{b}_{4,17}^{-1}*\Phi_{40})\overline{\psi}_{s}+\Phi_{40}^{-1}(\overline{b}_{4,15}*\Phi_{40})\overline{\psi}_{s}^{'}++\Phi_{40}^{-1}(\overline{b}_{48}*\Phi_{51})\overline{\psi}_{t}+\Phi_{40}^{-1}(\overline{b}_{47}*\Phi_{51}+\overline{b}_{4,14}*\Phi_{50})\overline{\psi}_{t}^{'};$$

$$\overline{\psi}_{t}^{''}=\Phi_{50}^{-1}(\overline{b}_{5,11}*\Phi_{11})\overline{u}+\Phi_{50}^{-1}(\overline{b}_{51}*\Phi_{11}+\overline{b}_{5,12}*\Phi_{10})\overline{u}'+\Phi_{50}^{-1}(\overline{b}_{52}*\Phi_{20}+\overline{b}_{5,13}*\Phi_{21}+$$

$$+\overline{b}_{54}*\Phi_{22}+\rho\omega^{2}\overline{b}_{5,17}*\Phi_{20})\overline{\psi}+\Phi_{50}^{-1}(\overline{b}_{53}*\Phi_{20})\overline{\psi}'+\Phi_{50}^{-1}(\overline{b}_{55}*\Phi_{30})w+\Phi_{50}^{-1}(\overline{b}_{56}*\Phi_{30})\overline{w}'+$$

$$+\Phi_{50}^{-1}(\overline{b}_{5,16}*\Phi_{41})\overline{\psi}_{s}+\Phi_{50}^{-1}(\overline{b}_{57}*\Phi_{41}+\overline{b}_{5,14}*\Phi_{40})\overline{\psi}_{s}^{'}+$$

$$+\Phi_{50}^{-1}(\overline{b}_{58}*\Phi_{50}+\overline{b}_{59}*\Phi_{52}+\overline{b}_{5,15}*\Phi_{51}+\rho\omega^{2}\overline{b}_{5,18}*\Phi_{50})\overline{\psi}_{t}+\Phi_{50}^{-1}(\overline{b}_{5,10}*\Phi_{50})\overline{\psi}_{t}^{'}.$$

Систему (13) представим в виде

 $+\Phi$

$$\frac{d\overline{Y}}{ds} = A(s,\omega)\overline{Y} \quad (0 \le s \le L),$$
(14)

где $A(s,\omega)$ – квадратная матрица порядка $10(N+1) \times 10(N+1)$. Граничные условия при s = 0 и s = L для данной системы обыкновенных дифференциальных уравнений запишем в виде

$$B_1 \overline{Y}(\theta_1) = \overline{0}; \quad B_2 \overline{Y}(\theta_2) = \overline{0}, \tag{15}$$

где B_1 и B_2 – прямоугольные матрицы порядка $5(N+1) \times 10(N+1)$. Здесь $u' = \partial u / \partial s$; $v' = \partial v / \partial s$; $w' = \partial w / \partial s$; $\psi'_s = \partial \psi_s / \partial s$; $\psi'_t = \partial \psi_t / \partial s$; $\overline{Y} = \{\overline{u}, \overline{u}', \overline{v}, \overline{v}, \overline{w}, \overline{w}, \overline{\psi}, \overline{\psi}_s, \overline{\psi}_t, \overline{\psi}_t'\}^T$; $\overline{u} = \{u_0, u_1, ..., u_N\}$; $\overline{u}' = \{u'_0, u'_1, ..., u'_N\}$; $\overline{v} = \{v_0, v_1, ..., v_N\}$; $\overline{v}' = \{v'_0, v'_1, ..., v'_N\}$; $\overline{w} = \{w_0, w_1, ..., w_N\}$; $\overline{w}' = \{w'_0, w'_1, ..., w'_N\}$; $\overline{\psi}_s = \{\psi_{s0}, \psi_{s1}, ..., \psi_{sN}\}$; $\overline{\psi}'_s = \{\psi'_{s0}, \psi'_{s1}, ..., \psi_{sN}\}$; $\overline{\psi}_t = \{\psi_{t0}, \psi_{t1}, ..., \psi_{tN}\}$; $\overline{\psi}'_t = \{\psi'_{t0}, \psi'_{t1}, ..., \psi'_{tN}\}$. Краевую задачу (14), (15) на собственные значения решим, используя метод дискретной ортогонализации совместно с методом пошагового поиска [1].

3. Числовые результаты и их анализ.

Исследуем влияние характера изменения эллиптического поперечного сечения замкнутой некруговой цилиндрической оболочки на частоты свободных колебаний при сохранении массы оболочки. Рассмотрим изотропную оболочку с коэффициентом Пуассона v = 0,3 и длиной $L = 20l_0$. Радиус соответствующей круговой цилиндрической оболочки, выбираем равным $R = 10 l_0$. Эксцентриситет эллипса в некруговом сечении оболочки выбираем равным $\Delta = 0; 0,1; 0,2; 0,3; 0,4$. При этом полуоси эллипса задаются фор-

мулами
$$a = R(1-\Delta)/f$$
, $b = R(1+\Delta)/f$, где $f = 1 + \frac{\Delta^2}{4} + \frac{\Delta^4}{64} + \frac{\Delta^6}{256}$.

Рассмотрим оболочки с шарнирно опертыми (S - S) и жестко защемленными (C - C) краями. В окружном направлении использованы условия симметрии. Соответствующие зависимости первых трех частот $\Omega_i = 2\omega_i l_0 \sqrt{\rho/G}$ свободных колебаний таких оболочек от значений эксцентриситета эллипса для различных граничных условий представлены на рис. 1 (случай шарнирного опирания торцов оболочки) и на рис. 2 (случай жесткого закрепления торцов).

На рис. 1, 2 даны зависимости первых трех частот Ω_i колебаний оболочек, соответственно, шарнирно опертой и жестко защемленной оболочек с эллиптическим поперечным сечением от значения эксцентриситета. Анализ результатов расчетов собственных частот показывает незначительное отличие частот колебаний цилиндрических оболочек с эллиптическим поперечным сечением для различных отношений полуосей. При этом удалось также исследовать влияние различных граничных условий на частоты собственных колебаний замкнутых некруговых изотропных оболочек. Если с возрастанием значения эксцентриситета для рассматриваемых граничных условий первая и вторая частоты свободных колебаний ведут себя одинаково – уменьшаются, то третья частота ведет себя при различных граничных условиях по-разному: в случае жесткого закрепления торцов с ростом эксцентриситета она возрастает, а при шарнирном опирании торцов – она спадает.

На основании предложенной методики исследован спектр свободных колебаний замкнутой некруговой цилиндрической изотропной оболочки переменной толщины. Рассмотрена изотропная оболочка с коэффициентом Пуассона v = 0,3 и длиной $L = 20l_0$. Радиус соответствующей круговой цилиндрической оболочки с массой, которая равна массе некруговой цилиндрической оболочки, выбран равным $R = 10l_0$. Эксцентриситет эллипса в некруговом сечении оболочки $\Delta = 0,1$.

Толщина некруговой цилиндрической оболочки изменялась по закону $H = H_0 (1 + \alpha \cos p\theta)$, сохраняющим массу оболочки, при $p = 2k, k \in N$, $\alpha = 0$; 0,1; 0,2; 0,3. На рис. 3 (a, 6, 6) показано характер изменения толщины в круговом направлении оболочки с круговым поперечным сечением ($\Delta = 0$) в зависимости от параметра p (p = 2; 4; 6; 8, соответственно), при $\alpha = 0,3$.

Исследовано влияние параметра α , определяющего изменение толщины, при (p = 2, 4, 6) на частоты свободных колебаний замкнутой некруговой цилиндрической изотропной оболочки. В окружном направлении были использованы условия симметрии, в продольном – жесткое защемление торцов.

В табл. 1 представлены результаты вычислений первых трех значений безразмерного частотного параметра $\Omega_i = 2\omega_i l_0 \sqrt{\rho/G}$ (*i* – номер частоты) для замкнутой некруговой цилиндрической изотропной оболочки переменной толщины в зависимости от параметров *p* и α .

р	Ω	$\alpha = 0$	$\alpha = 0, 1$	$\alpha = 0,2$	$\alpha = 0,3$
<i>p</i> = 2	Ω_1	0,0874	0,0875	0,0877	0,0882
	Ω_2	0,1068	0,1056	0,1044	0,1033
	Ω_3	0,1074	0,1058	0,1051	0,1044
<i>p</i> = 4	Ω_1	0,0874	0,0881	0,0885	0,0986
	Ω_2	0,1068	0,1050	0,1026	0,1002
	Ω_3	0,1074	0,1089	0,1089	0,1089
<i>p</i> = 6	Ω_1	0,0874	0,0873	0,0872	0,0871
	Ω_2	0,1068	0,1070	0,1071	0,1068
	Ω_3	0,1074	0,1084	0,1080	0,1076

Следует отметить, что при увеличении параметра α в случае p = 2,4 первая частота возрастает на 0,6% и 1,2% соответственно, а вторая – уменьшается на 3,2% и 6,4%, третья частота уменьшается незначительно (до 1%). При p = 6 все три частоты уменьшаются при увеличении параметра α по сравнению с соответствующими частотами свободных колебаний оболочек постоянной толщины. Наибольшему изменению подвержены вторые частоты (до 7,5%). Данное исследование показывает, что параметр p также оказывает влияние на спектр частот свободных колебаний оболочек переменной толщины.

Предложенная методика позволяет определить частоты свободных колебаний *незамкнутых* ортотропных цилиндрических оболочек переменной толщины в окружном направлении.

Проведен анализ характера изменения первых частот колебаний незамкнутых ортотропных оболочек с эллиптическим поперечным сечением ($\Delta = 0,1$) из композитных материалов, а именно, из волокнистых стеклопластиков BM-1 с различным соотношением ортогонально уложенных однонаправленных слоев 5:1, 2:1 и 1:1, характеристики упругости которых представлены в табл. 2. Рассмотрена оболочка, жестко защемленная по контуру при s = 0 и s = L, а также при $\theta = 0$ и $\theta = \pi$ – выполняются условия: u = v = w = 0; $\Psi_s = \Psi_t = 0$.

Таблица 1

Таблица 2

	Соотношение волокон				
Параметры упругости	C1	C2	C3		
	5:1	2:1	1:1		
v_{ts}	0,149	0,105	0,123		
V st	0,0648	0,077	0,110		
$E_s (10^4 \text{ M}\Pi \text{a})$	4,76	3,68	3,09		
$E_t (10^4 { m M}\Pi{ m a})$	2,07	2,68	2,74		
$G_{st} (10^4 \text{ M}\Pi \text{a})$	0,531	0,505	0,396		
$G_{s\gamma}$ (10 ⁴ MПa)	0,501	0,447	0,366		
$G_{\gamma s} (10^4 \text{ MHa})$	0,434	0,414	0,369		

Закон изменения толщины оболочки принят в виде

$$H(\theta) = H_0 \left(1 + \alpha \left(6 \frac{\theta^2}{\pi^2} - 6 \frac{\theta}{\pi} + 1 \right) \right); \quad H_0 = 2l_0.$$

Необходимо отметить, что при таком законе изменения толщины оболочки масса ее не меняется при изменении параметра α .

Величины первых значений обезразмеренного частотного параметра $\Omega_i = 2\omega_i l_0 \sqrt{\rho/G_0}$ ($G_0 = 1$ МПа) для разных значений параметра α свободных колебаний незамкнутых ортотропных оболочек переменной толщины для различных ортотропных материалов (C1 – C3) представлены в табл. 3. *Таблица 3*

					,
α	-0,2	-0,1	0	0,1	0,2
C1	0,0875	0,0874	0,0873	0,0872	0,0869
C2	0,0858	0,0858	0,0858	0,0857	0,0856
C3	0,0783	0,0784	0,0785	0,0786	0,0786

На рис. 4 показана зависимость от параметра α первых частот свободных колебаний незамкнутых ортотропных цилиндрических оболочек с эллиптическим поперечным сечением ($\Delta = 0,1$), толщина которых изменяется по квадратичному закону, изготовленных из рассматриваемых стеклопластиков.

Анализ результатов, представленных в табл. 3 и на рис. 4, показывает, что первые частоты свободных колебаний оболочки, изготовленной из

материала C1, более зависимы от переменной толщины. Влияние параметра изменения толщины α для оболочек, изготовленных из данного материала, составляет $\approx 1\%$ (для C2 влияние практически отсутствует, для C3 – также менее 1%) по сравнению с оболочками постоянной толщины, изготовленными из соответствующих материалов. Поэтому в дальнейших исследованиях целесообразно использовать именно оболочки, изготовленные из материала C1.

Заключение.

На основе уточненной теории оболочек Тимошенко – Миндлина получено решение задачи о свободных колебаниях ортотропных некруговых цилиндрических оболочек с изменяющейся толщиной при различных граничных условиях. Для решения краевой задачи на собственные значения для системы дифференциальных уравнений в частных

производных с переменными коэффициентами применен эффективный численный подход., который состоит в последовательном применении методов сплайн-коллокации и дискретной ортогонализации. Проведен расчет частот свободных колебаний для нетонких оболочек с эллиптическим поперечным сечением в случае изотропного и ортотропного материалов и изменения толщин оболочки в поперечном сечении. Исследовано влияние формы оболочки, закона изменения толщины, свойств материала, граничных условий на распределение спектра собственных частот.

Р Е З Ю М Е. На основі уточненої теорії Тимошенка – Міндліна дано розв'язок задачі про вільні коливання нетонких некругових циліндричних оболонок змінної товщини з еліптичним поперечним перерізом при різних граничних умовах на краях. Сформульовану задачу розв'язано ефективним чисельним підходом, який базується на послідовному застосуванні методів сплайн-апроксимації та дискретної ортогоналізації. Проведено аналіз впливу форми поперечного перерізу оболонки, закону зміни її товщини, властивостей матеріалу, граничних умов на розподіл спектру власних коливань оболонок.

- Григоренко Я.М., Беспалова Е.И., Китайгородский А.Б., Шинкарь А.И. Свободные колебания элементов оболочечных конструкций. – К.: Наук. думка, 1986. – 171 с.
- Григоренко А.Я., Ефимова Т.Л., Коротких Ю.А. Численное решение задачи о свободных колебаниях нетонких некруговых цилиндрических оболочек // Доп. НАН України. – 2015. № 9. – С. 39 – 45.
- 3. *Пузырев С.В.* Исследование свободных колебаний гофрированных цилиндрических оболочек // Теор. и прикл. механика. 2010. **1**, № 47. С. 106 113.
- Семенюк Н.П., Бабич И.Ю., Жукова Н.Б. Свободные колебания гофрированных цилиндрических оболочек // Прикл. механика. – 2005. – 41, № 5. – С.58 – 67.
- Budak V.D., Grigorenko A.Ya., Puzyrov S.V. Free vibrations of the non-circular cylindrical shells // Proc. of 10th Int. Conference «Modern Building, Materials, Structures and Techniques». – Vilnus: Lithuania, 2010. – P. 874 – 879.
- Ganapath M., Haboussi M. Free vibrations of thick laminated anisotropic non-circular cylindrical shells // Composite Structures. – 2003. –60, N 2. – P.125 – 133.
- Grigorenko A.Ya., Puzyrov S.V., Volchek E.A. Investigation of free vibrations of non-circular cylindrical shells by the spline-collocation method // J. of Math. Sciences. – 2012. – 185, N 6. – P. 824 – 836.
- Hayek S.I., Boisvert J.E. Vibration of elliptic cylindrical shells : higher-oder shell theory // JASA 2010. – 128, N 3 – P.1063 – 1072.
- Kumar V., Singh A.V. Vibration analysis of non-circular cylindrical shells using Bezier function // J. Sound and Vibr. – 1993. – 161, N 2. – P. 333 – 354.
- Mussalas, C., Soldatos K., Tzivanidis G. Free vibrations of non-circular cylindrical panels with arbitrary boundary conditions // J. Sound and Vibr. – 1980. – 69, N 3. – P. 491 – 495.
- Patel B.P., Gupta S.S., Loknath M.S., Kadu C.P. Free vibration analysis of functionally graded elliptical cylindrical shells using higher-order theory // Composite Structures. – 2005. – 69, N 2. – P.259 – 270.
- 12. *Shirakawa K., Morita M.* Vibration and buckling of cylinders with elliptical cross section // J. Sound and Vibr. 1982. **84**, N 1. P. 121 132.
- Soldatos K.P. Review of three-dimensional analyses of circular cylinders and cylindrical shells // Appl. Mech. Rrev. - 1994. - 47, N 10. - P. 501 - 516.
- Soldatos K.P. Mechanics of cylindrical shells with non-circular cross-sections(survey) // Appl. Mech. Rev. – 1999. – 52, N 2. – P. 237 – 274.
- Srinivasan R.S., Bobby V. Free vibration of non-circular cylindrical shell panels // J. Sound and Vibr. 1976. – 46, N 1. – P. 117 – 126.
- Suzuk, K., Leissa A.W. Exact solutions for the free vibrations of open cylindrical shells with circumferentially varying curvature and thickness conditions // J. Sound and Vibr. – 1986. – 107, N 1. – P. 1 – 15.
- 17. Suzuki K., Shikanai G., Leissa A.W. Free vibration of laminated composite non-circular thin cylindrical shells // J. Appl. Mech. 1994. 61, N 4. P. 261 871.
- Yamada G., Irie T., Tagawa Y. Free vibration of non-circular cylindrical shells with variable circumferential profile // J. Sound and Vibr. – 1984. – 95, N 1. – P. 117 – 126.

Поступила 06.10.2016

Утверждена в печать 30.05.2017