Л.В.Мольченко¹, Л.Н.Федорченко², Л.Я.Васильева¹

О НЕЛИНЕЙНОЙ ТЕОРИИ МАГНИТОУПРУГОСТИ ОБОЛОЧЕК ВРАЩЕНИЯ С УЧЕТОМ ДЖОУЛЕВА ТЕПЛА

¹Николаевский национальный университет им. В.А.Сухомлинского, ул. Никольская, 24, 54030, Николаев, Украина; e-mail: l.molchenko@gmail.com ²Киевский национальный университет им. Тараса Шевченко, пр. Академика Глушкова, 4-е, 03127, Киев, Украина; e-mail: fedorchenko555@gmail.com

Abstract. A theory and technique of solving the nonlinear problems magnetoelasticity of shells of revolution with taking into account the Joule heat in the microsecond range is offered. A numerical example is given.

Key words. magnetoelasticity, shell, Joule heat, magnetic field.

Введение.

Исследования взаимосвязанности полей различной физической природы являются актуальными в механике сплошных сред и имеют большое научное и прикладное значение. Проблемы взаимодействия также есть основополагающими и в задачах магнитоупругости, т. е. в задачах движения упругих деформируемых электропроводящих тел в магнитном поле [8 – 10, 14].

Результаты исследований по механике связанных полей в деформируемых телах имеют как фундаментальный, так и прикладной характер, что придает им особую актуальность. В последние годы значительный интерес получили исследования процессов деформации электропроводящих тел под действием силовых и электромагнитных нагрузок [6, 11 – 13].

В данной работе рассмотрены связанные нестационарные задачи при воздействии магнитных и механических полей на проводящие тела, в которых нелинейные эффекты (конечные деформации) и учет джоулева тепла являются определяющими. Решение таких, столь сложных задач в настоящее время можно получить лишь численно. Именно с этих позиций ниже дается формулировка основных геометрически нелинейных уравнений теории гибких оболочек вращения с учетом джоулева тепла.

1. Постановка задачи. Двумерные нелинейные уравнения магнитоупругости оболочек вращения.

Рассмотрим нелинейную задачу магнитоупругости о напряженно-деформируемом состоянии ((НДС) проводящих гибких оболочек вращения переменной жесткости, находящихся под действием нестационарного магнитного поля и произвольной механической нагрузки. Примем, что изотропная упругая оболочка изготовлена из материала с конечной проводимостью σ и находится во внешнем магнитном поле \vec{H}_0 . Кроме того, оболочка является проводником равномерно распределенного электрического тока плотности \vec{J}_{cm} .

Пространственные уравнения магнитоупругости в дифференциальной форме в лагранжевых переменных имеют вид [1, 14]

ISSN0032-8243. Прикл. механика, 2018, **54** № 3

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \quad \operatorname{rot} \vec{H} = \vec{J}; \quad \operatorname{div} \vec{B} = 0; \tag{1}$$

$$\rho \frac{\partial \vec{V}}{\partial t} = \rho \left(\vec{F} + \vec{F}^{\,\wedge} \right) + \operatorname{div} \hat{\sigma}; \tag{2}$$

где \vec{E} – напряженность электрического поля; \vec{H} – напряженность магнитного поля; \vec{B} – магнитная индукция; \vec{J} – плотность электрического тока; ρ – плотность материала; \vec{F} – объемная механическая сила; \vec{F} – объемная сила Лоренца; $\hat{\sigma}$ – тензор внутренних напряжений.

Закон Ома и сила Лоренца, с учетом стороннего тока \vec{J}_{cm} , соответственно имеют вид

$$\vec{J} = \vec{J}_{cm} + \sigma \left[\vec{E} + \vec{V} \times \vec{B} \right];$$
(3)

$$\rho \vec{F}^{\,\hat{}} = \vec{J}_{cm} \times \vec{B} + \sigma \left[\vec{E} + \vec{V} \times \vec{B} \right] \times \vec{B}. \tag{4}$$

При построении приближенных двумерных (за материальными переменными) уравнений движения и уравнений электродинамики теории тонких оболочек вращения в геометрически нелинейной постановке используются гипотезы Кирхгофа – Лява и гипотезы о характере распределения электромагнитного поля [1, 5].

Таким образом, при построении приближенных уравнений магнитоупругости гибких оболочек, которые находятся в магнитном поле, используем следующую группу электромагнитных гипотез:

$$E_{\alpha} = E_{\alpha} (\alpha, \beta, t); \quad E_{\beta} = E_{\beta} (\alpha, \beta, t); \quad E_{\gamma} = \frac{\partial u_{\beta}}{\partial t} B_{\alpha} - \frac{\partial u_{\alpha}}{\partial t} B_{\beta};$$
$$J_{\alpha} = J_{\alpha} (\alpha, \beta, t); \quad J_{\beta} = J_{\beta} (\alpha, \beta, t); \quad J_{\gamma} = 0; \tag{5}$$

$$H_{\alpha} = \frac{H_{\alpha}^{+} + H_{\alpha}^{-}}{2} + \frac{\gamma}{h} \Big(H_{\alpha}^{+} - H_{\alpha}^{-} \Big); \quad H_{\beta} = \frac{H_{\beta}^{+} + H_{\beta}^{-}}{2} + \frac{\gamma}{h} \Big(H_{\beta}^{+} - H_{\beta}^{-} \Big); \quad H_{\gamma} = H_{\gamma} \big(\alpha, \beta, t \big).$$

Рассмотрим гибкие изотропные оболочки вращения переменной толщины, координатная поверхность которой замкнута в окружном направлении поверхности вращения. За координатную поверхность выбираем срединную поверхность оболочки и отнесем ее в недеформированном состоянии к криволинейной ортогональной системе координат s, θ , где s – длина меридиана; θ – центральный угол в параллельном круге. Отсчитывая координату γ по нормали к срединной поверхности вращения, отнесем оболочку к ортогональной пространственной системе координат s, θ, γ .

Используя вариационный принцип, учитывая гипотезы Кирхгофа – Лява и электродинамические гипотезы (5), уравнения магнитоупругости гибких оболочек вращения принимают вид [5]:

уравнения магнитоупругости –

$$\frac{\partial (rN_s)}{\partial s} - \cos \varphi \ N_{\theta} + \frac{\partial S}{\partial \theta} + \frac{1}{R_s} \frac{\partial H}{\partial \theta} + \frac{r}{R_s} Q_s + r \left(p_s + \rho F_s^{\wedge} \right) = r \rho h \frac{\partial^2 u}{\partial t^2};$$

$$\frac{\partial N_{\theta}}{\partial \theta} + \frac{1}{r} \frac{\partial}{\partial s} (r^2 S) + \frac{\partial}{\partial s} (\sin \varphi H) + \frac{\cos \varphi}{R_s} H + \sin \varphi Q_{\theta} + r \left(p_{\theta} + \rho F_{\theta}^{\wedge} \right) = r \rho h \frac{\partial^2 v}{\partial t^2};$$

$$\frac{\partial (rQ_s)}{\partial s} + \frac{\partial Q_{\theta}}{\partial \theta} - r \frac{N_s}{R_s} - \sin \varphi N_{\theta} + r \left(p_{\gamma} + \rho F_{\gamma}^{\wedge} \right) = r \rho h \frac{\partial^2 w}{\partial t^2};$$
(6)

72

$$\begin{split} \frac{\partial H}{\partial \theta} + \frac{\partial \left(rM_{s}\right)}{\partial s} - \cos \varphi \ M_{\theta} - rQ_{s} - r\left(N_{s} - \frac{\sin \varphi}{r}M_{\theta}\right) \vartheta_{s} - rS\vartheta_{\theta} &= 0; \\ \frac{1}{r} \frac{\partial}{\partial s} \left(r^{2}H\right) + \frac{\partial M_{\theta}}{\partial \theta} - rQ_{\theta} - r\left(N_{\theta} - \frac{1}{R_{s}}M_{s}\right) \vartheta_{\theta} - rS\vartheta_{s} &= 0; \\ -\frac{\partial B_{\gamma}}{\partial t} &= \frac{1}{r} \left(\frac{\partial (rE_{\theta})}{\partial s} - \frac{1}{r} \frac{\partial E_{s}}{\partial \theta}\right); \quad \sigma \left[E_{s} - 0.5 \frac{\partial w}{\partial t} \left(B_{\theta}^{+} + B_{\theta}^{-}\right) - \frac{\partial v}{\partial t}B_{\gamma}\right] &= \frac{1}{r} \frac{\partial H_{\gamma}}{\partial \theta} + \frac{H_{\theta}^{+} - H_{\theta}^{-}}{h}; \\ \sigma \left[E_{\theta} + 0.5 \frac{\partial w}{\partial t} \left(B_{s}^{+} + B_{s}^{-}\right) - \frac{\partial u}{\partial t}B_{\gamma}\right] &= -\frac{\partial H_{\gamma}}{\partial s} + \frac{H_{s}^{+} - H_{s}^{-}}{h}; \end{split}$$

выражения деформаций через перемещения –

$$\varepsilon_{ss} = \frac{\partial u}{\partial s} + \frac{w}{R_s} + \frac{1}{2} \mathcal{G}_s^2; \quad \varepsilon_{\theta\theta} = \frac{1}{r} \frac{\partial v}{\partial \theta} + \frac{\cos\varphi}{r} u + \frac{\sin\varphi}{r} w + \frac{1}{2} \mathcal{G}_\theta^2;$$

$$\varepsilon_{s\theta} = \frac{1}{r} \frac{\partial u}{\partial \theta} + r \frac{\partial}{\partial s} \left(\frac{v}{r} \right) + \mathcal{G}_s \mathcal{G}_\theta; \quad \chi_{ss} = \frac{\partial \mathcal{G}_s}{\partial s}; \quad \chi_{\theta\theta} = \frac{1}{r} \frac{\partial \mathcal{G}_\theta}{\partial \theta} + \frac{\cos\varphi}{r} \mathcal{G}_s; \quad (7)$$

$$\chi_{s\theta} = \frac{\partial \mathcal{G}_\theta}{\partial s} + \frac{1}{r} \frac{\partial \mathcal{G}_s}{\partial \theta} - \frac{\cos\varphi}{r} \mathcal{G}_\theta + \frac{1}{R_s} \left(\frac{1}{r} \frac{\partial u}{\partial \theta} - \frac{\cos\varphi}{r} v \right) + \frac{\sin\varphi}{r} \frac{\partial v}{\partial s},$$

где приняты такие обозначения: $\vartheta_s = -\frac{\partial w}{\partial s} + \frac{u}{R_s}; \ \vartheta_{\theta} = -\frac{1}{r}\frac{\partial w}{\partial \theta} + \frac{\sin \varphi}{r}v;$

соотношения упругости –

$$N_{s} = D_{N} \left[\varepsilon_{ss} + v \varepsilon_{\theta\theta} - (1+v) \varepsilon_{T} \right]; \quad N_{\theta} = D_{N} \left[\varepsilon_{\theta\theta} + v \varepsilon_{ss} - (1+v) \varepsilon_{T} \right]; \quad S = D_{N} \frac{1-v}{2} \varepsilon_{s\theta};$$
(8)
$$H = D_{M} (1-v) \chi_{s\theta}; \quad M_{s} = D_{M} \left[\chi_{ss} + v \chi_{\theta\theta} - (1+v) \chi_{T} \right]; \quad M_{\theta} = D_{M} \left[\chi_{\theta\theta} + v \chi_{ss} - (1+v) \chi_{T} \right],$$

где

$$\varepsilon_{T} = \frac{1}{h} \int_{-h/2}^{h/2} \alpha T(s,\theta,\gamma,t) d\gamma; \quad \chi_{T} = \frac{12}{h^{3}} \int_{-h/2}^{h/2} \alpha T(s,\theta,\gamma,t) \gamma d\gamma;$$

$$D_N = \frac{Eh(s,\theta)}{1-v^2}; \ D_M = \frac{Eh^3(s,\theta)}{12(1-v^2)}.$$

Составляющие силы Лоренца ρF^{\wedge} имеют вид:

$$\rho F_{\theta}^{\wedge} = -hJ_{scm}B_{\gamma} - \frac{h}{r\mu}\frac{\partial B_{\gamma}}{\partial\theta}B_{\gamma} + \sigma h\left\{\frac{\partial u}{\partial t}\left[0,25\left(B_{\theta}^{+}+B_{\theta}^{-}\right)\left(B_{s}^{+}+B_{s}^{-}\right) + \frac{1}{12}\left(B_{\theta}^{+}-B_{\theta}^{-}\right)\left(B_{s}^{+}-B_{s}^{-}\right)\right] - \frac{\partial v}{\partial t}\left[0,25\left(B_{\theta}^{+}+B_{\theta}^{-}\right)^{2} + \frac{1}{12}\left(B_{\theta}^{+}-B_{\theta}^{-}\right)^{2}\right]\right\} - \frac{B_{\theta}^{+}-B_{\theta}^{-}}{\mu}B_{\gamma};$$

73

$$\rho F_{s}^{\,\,\circ} = h J_{\theta cm} B_{\gamma} + \sigma h E_{\theta} B_{\gamma} + \sigma h \left\{ 0, 5 \frac{\partial w}{\partial t} (B_{s}^{+} + B_{s}^{-}) B_{\gamma} - \frac{\partial u}{\partial t} B_{\gamma}^{2} - \frac{\partial u}{\partial t} \left[0, 25 (B_{\theta}^{+} + B_{\theta}^{-})^{2} + \frac{1}{12} (B_{\theta}^{+} - B_{\theta}^{-})^{2} \right] + \qquad (9) \\
+ \frac{\partial v}{\partial t} \left[0, 25 (B_{\theta}^{+} + B_{\theta}^{-}) (B_{s}^{+} + B_{s}^{-}) + \frac{1}{12} (B_{\theta}^{+} - B_{\theta}^{-}) (B_{s}^{+} - B_{s}^{-}) \right] \right\}; \\
\rho F_{\gamma}^{\,\,\circ} = 0, 5h \left[J_{\theta cm} (B_{\theta}^{+} + B_{\theta}^{-}) - J_{\theta cm} (B_{s}^{+} + B_{s}^{-}) \right] + \frac{h}{2r\mu} \frac{\partial B_{\gamma}}{\partial \theta} (B_{\theta}^{+} + B_{\theta}^{-}) - \\
- 0, 5\sigma h E_{\theta} (B_{s}^{+} + B_{s}^{-}) + \sigma h \left\{ 0, 5 \frac{\partial u}{\partial t} (B_{s}^{+} + B_{s}^{-}) B_{\gamma} - \\
- \frac{\partial w}{\partial t} \left[0, 25 (B_{s}^{+} + B_{s}^{-})^{2} + \frac{1}{12} (B_{\theta}^{+} - B_{\theta}^{-})^{2} + \frac{1}{12} (B_{s}^{+} - B_{s}^{-})^{2} \right] \right\} + \frac{(B_{\theta}^{+})^{2} - (B_{\theta}^{-})^{2}}{\mu}.$$

Отметим, что в случае использования канонических координат в теории оболочек вращения коэффициенты Ламе срединной поверхности A = 1, B = r, а также $dr/ds = \cos \varphi$, где φ – угол между осью вращения и нормалью к оболочке; r(s) – радиус параллельного круга; $h = h(s, \theta)$ – толщина оболочки.

В соотношениях (6) – (9) введены следующие обозначения: N_s , N_{θ} – нормальное и тангенциальное усилия; S – сдвигающее усилие; Q_s , Q_{θ} – поперечные усилия; M_s , M_{θ} , H – изгибные и крутящий моменты, соответственно; u, v, w – компоненты вектора перемещения; E_s , E_{θ} – составляющие напряженности электрического поля; B_{γ} – нормальная составляющая магнитной индукции; B_s^{\pm} , B_{θ}^{\pm} – известные составляющие магнитной индукции на поверхностях оболочки; θ_s , θ_{θ} – углы поворота нормали; E – модуль Юнга; v – коэффициент Пуассона; R_s – главный радиус кривизны оболочки; μ – коэффициент магнитной проницаемости; α – коэффициент линейного температурного расширения, $T(s, \theta, \gamma, t)$ – температура тела.

К полученным уравнениям необходимо присоединить начальные и граничные условия.

2. Термодинамические соотношения для определения джоулева нагрева.

Ниже представлены результата вычисления джоулевой температуры, которая возникает в гибкой оболочке при действии на нее магнитного поля в микросекундном диапазоне (переходной процесс) [3, 6, 7].

При расчете температуры $T(s, \theta, \gamma, t)$ используем уравнение баланса тепла.

Представим магнитное давление Р в виде суммы двух составляющих

$$P(\rho, T) = P_{\chi}(\rho) + P_{T}(\rho, T), \qquad (10)$$

где $P_{\chi}(\rho)$ – составляющая давления, зависящая только от плотности ρ ; $P_T(\rho,T)$ – тепловая составляющая (зависящая от температуры и плотности). Также представим приращение внутренней энергии в виде энергии без учета температуры и тепловой составляющих, т.е.

$$\rho dU = \rho dU_{\tau} + \rho dU_{\tau},$$

где

74

$$\rho \, dU_{\chi} = \sigma^{ik} d\varepsilon_{ik} + 3P_{\chi} de \,; \tag{11}$$

$$\rho \, dU_T = 3P_T de + \rho \, dQ_{aw} + \operatorname{div}(\lambda_T \operatorname{grad} T) \, dt \tag{12}$$

(здесь λ_T – коэффициент теплопроводности).

Примем далее, что приращение тепловой энергии пропорционально приращению температуры, т.е.

$$dU_T = C_{\varepsilon}(T)dT, U_T = \int_0^T C_{\varepsilon}(T)dT, \qquad (13)$$

где C_{ε} – удельная теплоемкость при постоянной деформации. Тогда уравнение (12) можно использовать для определения температуры, т.е.

$$\rho C_{\varepsilon} \frac{\partial T}{\partial t} = \rho \dot{Q}_{asc} + \operatorname{div}(\lambda_T \operatorname{grad} T).$$
(14)

Учитывая, что удельная теплоемкость металлов для температур выше T_0 вплоть до точки плавления изменяется незначительно (не более, чем на 5 – 10 % от среднего значения), тепловую энергию можно представить в виде

$$U_{T} = \int_{0}^{T} C_{\varepsilon}(T) dT \approx C_{\varepsilon}^{cep}(T - T_{0}) + U_{T0}; \quad U_{T0} = \int_{0}^{T_{0}} C_{\varepsilon}(T) dT, \quad (15)$$

где C_{ε}^{cep} – среднее значение теплоемкости на интервале $[T_0, T]$.

Следуя [6], уравнение (14) преобразуется в известное уравнение теплопроводности с источником джоулева тепла

$$\frac{\partial T}{\partial t} = \frac{1}{C_{\varepsilon}^{cep}} \dot{Q}_{\alpha \ast \varepsilon} + \alpha_T \Delta T \; ; \; \; \alpha_T = \frac{\lambda_T}{\rho C_{\varepsilon}^{cep}} \; , \; \; \lambda_T = \text{const} \; , \tag{16}$$

где α_{T} – коэффициент тепловой диффузии.

Используя выражение для расчета джоулева тепла, оценим величину температуры, возникающую в результате джоулева нагрева в зависимости от величины магнитной индукции \vec{B} . Используя (10) и уравнение Максвелла rot $\vec{H} = \sigma \vec{E}$, из соображений теории размерности и на основании (16) имеем

$$\tilde{T} \approx T_0 + \frac{2}{\rho C_{\varepsilon}^{cep}} \tilde{W} + \frac{\alpha_T}{\alpha_D} \tilde{T} ; \quad \vec{W} = 0.5 \frac{B^2}{\mu}, \tag{17}$$

где $\alpha_D = 1/\sigma\mu$ – коэффициент магнитной диффузии. В качестве характерного времени принято время диффузии магнитного поля на расстояние \tilde{L} , т.е. $\tilde{t} = \tilde{L}/\alpha_D$. Так как $\alpha_T / \alpha_D <<1$ для металлов (например, для алюминия при $T_0 = 20^{\circ}$ C $\alpha_T / \alpha_D \approx 4,3 \cdot 10^{-3}$, для нержавеющей стали – $\alpha_T / \alpha_D \approx 0,8 \cdot 10^{-5}$), то из символического уравнения (17) следует, что процессом теплопроводности в переходном режиме можно пренебречь.

Таким образом, учитывая оценку членов уравнения (16), окончательно определяем величину температуры, возникающую в результате джоулева нагрева, в виде

$$T = T_0 + \frac{1}{\rho \sigma C_{\varepsilon}^{cep}} \vec{J} \vec{J} .$$
⁽¹⁸⁾

Как известно, при действии на оболочку магнитного поля в ней возникают объемные силы Лоренца $\rho F^{\wedge} = \vec{J} \times \vec{B}$.

Исходя из уравнений для магнитной энергии оболочки и используя тождество

$$\dot{A} \times rot\dot{A} + \dot{A}\nabla\dot{A} = 0, 5\nabla(\dot{A}\dot{A})$$

выражение для пондеромоторных сил запишем в виде

$$\rho F^{\wedge} = \vec{J} \times \vec{B} = rot \vec{H} \times \vec{B} = \vec{B} \nabla \vec{H} - \frac{\partial W}{\partial \xi^{k}} \vec{G}^{k}, \qquad (19)$$

где $(\partial W / \partial \xi^k) \vec{G}^k$ – член силы Лоренца, соответствующий джоулеву нагреву оболочки; \vec{G}^k – базовый вектор; ∇ – оператор в лагранжевой метрике; ξ^k – лагранжевые переменные (k = 1, 2, 3).

Таким образом, влияние джоулева тепла учитывается как в уравнениях магнитоупругости, так и в формуле для силы Лоренца.

Ниже рассмотрена задача магнитоупругости для кольцевой пластины.

3. Разрешающая система уравнений магнитоупругости гибкой кольцевой пластины.

Итак, рассмотрим нелинейную краевую задачу магнитоупругости о НДС кольцевой пластины переменной толщины вдоль радиуса с учетом джоулева тепла. Пластина – упругая изотропная, изготовленная из материала с конечной проводимостью. Пластина является проводником равномерно распределенного электрического тока плотности \vec{J}_{cm} .

Пусть задача магнитостатики для возмущенного состояния решена, т.е. известны вектора магнитной индукции начального состояния для внешней и внутренней областей. За координатную плоскость принимаем срединную поверхность пластины, отнесенную к полярной системе r, θ ; координата γ отсчитывается по нормали к срединной плоскости.

Принимая, что все компоненты возбужденного электромагнитного поля и поля перемещений не зависят от координаты θ , положим [5]

$$\frac{\partial}{\partial \theta} = 0; \quad v = 0; \quad E_r = 0; \quad B_\theta = 0; \quad f_\theta = 0; \quad \rho f_\theta^{\wedge} = 0; \quad A = 1; \quad B = r.$$
(20)

Учитывая (20) и уравнения (6) – (9), имеем основные уравнения: уравнение движения –

$$\frac{\partial (rN_r)}{\partial r} - N_{\theta} + r\left(f_r + \rho f_r^{\wedge}\right) = r\rho h \frac{\partial^2 u}{\partial t^2}; \quad \frac{\partial (rQ_r)}{\partial r} + r\left(f_r + \rho f_r^{\wedge}\right) = r\rho h \frac{\partial^2 w}{\partial t^2}; \quad (21)$$
$$\frac{\partial (rM_r)}{\partial r} - M_{\theta} - rQ_r - rN_r \vartheta_r = 0;$$

уравнения электродинамики –

$$-\frac{\partial B_{\gamma}}{\partial t} = \frac{1}{r} \frac{\partial (rE_{\theta})}{\partial r}; \quad \sigma \left[E_{\theta} + 0.5 \frac{\partial w}{\partial t} \left(B_{r}^{+} + B_{r}^{-} \right) - \frac{\partial u}{\partial t} B_{\gamma} \right] = -\frac{1}{\mu} \frac{\partial B_{\gamma}}{\partial r} + \frac{B_{r}^{+} - B_{r}^{-}}{\mu h}; \quad (22)$$

выражения для деформаций –

$$\varepsilon_r = \frac{\partial u}{\partial r} + 0.5 \mathscr{G}_r^2; \quad \varepsilon_\theta = \frac{u}{r}; \quad \chi_r = \frac{1}{r} \frac{\partial \mathscr{G}_r}{\partial r}; \quad \chi_\theta = \frac{\mathscr{G}_r}{r}; \quad \mathscr{G}_r = -\frac{\partial w}{\partial r}; \tag{23}$$

соотношения упругости -

$$N_{r} = \frac{Eh}{1-v^{2}} \Big[\varepsilon_{r} + v\varepsilon_{\theta} - (1+v)\varepsilon_{T} \Big]; N_{\theta} = \frac{Eh}{1-v^{2}} \Big[\varepsilon_{\theta} + v\varepsilon_{r} - (1+v)\varepsilon_{T} \Big];$$

$$M_{r} = \frac{Eh^{3}}{12(1-v^{2})} \Big[\chi_{r} + v \chi_{\theta} - (1+v) \chi_{T} \Big]; \quad M_{\theta} = \frac{Eh^{3}}{12(1-v^{2})} \Big[\chi_{\theta} + v \chi_{r} - (1+v) \chi_{T} \Big]; \quad (24)$$
$$\varepsilon_{T} = \frac{1}{h} \int_{-h/2}^{h/2} \alpha T(r,t) d\gamma; \quad \chi_{T} = \frac{12}{h^{3}} \int_{-h/2}^{h/2} \alpha T(r,t) \gamma d\gamma;$$

компоненты объемной силы Лоренца –

$$\rho f_r^{\wedge} = h J_{\theta cm} r B_{\gamma} + \sigma h \bigg[E_{\theta} B_{\gamma} - \frac{\partial u}{\partial t} B_{\gamma}^2 + 0.5 \frac{\partial w}{\partial t} \Big(B_r^+ + B_r^- \Big) B_{\gamma} \bigg];$$

$$\rho f_{\gamma}^{\wedge} = -0.5 h J_{\theta cm} \Big(B_r^+ + B_r^- \Big) - 0.5 \sigma h \bigg[\bigg(E_{\theta} + \frac{\partial u}{\partial t} \bigg) \Big(B_r^+ + B_r^- \Big) + 0.5 \frac{\partial w}{\partial t} \Big(B_r^+ + B_r^- \Big)^2 \bigg].$$
⁽²⁵⁾

Здесь ε_T , χ_T – интегральные характеристики температурного поля T(r, t); α – коэффициент линейного температурного расширения.

При построении разрешающей системы магнитоупругости кольцевой пластины выберем в качестве искомых функций следующие [3, 5]: $u, w, \mathcal{G}_r, N_r, Q_r, M_r, B_{\gamma}, E_{\theta}$.

Используя уравнения и соотношения (21) – (25), после соответствующих преобразований получаем полную систему нелинейных дифференциальных уравнений магнитоупругости, которая описывает НДС кольцевой пластины с учетом джоулева тепла:

$$\begin{aligned} \frac{\partial u}{\partial r} &= \frac{1-v^2}{Eh} N_r - \frac{v}{r} u - 0.5 \mathscr{G}_r^2 + (1+v) \mathscr{E}_r \ ; \ \frac{\partial w}{\partial r} = -\mathscr{G}_r \ ; \\ & \frac{\partial \mathscr{G}_r}{\partial r} = \frac{12(1-v^2)}{Eh^3} M_r - \frac{v}{r} \mathscr{G}_r + (1+v) \chi_r \ ; \\ & \frac{\partial N_r}{\partial r} = -hJ_{\vartheta cm} B_r - \frac{1-v}{r} N_r + \frac{Eh}{r^2} u - F_r - \\ & -\sigma h \bigg[E_{\vartheta} B_r - \frac{\partial u}{\partial t} B_r^2 + 0.5 \frac{\partial w}{\partial t} \Big(B_r^+ + B_r^- \Big) B_r \bigg] - \frac{Eh}{r} \mathscr{E}_r + \rho h \frac{\partial^2 u}{\partial t^2} \ ; \\ & \frac{\partial Q_r}{\partial r} = -\frac{1}{r} Q_r - \frac{Eh}{r^2} u \mathscr{G}_r - \frac{12(1-v^2)}{Eh^3} M_r N_r + \\ & +\sigma h \bigg[0.5 E_{\vartheta} + 0.33 \frac{\partial w}{\partial t} - 0.5 \frac{\partial u}{\partial t} B_r \bigg] \Big(B_r^+ + B_r^- \Big) + F_r + hJ_{\vartheta cm} \Big(B_r^+ + B_r^- \Big) + \rho h \frac{\partial^2 w}{\partial t^2} \ ; \end{aligned}$$
(26)
$$& \frac{\partial M_r}{\partial r} = \frac{v-1}{r} M_r + \frac{Eh^3}{12r^2} \mathscr{G}_r - Q_r - \frac{Eh}{r} \chi_r \ ; \quad \frac{\partial E_{\vartheta}}{\partial r} = -\frac{\partial B_r}{dt} - \frac{1}{r} E_{\vartheta} \ ; \\ & \frac{\partial B_r}{\partial r} = -\sigma \mu \bigg[E_{\vartheta} + 0.5 \frac{\partial w}{\partial t} \Big(B_r^+ + B_r^- \Big) - \frac{\partial u}{\partial t} B_r \bigg] + \frac{(B_r^+ - B_r^-)}{\mu h} . \end{aligned}$$

Здесь, учитывая (18), получаем

$$\varepsilon_{T} = \alpha T_{0} + \frac{\alpha}{\rho \, \sigma C_{\varepsilon}^{cep}} \left\{ J_{\theta cm}^{2} + \sigma^{2} \left[E_{\theta}^{2} + 0, 25 \left(\frac{\partial w}{\partial t} \right)^{2} \left(B_{r}^{+} + B_{r}^{-} \right)^{2} + \right. \right\}$$

7	7
1	1

$$+\left(\frac{\partial u}{\partial t}\right)^{2}B_{\gamma}^{2}+E_{\theta}\frac{\partial w}{\partial t}\left(B_{r}^{+}+B_{r}^{-}\right)\right]+\frac{\alpha}{\rho\sigma C_{\varepsilon}^{cep}}\left[-2E_{\theta}\frac{\partial u}{\partial t}B_{\gamma}-\frac{\partial w}{\partial t}\frac{\partial u}{\partial t}B_{\gamma}\left(B_{r}^{+}+B_{r}^{-}\right)+\right.$$

$$\left.+2\sigma J_{\theta cm}\left(E_{\theta}+0,5\frac{\partial w}{\partial t}\left(B_{r}^{+}+B_{r}^{-}\right)-\frac{\partial u}{\partial t}B_{\gamma}\right)\right]; \quad \chi_{T}=0.$$

$$(27)$$

Разрешающая система уравнений (26) является нелинейной смешанной гиперболо-параболической системой восьмого порядка с переменными коэффициентами. При решении конкретных краевых задач её следует дополнить соответствующими граничными условиями для механических и электромагнитных величин.

4. Методика решения задач для гибких оболочек вращения с учетом джоулева тепла.

Методика решения задач магнитоупругости гибких оболочек вращения переменной толщины с учетом джоулева тепла заключается в последовательном использовании метода квазилинеаризации и метода дискретной ортогонализации [2, 4]. Для разделения переменных по временной координате применяем неявную схему Ньюмарка.

Согласно методу квазилинеаризации нелинейная краевая задача сведена к последовательности линейных краевых задач на каждом временном шаге. Далее каждую из линейных краевых задач последовательности на соответствующем временном интервале решаем численно с помощью устойчивого метода дискретной ортогонализации.

5. Магнитоупругое деформирование изотропной кольцевой пластины с учетом джоулева тепла.

Пример 1. Исследуем НДС алюминиевой изотропной кольцевой пластины постоянной толщины h, внутреннего радиуса r_0 , внешнего r_1 под воздействием нормальной составляющей механической нагрузки P_{γ} и внешнего магнитного поля с заданным вектором магнитной индукции $\vec{B}^{(e)}$. Разрешающая система нелинейных уравнений пластины имеет вид (26).

Контуры пластины закреплены следующим образом:

 $u = 0; Q_r = 0; M_r = 0; B_r = 0, 1 \sin \omega t$ при $r = r_0 (\omega - круговая частота);$

 $u = 0; w = 0; M_r = 0; B_r = 0$ при $r = r_1$.

Геометрические параметры пластины и характеристики ее материала следующие:

$$r_{0} = 0,49 \text{ m}; \quad r_{1} = 0,86 \text{ m}; \quad h = 2 \cdot 10^{-2} \text{ m}; \quad P_{\gamma} = 3 \cdot 10^{-2} \text{ H/m}^{2}; \quad E = 7,1 \cdot 10^{10} \text{ H/m}^{2};$$

$$\omega = 314,16 \text{ c}^{-1}; \quad \nu = 0,3; \quad \rho = 2670 \text{ kr/m}^{3}; \quad \mu = 1,256 \cdot 10^{-6} \text{ \Gamma H/m};$$

$$\sigma = 3,13 \cdot 10^{7} (\text{Om} \cdot \text{m})^{-1}; \quad T_{0} = 20^{\circ}\text{C}; \quad \alpha = 2,36 \cdot 10^{-5} \text{ c}^{-1}; \quad \rho C_{\varepsilon}^{cep} = 2,46 \cdot 10^{6} \text{ Дж/m}^{3} \text{ °C}.$$

Решение задачи получено на интервале времени $t = 10^{-2} c$, временной шаг интегрирования – $\Delta t = 10^{-3} c$.

В данном примере исследовано влияние поверхностных тангенциальных составляющих магнитной индукции на НДС кольцевой пластины при следующих значениях составляющей магнитной индукции: $B_r^{\pm} = \pm 0,15T$; $B_r^{\pm} = \pm 0,25T$; $B_r^{\pm} = \pm 0,5T$.

На рис. 1 представлены значения прогиба w(t) на внутреннем контуре пластины. Линии 1 - 3 соответствуют

отрицательным значениям магнитной индукции, линии 4 - 6 – положительным. Максимальное значение прогиба – линии 2 ($B_r^- = -0, 25T$), минимальное – линии 1 ($B_r^- = 0, 5T$) для положительных значений прогиба. Для отрицательных значений прогиба максимальное значение по абсолютной величине достигается при $B_r^+ = 0, 5T$ (линия 6), минимальное – при $B_r^+ = 0, 25T$ (линия 5).

Как видно из рисунка, при $B_r^{\pm} = \pm 0,25T$ значение прогиба увеличивается, что можно объяснить действием граничного условия $B_{\gamma} = 0,1\sin \omega t T$. При $B_r^{\pm} = \pm 0,5T$ – прогиб уменьшается. Это в принципе отвечает общей нелинейной теории пластин – с увеличением тангенциальных усилий пластина становится более жесткой. Однако, установить прямую закономерность между величиной прогиба и изменением тангенциальными силами в геометрически нелинейной теории пластин без магнитного поля, не удается.

Определим максимальную температуру на внутреннем контуре пластины при действии максимальной магнитной индукции $B_r^{\pm} = \pm 0,5T$ при $t = 5 \cdot 10^{-3}$ с. Выбирая из решения задачи максимальное значение $B_r = 0,8T$, по формуле раздела 2, получаем $T = 20,17^{\circ}$ С.

Отсюда следует, что при рассмотренных значениях магнитной индукции джоулевым теплом можно пренебречь.

Как следует из литературы, значительные величины джоулевого тепла возникают при действии на металлические тела мегагаусного диапазона магнитной индукции.

Пример 2. Исследуем НДС изотропной кольцевой пластины из алюминия внутреннего радиуса $r_0 = 0,5$ м, внешнего $r_1 = 0,9$ м, постоянной толщины $h = 3 \cdot 10^{-4}$ м под воздействием нормальной составляющей механической нагрузки $P_{\gamma} = 500 \sin \omega t \text{ H/m}^2$ (ω – круговая частота). Напряженное состояние пластины исследовано в зависимости от воздействия тангенциальной составляющей тока $J_{\theta cm} = J_0 \sin \omega t A / M^2$ с учетом джоулевого нагрева.

Граничные условия примем в таком виде:

$$u = 0; Q_r = 150; M_r = 0; B_{\gamma} = 0, 1 \sin \omega t$$
 при $r = r_0;$
 $u = 0; w = 0; M_r = 0; B_{\gamma} = 0$ при $r = r_1.$

Остальные параметры пластины и материала – аналогичны примеру 1. Величина стороннего тока и его направление выбраны следующие:

1) $J_0 = 0$; 2) $J_0 = -5 \cdot 10^5$; 3) $J_0 = -1 \cdot 10^6$; 4) $J_0 = 5 \cdot 10^5$; 5) $J_0 = 1 \cdot 10^6$.

На рис. 2 приведено распределение w(t) на внутреннем контуре пластины. Линии 1 - 5 соответствуют вариантам стороннего тока 1 - 5.

Как видно из представленных результатов, прогиб зависит как от величины, так и от направления стороннего тока. При отрицательном значении стороннего тока прогиб возрастает по сравнению с его отсутствием. При положительном значении – прогиб уменьшается. Это объясняется тем, что сила Лоренца, при наличии стороннего тока, состоит из

суммы двух частей, зависящих от индуцированного внешним магнитным полем и сторонним током электромагнитного поля пластины. В одном случае эти части действуют в одном направлении, в другом – в противоположном.

Определим максимальную температуру, возникающую в процессе действия джоулева тепла, на внутреннем контуре пластины при наличии стороннего тока $J_{\theta} = -1.10^{6} \,\text{A/m}^{2}$ при $t = 5.10^{-3} \,\text{c}$.

Определив из полученного решения задачи максимальное значение E_{θ} (или J_{θ}), по формуле раздела 2 определяем максимальное значение температуры $T = 367, 61^{\circ}$ C.

Полученный результат указывает на существенное влияние стороннего тока на величину джоулева тепла. Кроме того, также убеждаемся, что сторонний ток не должен превышать величину $1 \cdot 10^6 \,\text{A/m}^2$ из-за температурного ограничения свойств материала пластины.

Заключение.

Предложены теория и методика решения нелинейной краевой задачи магнитоупругости для оболочек вращения переменной жесткости с учетом джоулева нагрева. Проведена оценка членов, входящих в известное уравнение теплопроводности с источником джоулева тепла. Построена разрешающая система нелинейных уравнений магнитоупругости осесимметричной краевой задачи для кольцевой пластины переменной жесткости. Числовой результаты представлены для гибкой кольцевой пластины.

Р Е З Ю М Е. Запропоновано теорію та методику розв'язання нелінійних задач магнітопружності оболонок обертання з урахуванням джоулевого тепла в мікросекундному діапазоні. Наведено числовий приклад.

- Амбарцумян С.А., Багдасарян Г.Е., Белубекян М.В. Магнитоупругость тонких оболочек и пластин. – М.: Наука, 1977. – 272 с.
- 2. Беллман Р., Калаба Р. Квазилинеаризация и нелинейные краевые задачи. М.: Мир, 1968. 184 с.
- Будак В. Д., Мольченко Л.В., Овчаренко А.В. Нелинейные магнитоупругие оболочки. Николаев: Илион, 2016. – 136 с.
- Годунов С.К. О численном решении краевых задач для систем обыкновенных линейных дифференциальных уравнений // Успехи матем. наук. – 1963. – 16, вып. 5(99). – С. 171 – 174.
- Григоренко Я.М., Мольченко Л.В. Основы теории пластин и оболочек с элементами магнитоупругости. – К.: ИПЦ «Киевский университет», 2010. – 403 с. (укр).
- Дресвянников В.И. О нестационарных задачах механики упруго-пластических проводящих тел при действии сильных импульсных магнитных полей // Прикл. проблемы прочности и пластичности. – 1979. – Вып. 19. – С. 32 – 47.
- 7. Тамм И.Е. Теория электромагнетизма. М.: Наука, 1976. 613 с.
- Bian Y. H. Analysis of Nonlinear Stresses and Strains in a Thin Current-Carrying Elastic Plate // Int. Appl. Mech. – 2015. – 51, N 1. – P. 108 – 120.
- Elhajjar R., Saponara V., Muliana A. Smart composites. Mechanics and Design. New York: CRC Press., 2013. – 430 p.
- Green A.E., Naghdi P.M. On electromagnetic effects in the theory of shells and plates // Phil. Trans. Roy. Soc. London. – 1983. – A309. – P. 559 – 610.
- Hutter K., Van de Ven A.A.F., Ursescu A. Electromagnetic Field Matter Interactios in Thermoelastic Solids and Viscous Fluids. – Berlin: Springer, 2006. – 382 p.
- Mol'chenko L.V., Loos I.I. The Stress State of a Flexible Orthotropic Spherical Shell Subject to External Current and Mechanical Force in a Magnetic Field // Int. Appl. Mech. – 2013. – 49, N 5. – P. 528 – 533.
- Mol'chenko L.V., Loos I.I., Fedorchenko L.M. Deformation of a Flexible Orthotropic Spherical Shell of Variables Stiffness in a Magnetic Field // Int. Appl. Mech. – 2016. – 52, N 1. – P. 56 – 61.
- 14. Moon F.C. Magneto-solid mechanics. New York: Wiley, 1984. 437 p.

Поступила 07.07.2017

Утверждена в печать 30.01.2018