А.А.Мартынюк

ДИНАМИЧЕСКИЙ АНАЛИЗ МНОЖЕСТВА ТРАЕКТОРИЙ СЕМЕЙСТВА УРАВНЕНИЙ ДВИЖЕНИЯ НА ОСНОВЕ СМЕШАННЫХ ОБЪЕМОВ МИНКОВСКОГО

Институт механики им. С.П.Тимошенко НАН Украины, ул. Нестерова, 3, 03057, Киев, Украина; e-mail:martynyukanan@gmail.com

Abstract. For a family of equations with uncertain parameter values, the results of dynamic analysis of a set of trajectories by applying the mixed Minkowski volumes are given for bodies formed by a set of trajectories for the fixed values of uncertain parameter.

Key words: aamily of equations, uncertain parameters, mixed Minkowski volumes, stability, boundedness, practical stability.

Ввеление.

Среди динамических свойств множества траекторий семейств уравнений свойства устойчивости, ограниченности, устойчивости на конечном интервале, занимают центральное место. Это связано с тем, что эти свойства траекторий представляют интерес при проектировании и эксплуатации реальных механических и другой природы систем. Для анализа указанных динамических свойств развит прямой метод Ляпунова [3] на основе обобщенных скалярных, векторных и матрично-значных вспомогательных функций (см. [1, 7, 8, 10] и библиографию там).

Некоторая «схожесть» свойств функций Ляпунова со свойствами смешанных объемов Минковского [2, 4, 13] (далее применяется обозначение С.О.М.) позволяет проводить динамический анализ множества траекторий семейств уравнений на основе С.О.М. в пределах обобщенного прямого метода Ляпунова при определенных условиях, которые формулируются для семейств уравнений.

Такой подход несколько расширяет возможности обобщенного прямого метода Ляпунова при качественном анализе семейств уравнений и анонсирует новое применение теории выпуклых тел Минковского наряду с ранее известными приложениями. Статья построена по следующему плану. В п. 1 приведено описание рассматриваемого семейства уравнений и предположения о телах, которые образуются множествами траекторий семейства уравнений (1) при фиксированных значениях параметра неточности.

- В п. 2 приведены некоторые свойства смешанных объемов Минковского для не автономных тел и обсуждается их сходство со свойствами функций Ляпунова.
- В п. 3 приведены основные результаты статьи. А именно, здесь приведены условия продолжимости движения, условия устойчивости по двум мерам, условия ограниченности множества траекторий и условия практической устойчивости семейства уравнений (1).

В заключительном п. 4 приводится обсуждение полученных результатов и библиографические указания.

1. Постановка задачи.

Пусть R^n-n -мерное евклидово пространство и $K_c(R^n)$ - пространство непустых выпуклых компактных подмножеств в пространстве R^n . При описании движения реальных систем с учетом интервальных начальных условий, неточности параметров

или при наличии управлений, вектор состояния системы является многозначным. Обобщенной моделью такого процесса являются семейства уравнений с множеством траекторий и обобщенной производной множества состояний. Математической моделью такого рода систем являются уравнения вида (см. [9, 15])

$$D_{H}X = F(t, X, \alpha); \tag{1}$$

$$X(t_0) = X_0 \in K_c(\mathbb{R}^n).$$
 (2)

Здесь $X \in K_c(R^n)$ — множество состояний системы (1), $D_H X$ — обобщенная производная множества состояний, $F \in C(R_+ \times K_c(R^n) \times \mathcal{J}, K_c(R^n))$, $\alpha \in \mathcal{J}$, $\mathcal{J} \subseteq R^d$ — компактное множество параметров неточности.

Отображение $X \in C^1(J, K_c(\mathbb{R}^n))$, где $J = [t_0, t_0 + a]$, a > 0, является решением семейства уравнений (1) на J, если оно непрерывно на J и удовлетворяет семейству уравнений (1) при начальных условиях (2).

Из того, что X(t) — непрерывно дифференцируемая функция на J следует, что

$$X(t) = X_0 + \int_{t_0}^{t} D_H X(s) ds, \quad t \in J,$$
 (3)

и, далее,

$$X(t) = X_0 + \int_{t_0}^{t} F(s, X(s), \alpha) ds, \ t \in J$$
 (4)

при всех $\alpha \in \mathcal{J}$, где интеграл понимается в смысле Хукухары (см. [9] и библиографию там).

О семействе уравнений (1) и отображениях (4) сделаем следующие предположения:

- A_1 . При всех $\alpha \in \mathcal{J}$ и $t \in J$ многозначное отображение $F(t,\Theta,\alpha) = \Theta$, ($\Theta \in K_c(R^n)$ нулевой элемент $K_c(R^n)$);
- A_2 . При фиксированных значениях $\alpha \in \mathcal{J}$ отображения $X(t,\alpha)$ образуют выпуклые «тела» $P_1(X), \ldots, P_n(X)$, для которых верны соотношения

$$D_{H}P_{i}(X(t)) = F_{i}(t, P_{i}(X(t))); \quad P_{i}(X(t_{0})) = P_{i}(X_{0}) \in K^{n},$$
(5)

где $F_i(t, P_i(X(t))) = F(t, P_i(X), \alpha_i)$ при всех i = 1, 2, ..., n.

- A_3 . Тела $P_i(X) = \Theta$, i = 1, 2, ..., n, если и только если $X = \Theta$.
- A_4 . Тела $P_i(X(t,\alpha))$, i=1,2,...,n, удовлетворяют условиям: $Vol\,P_i(X(t,\alpha))$ не исчезает и остается меньшим бесконечности на любом конечном интервале существования множества траекторий, где $Vol\,P_i(X(t,\alpha))$ объем i -го тела при фиксированном значении параметра $\alpha\in\mathcal{J}$.

Пример 1. Рассмотрим семейство уравнений

$$D_{H}X = e^{\alpha}X(t); \quad X(t_{0}) = X_{0} \in K_{c}(\mathbb{R}^{n}),$$

где $X \in K_c(\mathbb{R}^n)$ и $\alpha \in [0,1]$. Пусть $\alpha = (0,1/2,1)$, тогда для тел траекторий получим семейства уравнений

$$D_H P_1(X(t)) = P_1(X(t)); \quad D_H P_2(X(t)) = e^{1/2} P_2(X(t));$$

$$D_H P_3(X(t)) = e P_3(X(t)); P_i(X(t_0)) = X_0 \in K_c(\mathbb{R}^n).$$

Если для тел $P_1(X(t,\alpha))$ при $\alpha=0$, $P_2(X(t,\alpha))$ при $\alpha=1/2$, $P_3(X(t,\alpha))$ при $\alpha=1$, выполняются условия A_3-A_4 , тогда множества траекторий рассматриваемого семейства уравнений заполняют выпуклые тела $P_1(X(t))$.

Для анализа множества траекторий семейства уравнений (1) применяется обобщенная функция Ляпунова V(t,X) со следующими свойствами:

- (B_1) . $V(t,X) \in C(R_+ \times K_c(R^n), R_+)$;
- (B_2) . V(t,X) = 0 если и только если $X = \Theta \in K_c(\mathbb{R}^n)$;
- (B_3) . $|V(t,A)-V(t,B)| \le LD(A,B), L > 0$,

при всех $A, B \in K_c(R^n)$, где D — расстояние Хаусдорфа между непустыми подмножествами A и B пространства R^n .

Пример 2. Простейшей функцией этого класса является функция $V(t, X) = D(X, \Theta)$ при всех $X \in K_c(\mathbb{R}^n)$ с обобщенной производной

$$D^{+}V(t,X)=\limsup\{[D(X+hF(t,X,\alpha),\Theta)-D(X,\Theta)]h^{-1}:h\to 0^{+}\}$$
 6) в силу семейства уравнений (1).

2. Некоторые свойства смешанных объемов Минковского.

Напомним некоторые сведения из теории выпуклых тел (см. [2, 17] и библиографию там). Классическая теория Минковского [17] имеет дело с выпуклыми компактными телами в евклидовом пространстве \mathbb{R}^n , происхождение которых не обсуждается.

В данной статье рассматриваются тела траекторий неточного семейства уравнений (1), которые являются не автономными, удовлетворяющими условиям $A_2 - A_4$.

Комбинация фундаментального понятия сложения Минковского и понятия объема приводит к понятию смешанного объема.

Далее будем рассматривать С.О.М. для тел $P_i(X(t,\alpha_i))$, $i=1,2,\ldots,n$, которые образованы отображениями $X(t,\alpha)\in K_c(R^n)$ при фиксированных значениях параметра неточности $\alpha\in\mathcal{J}$.

Обозначим K^n – пространство кортежей выпуклых тел $P_i(X(t))$, i = 1, 2, ..., n.

Выпуклое тело $P_i(X(t)) \in K^n$ единственным способом определяется опорной функцией $h_{P_i}: S^{n-1} \to R$, где $h_{P_i}(u) = \max_{x \in P_i} \langle x, u \rangle$, а $\langle \cdot \rangle$ — стандартное обозначение скалярного произведения в R^n .

Определение 1. Пусть заданы выпуклые тела $P_1(X(t)), P_2(X(t)), \ldots, P_n(X(t)) \in K^n$ и неотрицательные вещественные числа $\lambda_1, \lambda_2, \ldots, \lambda_n$. Выражение $\lambda_1 P_1(X(t)) + \lambda_2 P_2(X(t)) + \ldots + \lambda_n P_n(X(t))$ называется не автономной линейной комбинацией Минковского и является выпуклым телом, а $\operatorname{Vol}_n(\lambda_1 P_1(X(t)) + \lambda_2 P_2(X(t)) + \ldots + \lambda_n P_n(X(t)))$ называется объемом не автономной линейной комбинации.

Пусть [m] обозначает множество натуральных чисел 1, 2, ..., m. Имеет место следующее утверждение (см. [2] и библиографию там).

Теорема 1. Пусть выпуклые тела $P_1(X(t)), \dots, P_n(X(t)) \in K^n$ удовлетворяют условиям $A_2 - A_4$ и $\lambda_1, \dots, \lambda_n$ — неотрицательные вещественные числа.

Тогда имеет место уравнение

$$Vol_{n}(\lambda_{1}P_{1}(X(t)) + \lambda_{2}P_{2}(X(t)) + ... + \lambda_{n}P_{n}(X(t))) =$$

$$= \sum_{i_{1},...,i_{n} \in [m]} MV(P_{i_{1}}(X(t)), ..., P_{i_{n}}(X(t)))\lambda_{i_{1}} \cdots \lambda_{i_{n}},$$
(7)

где каждый коэффициент $MV(P_{i_1}(X(t)),\dots,P_{i_n}(X(t)))$ зависит только от тел $P_{i_1}(X(t)),\dots,P_{i_n}(X(t))$.

Доказательство этой теоремы имеется во многих монографиях (см., например, [2] и библиографию там).

Определение 2. Для заданных тел $P_1(X(t)), \ldots, P_n(X(t)) \in K^n$ коэффициент $MV(P_1(X(t)), \ldots, P_n(X(t)))$ называется неавтономным смешанным объемом Минковского выпуклых тел $P_1(X(t)), \ldots, P_n(X(t))$ при любых значениях параметра неточности $\alpha \in \mathcal{J}$.

Известно, что смешанный объем может быть вычислен по формуле (см. [2])

$$MV(P_1(X(t)), \dots, P_n(X(t))) = \sum_{j=1}^n (-1)^j \sum_{l \subset \{1, \dots, m\}, |l| = j} Vol_n \left(\sum_{i \in I} P_i(X(t)) \right)$$
(8)

при любом $X(t) \in K_c(\mathbb{R}^n)$.

Из общих свойств С.О.М. (см. [2, 17]) далее понадобятся свойства смешанных объемов для тел P_1,\ldots,P_n , которые образованы отображениями $X(t)\in K_c(R^n)$ при фиксированных значениях параметра неточности $\alpha\in\mathcal{J}$.

Введем метрику Хаусдорфа в пространстве кортежей K^n . Пусть B — единичный шар в R^n , а $\varepsilon \ge 0$.

Для расстояния Хаусдорфа между кортежем $P(X) = (P_1(X), ..., P_n(X))$ и нулевым множеством Θ применяется метрика

$$D(P(X), \Theta) = \inf\{\varepsilon : P(X) \subset \Theta + \varepsilon B \text{ и } \Theta \subset P(X) + \varepsilon B\}$$
 при любых $P(X) \in K^n$. (9)

Заметим, что расстояние Хаусдорфа (9) является метрикой на K^n и пара $(K^n, D(P(X)))$ является метрическим пространством.

Определение 3. Кортеж $(P_1(X), \ldots, P_n(X))$ выпуклых тел, удовлетворяющих условиям $A_2 - A_4$, является вырожденным, если не существует сегментов $S_i(X) \subset P_i(X)$, $i = 1, 2, \ldots, n$, с линейно независимыми направлениями.

Далее рассматриваются невырожденные кортежи $(P_1(X),...,P_n(X))$ не автономных выпуклых тел, где $P(X(t)) \in K^n$.

Далее понадобятся следующие определения функций сравнения [7].

Определение 4. Непрерывная функция $\varphi:[0,r_1] \to R_+$ (или непрерывная функция $\varphi:[0,\infty) \to R_+$) принадлежит K -классу Хана, т.е. $\varphi \in K$, если $\varphi(0) = 0$ и φ – строго возрастающая на $[0,r_1]$ (или на $[0,\infty)$).

Если $\varphi:R_+\to R_+$, $\varphi\in K$ -классу Хана и, кроме того, $\lim \varphi(r)=\infty$ при $r\to\infty$, тогда $\varphi\in KR$ -классу Хана.

Для тел, удовлетворяющих условиям $A_2 - A_4$, свойства С.О.М. аналогичны тем, которые известны из классической теории Минковского (см. [2] и библиографию там). Напомним некоторые из них.

- (P_1) . Смешанный объем является неотрицательной симметричной функцией т.е. $MV(P_1(X(t)),\ldots,P_n(X(t))) \geq 0$, монотонной относительно включения $P_i^*(X(t)) \subset CP_i(X(t))$, $i=1,2,\ldots,n$;
- (P_2) . С.О.М. $MV(P_1(X(t)),\ldots,P_n(X(t))) \geq 0$ тогда и только тогда, когда существуют сегменты $S_i(X(t)) \subset P_i(X(t)), i=1,2,\ldots,n$, направления которых линейно независимы;

- (P_3) . C.O.M. $MV(P_1(X(t)),...,P_n(X(t)))=0$, если $P_i(X(t))=\Theta$ при всех i=1,2,...,n .
- (P_4) . C.O.M. $MV(P_1(X(t)),...,P_n(X(t)))$, является непрерывным по метрике Хаусдорфа при всех $P(X(t)) \in K^n$.

Из свойств (P_1) , (P_2) следует, что для С.М.О. $MV(P_1(X(t)), \ldots, P_n(X(t)))$ существует функция $\varphi(r)$ K -класса Хана такая, что:

 (P_5) . $\varphi(D(P(X(t)),\Theta)) \le MV(P_1(X(t)),\dots,P_n(X(t)))$ при всех $P(X(t)) \in K^n$;

Из свойств (P_1) , (P_2) , (P_4) и теоремы Вейерштрасса о функции на компакте следует, что существует функция $\psi(r) \in KR$ -классу Хана такая, что

$$(P_6)$$
. $MV(P_1(X(t)),...,P_n(X(t))) \le \psi(D(P(X(t)),\Theta))$ при всех $P(X(t)) \in K^n$.

Из непрерывности С.О.М. $MV(P_1(X(t)), ..., P_n(X(t)))$ по метрике Хаусдорфа на компактных множествах пространства K^n следует, что С.О.М. $MV(P_1(X(t)), ..., P_n(X(t)))$:

- (P_7) . равномерно непрерывен на K^n и
- (P_8) . на любом компактном в себе множестве пространства K^n C.O.M. $MV(P_1(X(t)), \ldots, P_n(X(t)))$ ограничен и достигает своих точной верхней и точной нижней границ.

Сопоставляя свойства B_1-B_3 обобщенной функции Ляпунова со свойствами P_1-P_8 С.О.М., видим, что С.О.М. является положительно полу-определенной функцией (функционалом) на множестве выпуклых компактных множеств. Это сходство позволяет использовать С.О.М. как класс соответствующих функций (функционалов) Ляпунова при исследовании множества траекторий семейства уравнений вида (1).

3. Приложения.

Рассмотрим некоторые задачи качественного анализа множества траекторий семейства уравнений (1) при начальных условиях (2).

3.1. Продолжимость движения. Рассмотрим задачу реализуемости движения, описываемого семейством уравнений (1).

Определение 5. Движение некоторой механической или другой природы системы будем называть продолжимым, если для семейства дифференциальных уравнений (1), представляющих это движение, существует множество траекторий $X(t) \in K_c(R^n)$, удовлетворяющих этим уравнениям на любом открытом интервале при некоторых начальных условиях (2) и при любых значениях параметра неточности $\alpha \in \mathcal{J}$.

Заметим, что свойство продолжимости движения не влечет ни устойчивости, ни неустойчивости множества траекторий задачи (1) - (2).

Далее понадобиться выражение полной производной С.О.М. на кортежах траекторий задачи (1) - (2), которое определяется формулой

$$D^{+}MV(P_{1}(A),...,P_{n}(A)) = \limsup\{[MV(P_{1}(A) + hF_{1}(t,P_{1}(A)),...,P_{n}(A) + hF_{n}(t,P_{n}(A))] - MV(P_{1}(A),...,P_{n}(A))]h^{-1}: h \to 0^{+}\}$$
(10)

произвольных $P(A) \in K^n$.

Предположим, что решение скалярной задачи

$$\frac{dR}{dt} = G(t, R); \tag{11}$$

$$R(t_0) = R_0 \ge 0, (12)$$

где функция $G \in C(R_+^2, R)$, квази-монотонная неубывающая по R при каждом t, существует при всех $t \ge t_0$.

Заметим, что для выпуклых тел $P_i(X(t))$ верны соотношения из предположения A_2

$$D_H P_i(X(t)) = F_i(t, P_i(X(t)));$$
 (13)

$$P_{i}(X(t_{0})) = P_{i}(X_{0}) \in K^{n}, \tag{14}$$

где $F_i(t, P_i(X(t))) = F(t, P_i(X), \alpha_i)$ при всех i = 1, 2, ..., n и при фиксированных значениях параметра α .

Имеет место следующее утверждение.

Теорема 2. Предположим, что в семействе уравнений (1):

- (1) Отображение $F \in C(R_+ \times K_c(R^n) \times I, K_c(R^n))$ отображает ограниченные множества в ограниченные множества и существует локальное решение начальной задачи (1) (2);
- (2) Существует постоянная L > 0 такая, что С.О.М. $MV(P_1(X), ..., P_n(X))$ удовлетворяет условию $|MV(P_1(A), ..., P_n(A)) MV(P_1(B), ..., P_n(B))| \le LD^*(P(A), P(B))$, где $D^*(P(A), P(B))$ расстояние Хаусдорфа между кортежами $P(A), P(B) \in K^n$;
- (3) при $D(P(A), \Theta) \rightarrow \infty$ С.О.М. $MV(P_1(A), \dots, P_n(A)) \rightarrow \infty$;
- (4) при любых $P(A) \in K^n$, выполняется неравенство $D^+MV(P_1(A), \dots, P_n(A)) \le G(t, MV(P_1(A), \dots, P_n(A)))$, где $G \in C(R_+^2, R)$;
- (5) Максимальное решение $R_M(t) = R(t, t_0, R_0)$ задачи (11) (12) существует на $[t_0, \infty)$ и является ограниченным.

Тогда для $P_i(X_0) \in K_c(\mathbb{R}^n)$ таких, что $MV(P_1(X_0), \dots, P_n(X_0)) \leq R_0$, движение продолжимо на $[t_0, \infty)$ и удовлетворяет оценке

$$MV(P_1(X(t)), \dots, P_n(X(t))) \le R_M(t)$$
, при всех $t \ge t_0$.

Доказательство. Обозначим $N(t)=MV(P_1(X(t)),\dots,P_n(X(t)))$ так, что $N(t_0)=MV(P_1(X_0),\dots,P_n(X_0))\leq R_0$. Принимая во внимание условие (2) теоремы 2, для сколь угодно малого h>0 вычисляем

$$\begin{split} N(t+h) - N(t) &= MV(P_1(X(t+h)), \dots, P_n(X(t+h))) - MV(P_1(t), \dots, P_n(t)) + \\ &+ MV(P_1(X(t)) + hF_1(t, P_1(X(t))), \dots, P_n(X(t)) + hF_n(t, P_n(X(t)))) - \\ &- MV(P_1(X(t)) + hF_1(t, P_1(X(t))), \dots, P_n(X(t)) + hF_n(t, P_n(X(t)))) \leq \\ &\leq LD^*(P(X(t+h)), P(X(t)) + hF(t, P(X(t)))) + \\ &+ MV(P_1(X(t)) + hF_1(t, P_1(X(t))), \dots, P_n(X(t)) + hF_n(t, P_n(X(t)))) - \\ &- MV(P_1(X(t)), \dots, P_n(X(t))). \end{split}$$

Отсюда, в силу соотношений (13) при начальных условиях (14), следует, что

$$\lim \sup \left\{ [D^*(P(X(t+h)), P(X(t)) + hF(t, P(X(t)))]h^{-1} : h \to 0^+ \right\} =$$

$$= \lim \sup \left\{ D^*(P(X(t+h)) - P(X(t)), hF(t, P(X(t))))h^{-1} : h \to 0^+ \right\} =$$

$$= D^*(D_u P(X(t)), F(t, P(X(t)))) = 0.$$

Поэтому, согласно условия (4) теоремы 2 получаем

$$D^+N(t) \le G(t, N(t)), \tag{15}$$

$$N(t_0) \le R_0. \tag{16}$$

Учитывая условие (5) теоремы 2 и применяя теорему 3.1.1 из монографии [10] к неравенствам (15) - (16), получаем оценку

$$N(t) \le R(t, t_0, R_0),$$
 (17)

которая выполняется при всех $t \in J$.

Пусть Q — подмножество пространства $K_c(\mathbb{R}^n)$, состоящее из кортежей выпуклых тел $P_i(X), i=1,2,\ldots,n$, определенных на $[t_0,\tau_X)$, и являющихся решениями уравнений (13) при фиксированных значениях параметра $\alpha \in \mathcal{J}$.

На множестве Q введем частичное упорядочение (Q, \leq) по правилу: из соотношений $\operatorname{Vol} P_i(X) \leq \operatorname{Vol} P_i(Y), i=1,2,\ldots,n$ при $(X,Y) \in K_c(R^n)$ следует неравенство $J_{\tau_X} \leq J_{\tau_Y}$ и $\operatorname{Vol} P_i(X) = \operatorname{Vol} P_i(Y)$ на J_{τ_X} . Это значит, что для тела с меньшим объемом интервал существования решений уравнений (13) меньше и при равных объемах он равен исходному интервалу.

Покажем, что Q не пусто. Согласно условий (1), (2) теоремы 2 кортеж решений P(X(t)) задач (13) – (14) существует на $J_{\tau_X} = [t_0, \tau_X)$.

Из условий (2), (4), (5) теоремы 2, следует основная оценка принципа сравнения

$$MV(P_1(X(t)),\cdots,P_n(X(t))) \leq R_M(t), t \in J_{\tau_Y},$$

где $R_M(t)$ — максимальное решение задачи (11) — (12). Эта оценка показывает, что Q — не пустое множество.

Пусть $(P(X)_{\beta})_{\beta}$ является цепью на множестве (Q, \leq) . Тогда существует единственным способом определяемый кортеж P(Y) на $J_{\tau_Y} = [t_0, \sup_{\beta} (\tau_{X_{\beta}}))$, совпадающий с $P(X)_{\beta}$ на J_{τ_X} . При этом $P(Y) \in Q$ и, следовательно, P(Y) является верхней границей $(P(X)_{\beta})_{\beta}$ на (Q, \leq) . В этом случае согласно леммы Цорна (см. [5]) на (Q, \leq) существует максимальный элемент P(Z).

Теорема 2 будет доказана, если показать, что соответствующее этому элементу значение $au_{_{Z}} = \infty$.

Предположим, что $\tau_Z < \infty$. Согласно условия (5) теоремы 2 решение $R_M(t)$ задачи (11) — (12) существует на $[t_0, \infty)$ и является ограниченным на J_{τ_Z} . Согласно условия (3) С.О.М. $MV(P_1(A), \dots, P_n(A)) \to \infty$ равномерно по $t \in J_{\tau_X}$ как только $D(P(A), \Theta) \to \infty$.

Из соотношения $MV(P_1(Z),\dots,P_n(Z)) \leq R_{_M}(t)$ на $J_{_{T_Z}}$ следует, что $D(P(Z(t)),\Theta)$ ограничено на $J_{_{T_Z}}$.

Далее, из условия (1) следует, что существует постоянная M > 0 такая, что

$$D(F(t, P(Z(t))), \Theta) \le M$$
 на J_{τ_Z} ,

при всех $\alpha \in \mathcal{J}$.

Поэтому для значений $t_1 \le t_2 \ (t_1, t_2) \in J_{\tau_7}$ верно соотношение

$$D(P(Z(t_2)), P(Z(t_1))) \le \int_{t_1}^{t_2} D(F(s, P(Z(s))), \Theta) ds \le M(t_2 - t_1),$$

из которого следует, что кортеж P(Z(t)) является липшицевым по t на J_{τ_Z} и, следовательно, допускает расширение $P(Z_0(t))$ на $[t_0,\tau_Z)$. Из непрерывности $P(Z_0(t))$ следует, что

$$P(Z_0(\tau_Z)) = P(X_0) + \int_{t_0}^{\tau_Z} F(s, P(Z_0(s))) ds.$$

Это значит, что $P(Z_0(t))$ является решением задач (13) – (14) на $[t_0, \tau_Z)$ и, очевидно,

$$MV(P_1(Z_0(t)), \dots, P_n(Z_0(t))) \le R_M(t)$$

при всех $t \in [t_0, \tau_Z)$ и $\alpha \in \mathcal{J}$.

Наряду с начальной задачей (1) – (2) рассмотрим начальную задачу

$$D_H P(X(t)) = F(t, P(X(t)));$$
 (18)

$$P(X(\tau_Z)) = P(Z_0(\tau_Z)), \tag{19}$$

для которой существует кортеж $P(X_0(t))$ на $[\tau_Z, \tau_Z + \delta), \delta > 0$. Определим $P(Z_1(t))$ так:

$$P(Z_{1}(t)) = \begin{cases} P(Z_{0}(t)) & \text{при } t_{0} \leq t < \tau_{Z}; \\ P(X_{0}(t)) & \text{при } \tau_{Z} \leq t < \tau_{Z} + \delta. \end{cases}$$
 (20)

Очевидно, что кортеж (20) является решением семейства уравнений (18) при начальных условиях (19) на $[t_0, \tau_Z + \delta)$ и, кроме того,

$$MV(P_1(Z_1(t)), \dots, P_n(Z_1(t))) \le R_M(t)$$

при всех $t \in [t_0, \tau_z + \delta)$.

Это противоречит предположению о максимальности множества P(Z(t)) и доказывает, что $\tau_Z=\infty$. Этим теорема 2 доказана.

3.2. Устойчивость по двум мерам. Основные теоремы об устойчивости по двум мерам для нелинейных систем с конечным числом степеней свободы приведены в монографиях [8, 10, 11]. При этом применяются скалярные, векторные и матрично-значные функции Ляпунова. Здесь исследуется устойчивость по двум мерам семейства уравнений (1) на основе С.О.М.

Определим классы функций, необходимые для дальнейшего изложения:

$$\begin{split} \Gamma = &\left\{ H \in C(K^n, R_+) : \inf_{P(X(t)) \in K^n} H(P(X(t)), \Theta) = 0 \right\}; \\ \Gamma_0 = &\left\{ H_0 \in \Gamma : \inf_{P(X(t_0)) \in K^n} H_0(P(X(t_0)), \Theta) = 0 \right\} \ \text{при любом} \ t_0 \in R_+ \ , \end{split}$$

где $P(X(t)) = (P_1(X(t)), \dots, P_n(X(t)))$ и $P(X(t_0)) = P(X(t))$ при $t = t_0$.

Учитывая результаты монографии [10], приведем следующие определения.

Определение 6. Семейство уравнений (1):

- (S_1) (H_0,H) равномерно устойчиво, если для любого $\varepsilon>0$ существует $\delta==\delta(\varepsilon)>0$ такое, что из условия $H_0(P(X(t_0)),\Theta)<\delta$ следует $H(P(X(t)),\Theta)<\varepsilon$ при всех $t\geq t_0$;
- (S_2) (H_0, H) равномерно асимптотически устойчиво, если выполняются условия определения S_1 и $\lim H(P(X(t)), \Theta) = 0$ при $t \to +\infty$.
- (S_3) (H_0, H) неустойчиво, если условия определения S_1 не выполняется.

Определение 7. Смешанный объем $MV(P_1(X(t)), \ldots, P_n(X(t)))$ является полу-определенно положительным, если существует функция $a_1(r) \in K$ - классу Хана такая, что $MV(P_1(X(t)), \ldots, P_n(X(t))) \ge a_1(H(P(X(t)), \Theta))$ при всех $P(X(t)) \in K^n$.

Определим высшие производные С.О.М. по формуле

$$D^+MV^{(j)}(P(A)) = D^+\{D^+MV^{(j-1)}(P(A))\}$$
 при всех $j = 1, 2, ..., m$ и $P(A) \in K^n$, (21)

где $P(A) = (P_1(A), ..., P_n(A))$.

Из принципа сравнения (см. [4], теорема 2) следует, что

$$MV^{(j)}(P(X(t))) \le [U_M(t, t_0, N_0)]^{(j)}, \quad j = 0, 1, \dots, m,$$
 (22)

при всех $t\in J\cap J_1$, где $[U_{M}(t,t_0,N_0)]^{(j)}$ — максимальное решение уравнения сравнения

$$D^{+}N^{(m)}(t) = G(t, N(t), N^{(1)}(t), \dots, N^{(m-1)}(t));$$
(23)

$$N^{(j)}(t_0) = N_{0j} \ge 0, \quad j = 0, 1, \dots, m-1.$$
 (24)

Покажем, что имеет место следующее утверждение.

Теорема 3. Пусть семейство уравнений (1) удовлетворяет условиям предположений $A_2 - A_4$, и кроме того:

- (1) Выполняется условие (1) теоремы 2.
- (2) Для С.О.М. MV(P(X)) при всех $P(A), P(B) \in K^n$ существуют постоянные $L_i > 0$ такие, что $|MV^{(j)}(P(A)) MV^{(j)}(P(B))| \le L_j D^*(P(A), P(B));$
- (3) $D^+MV^{(m)}(P(A)) \leq G(t, MV(P(A)), MV^{(1)}(P(A)), \dots, MV^{(m-1)}(P(A)))$ при всех $P(A) \in K^n, \quad j=1,2,\dots,m;$
- (4) существуют функции $a_1 \in K$ -классу Хана и $a_2 \in KR$ -классу Хана такие, что $a_1(H(P(X(t)),\Theta)) \leq MV(P(X(t))) \leq a_2(H(P(X(t)),\Theta));$
- (5) решение уравнения сравнения (23) удовлетворяет неравенству $0 < U_M(t, t_0, N_0) < a_3(MV_0)$, где $MV_0 = MV(P(X_0))$, $a_3 \in K$ -классу Хана и $N_0 = \{MV(P(X_0)), MV^{(1)}(P(X_0)), \ldots, MV^{(m-1)}(P(X_0))\}$ при некоторых значениях $X_0 \in K_c(R^n)$.

Тогда семейство уравнений (1) (H_0, H) – устойчиво.

Доказательство. При выполнении условий (1) — (3) теоремы 3 имеет место оценка (22). Для заданных функций сравнения a_1,a_2,a_3 укажем величину δ так $\delta=a_2^{-1}a_3^{-1}a_1$ и предположим, что $H(P(X(t_0),\Theta)<\delta$. Из условия (4) следует: $MV(P(X(t_0)))=MV_0\leq a_2(H(P(X(t_0)),\Theta)<(a_3^{-1}a_1)(\varepsilon)$. Из условия (5) теоремы 3 и оценки (22) следует, что

$$a_1(H(P(X(t)), \Theta)) \le MV(P(X(t))) \le U_M(t, t_0, N_0) \le a_1(\varepsilon),$$

т.е. $H(P(X(t)), \Theta) \le \varepsilon$ при всех $t \in J \cap J_1$. Этим теорема 3 доказана.

Замечание 3. Условие (5) теоремы 3 эквивалентно требованию устойчивости нулевого решения уравнения сравнения (23) при начальных условиях $N_{0j} = MV^{(j)}(P(X_0)) \ge 0$ при всех $j = 0, 1, \ldots, m-1$.

Введем обозначения:

$$V_1(P(X(t))) = MV(P(X(t))); \ V_2(P(X(t))) = D^+ MV^{(1)}(P(X(t))), \dots,$$
$$\dots, V_m(P(X(t))) = D^+ MV^{(m-1)}(P(X(t))).$$

В результате получим вектор-функцию V(P(X(t))), компонентами которой являются С.О.М. и его высшие производные $D^+MV^{(j)}(P(X(t)))$, $j=0,1,\ldots,m$.

Покажем, что имеет место следующее утверждение.

Теорема 4. Пусть семейство уравнений (1) удовлетворяют условиям предположений $A_2 - A_4$ и кроме того:

- (1) вектор функция $V(P(X)) \in C(K^n, R^m)$, где $1 \le p < m$;
- (2) существуют функции сравнения $a_1 \in KR$ -классу и $a_2 \in K$ -классу такие,

что
$$a_1(D(P(X(t)), \Theta)) \le \sum_{i=1}^p V_i(P(X(t)))$$
 и $\sum_{i=1}^p V_i(P(X(t))) + \sum_{i=p+1}^m |V_i(P(X(t)))| \le \sum_{i=1}^m V_i(P(X(t)))$

 $\leq a_2(D(P(X(t)), \Theta),$ при всех $P(X(t)) \in K^n$;

(3) существует квазимонотонная неубывающая по ω функция $G(\omega): C(R_+ \times R^m, R^m)$ такая, что $D^+V(P(X(t))) \leq G(V(P(X(t))))$ при всех $P(X(t)) \in K^n$.

Тогда из свойства устойчивости по p-переменным нулевого решения системы сравнения

$$\frac{du}{dt} = G(u) , \qquad (25)$$

$$u(t_0) = u_0 \ge 0 \tag{26}$$

следует свойство (H_0, H) — устойчивости множества траекторий семейства уравнений (1).

Доказательство. Пусть задано $\varepsilon\in(0,r)$ и нулевое решение системы (25) устойчиво по p -переменным. Тогда для заданной величины $a_2(\varepsilon)>0$ найдется $\delta_1=\delta_1(\varepsilon)>0$ такое, что из условия

$$\sum_{i=1}^p \!\! u_{0i} + \sum_{i=p+1}^m |u_{0i}| \! \! < \delta_1 \quad \text{следует оценка} \quad \sum_{i=1}^p \!\! u_i(t,t_0,u_0) \! \! < a_2(\varepsilon) \quad \text{при всех} \quad t \! \geq \! t_0,$$

где $u_i(t,t_0,u_0)$ — любое решение задачи (25) — (26) для которой $u_{0i}\geq 0$, и $i=1,2,\ldots,p$ и u_{0i} — произвольные для $i=p+1,\ldots,m$. Пусть $u_0=V(P(X_0))$ и пусть $\delta=\delta(\varepsilon)>0$ выбрано так, что $a_2(\delta)<\delta_1$. Покажем, что если $D(P(X_0),\Theta)<\delta$, то $D(P(X(t)),\Theta)<\delta$, при всех $t\geq t_0$, где P(X(t)) — кортеж выпуклых тел для уравнений (1) при некоторых $P(X_0)\in K_c(R^n)$.

Если это не верно, то должен существовать кортеж выпуклых тел P(X(t)) при некоторых начальных условиях $D(P(X_0),\Theta) < \delta$ и $t_1 > t_0$ таких, что

$$D(P(X(t_1)), \Theta) = \varepsilon \quad \text{if} \quad D(P(X(t)), \Theta) < \varepsilon$$
 (27)

при $t_0 \le t \le t_1$.

Из принципа сравнения следует, что

$$V(P(X(t)) \le U(t, t_0, u_0),$$
 (28)

при всех $t \le t \le t_1$, где $U(t, t_0, u_0)$ — максимальное решение системы сравнения (25).

Из условий (1) – (3) теоремы 4 и неравенств (27), (28) следует, что при выборе u_0 по формуле

$$u_0 = \sum_{i=1}^{p} V_i(P(X_0)) + \sum_{i=n+1}^{m} |V_i(P(X_0))| < \delta_1$$

получим

$$a_1(\varepsilon) \leq \sum_{i=1}^p V_i(P(X(t))) \leq \sum_{i=1}^p r_i(t, t_0, u_0) \leq a_1(\varepsilon).$$

Это противоречит существованию $t_1 > t_0$ для которого имеет место (27). Этим теорема 4 доказана.

3.3. Анализ ограниченности. При анализе ограниченности множества траекторий будем предполагать, что условие A_1 может не выполняться, т.е. $F(t, X, \alpha) \neq \Theta$ при $X = \Theta$ и при любых $\alpha \in \mathcal{J}$. При этом ограниченность множества траекторий семейства уравнений (1) определим, учитывая результаты работ [15, 19].

Определение 8. Семейство уравнений (1) является

- (B_1) (H_0,H) равномерно ограниченным, если для любого $\gamma>0$ существует функция $\beta=\beta(\gamma)>0$ такая, что из условия $H_0(P(X(t_0)),\Theta)\leq \gamma$ следует оценка $H(P(X(t)),\Theta)\leq \beta(\gamma)$ при всех $t\geq t_0$;
- (B_2) (H_0,H) квази-равномерно предельно ограниченным, если существует число B>0 такое, что для любого $\gamma>0$ существует положительное число $T=T(\gamma)>0$ такое, что из условия $H_0(P(X(t_0)),\Theta)\leq \gamma$ следует оценка $H(P(X(t)),\Theta)\leq B$ при всех $t\geq t_0+T$.

Определение 9. Смешанный объем $MV(P_1(X(t)), \ldots, P_n(X(t)))$, $(MV(\Theta, \ldots, \Theta) = 0$) является радиально неограниченным, если существует функция $a_2(r) \in KR$ -классу Хана такая, что $MV(P_1(X(t)), \ldots, P_n(X(t))) \ge a_2(H(P(X(t), \Theta))$ при $P(X(t)) \in K^n$.

Принцип сравнения (см. [4]) позволяют указать достаточные условия ограниченности множества траекторий семейства уравнений (1) в таком виде.

Теорема 5. Пусть семейство уравнений (1) удовлетворяют условиям предположений $A_2 - A_4$ и кроме того:

- (1) С.О.М. $MV(P(X(t)) \in C(K^n, R_+)$ и $|MV(P(X)) MV(P(Y))| \le LD^*(P(X), P(Y))$, L > 0 при всех $P(X) \in K^n$;
- (2) существуют функции сравнения $a_1 \in K$ -классу Хана и $a_2 \in KR$ -классу Хана такие, что $a_1(D(P(X), \Theta) \le MV(P(X)) \le a_2(D(P(X), \Theta))$ при всех $P(X) \in K^n$;
- (3) на любом кортеже выпуклых тел P(X(t)) семейства уравнений (1) при любых $\alpha \in \mathcal{J}$ выполняется условие $D^+MV(P(X(t)) \leq 0$.

Тогда семейство уравнений (1) является (H_0,H) — равномерно ограниченным. Доказательство. Пусть задана величина $\gamma > 0$. Выберем $\beta(\gamma) > 0$ так, что

$$a_2(\gamma) < a_1(\beta), \tag{29}$$

где β из определения B_1 . Предположим, что при этом существуют множество траекторий X(t) и значение $t_1 > t_0$ такие, что

$$D(P(X(t_1)), \Theta) = \beta(\gamma) \quad \text{if } D(P(X(t)), \Theta) < \beta(\gamma)$$
(30)

при $t_0 \le t < t_1$. Из условия (3) теоремы 5 следует, что

$$MV(P(X(t))) \le MV(P(X_0))$$
 при $t_0 \le t < t_1$. (31)

Учитывая оценки (29) – (30) из неравенства (31) следует

$$a_1(\beta) = a_1(D(P(X(t_1)), \Theta) \le MV(P(X(t_1));$$

$$\Theta$$
) $\leq MV(P(X_0)) \leq a_2(D(P(X_0), \Theta) \leq a_1(\beta).$

Полученное противоречие показывает, что сделанное предположение не верно. Этим теорема 5 доказана.

Теорема 6. Пусть существует B > 0 такое, что выполняются условия (1), (2) теоремы 5 и выполняется условие

$$D^{+}MV(P(X(t))) \le -\eta MV(P(X(t))), \eta > 0,$$
 (32)

при $P(X(t)) \in K^n$, для которых $D(P(X(t)), \Theta) \ge B$.

Тогда семейство уравнений (1) (H_0,H) — квази-равномерно предельно ограничено. Доказательство. При выполнении условий теоремы 6 семейство уравнений (1) (H_0,H) — равномерно ограничено. Из оценки (32) следует, что

$$MV(P(X(t))) \le MV(P(X(t_0)) \exp[-\eta(t-t_0)], t \ge t_0.$$
 (33)

Пусть $T=\frac{1}{\eta}\ln(\frac{a_2(\gamma)}{a_1(B)})$ и предположим, что при $t\geq t_0+T$ имеет место неравенство

$$D(P(X(t)), \Theta) \ge B.$$
 (34)

Тогда из оценки (33) следует, что

$$a_1(B) = a_1(D(P(X(t), \Theta) \le MV(P(X(t))) \le a_2(\gamma) \exp[-\eta T] = a_1(B).$$

Полученное противоречие доказывает теорему 6.

3.4. Практическая устойчивость по двум мерам. Практическая устойчивость нелинейных систем с конечным числом степеней свободы исследована достаточно полно для многих классов систем уравнений возмущенного движения (см.[11] и библиографию там). Некоторым развитием понятия практической устойчивости является следующее определение динамического свойства множества траекторий.

Определение 10. Пусть меры $H_0, H \in \Gamma$ – множеству. Семейство уравнений (1) является:

- (PS_1) практически устойчивым при заданных величинах $0 < \lambda < A$ если из условия $H_0(P(X_0),\Theta) < \lambda$ следует $H(P(X(t)),\Theta) < A$ при всех $t \ge t_0$, для некоторого $t_0 \in R_+$;
- (PS_2) равномерно практически устойчивым если условия определения (PS_1) выполняются при любом $t_0 \in R_+$.

Определение 11. Мера $H \in \Gamma$ равномерно непрерывна по мере $H_0 \in \Gamma$ если существует функция $\Phi \in K$ -классу Хана такая, что $H(P(X(t)), \Theta) \leq \Phi(H_0(P(X_0), \Theta))$ как только $H_0(P(X_0), \Theta) \leq \lambda$.

Определение 12. Пусть заданы MV(P(X(t))) и мера $H \in \Gamma$. С.О.М. MV(P(X(t))) является:

- (1) H полу-определенно положительным , если для заданного $\gamma > 0$ существует функция $a_1 \in KR$ -классу Хана, такая, что $a_1(H(P(X), \Theta)) \leq MV(P(X))$ как только $H(P(X), \Theta) < \gamma$;
 - (2) H убывающим, если для заданного $\gamma > 0$ существует функция $a_2 \in KR$ классу Хана такая, что $MV(P(X)) \le a_2(H(P(X), \Theta))$, при всех $P(X) \in K^n$.

Вместе со С.О.М. MV(P(X)) будем рассматривать высшие производные вдоль множества траекторий семейства уравнений (1)

$$D^+MV^{(j)}(P_1(A),\ldots,P_n(A))=D^+\{D^+MV^{(j-1)}(P_1(A),\ldots,P_n(A))\}$$
 при всех $j\leq m$.

Определение 13. Функция $W_m: R_+ \times R^m \to R^m$ является мажорирующей для высших производных С.О.М., если для $P(A) \in K^n$ выполняются оценки

Имеет место следующее утверждение.

Теорема 7. Пусть семейство уравнений (1) удовлетворяют условиям предположений $A_2 - A_4$ и кроме того:

- (1) При любых кортежах $P(A), P(B) \in K^n$ существует $m \times m$ постоянная матрица W с элементами $w_{ij} \geq 0$ (i, j = 1, 2, ..., m) такая, что выполняется оценка $\left| \textbf{MV}(P(A)) \textbf{MV}(P(B)) \right| \leq W \tilde{D}(P(A), P(B)),$ где MV(P(A)) вектор с компонентами $(MV(P(X)), \ D^+ MV^{(1)}(P(X)), ..., D^+ MV^{(m-1)}(P(X)))$ и $\tilde{D}(P(A), P(B))$ вектор метрик Хаусдорфа с компонентами $(D(P_1(A), P_1(B)), ..., D(P_m(A), P_m(B)))$;
- (2) выполняется неравенство $D^+ MV(P(X(t))) \le G(t, MV(P(X(t))),$ где $G \in C(R_+ \times R^m, R^m)$ неубывающая квази-монотонная функция;
- (3) существует максимальное решение $U_{\scriptscriptstyle M}(t) = U(t,t_{\scriptscriptstyle 0},U_{\scriptscriptstyle 0})$ системы сравнения

$$\frac{dU}{dt} = G(t, U); \ U(t_0) = U_0 \ge 0, \tag{36}$$

при всех $t \ge t_0$.

Тогда на множестве траекторий X(t) семейства уравнений (1) верна оценка

$$MV(P(X(t))) \le U_{\scriptscriptstyle M}(t), \tag{37}$$

при всех $t \in R_+$ как только $MV(P(X_0)) \le U_0$.

Доказательство этой теоремы аналогично доказательству теоремы 3.1.2. из монографии [10].

Следствие. Если в условии (2) теоремы 7 вектор функция $G(t, \mathbf{MV}(P(X(t))) \le M \mathbf{MV}(P(X(t)))$, где $W - m \times m$ — постоянная матрица с элементами $w_{ij} \ge 0$ при всех $(i \ne j) \in [1, m]$, тогда

$$MV(P(X(t))) \le MV(P(X_0)) \exp[W(t-t_0)], t \ge t_0.$$

Имеет место следующее утверждение.

Теорема 8. Пусть семейство уравнений (1) удовлетворяет условиям предположений $A_2 - A_4$ и, кроме того:

- (1) заданы величины $(\lambda, A) : 0 < \lambda < A$;
- (2) мера $H \in \Gamma$ равномерно непрерывна по мере $H_0^* \in \Gamma$;

- (3) С.О.М. MV(P(X)) и его высшие производные $D^+MV^{(k)}(P(X))$, k=1,2,...,m удовлетворяют условиям (1), (2) теоремы 7;
- (4) существуют функции сравнения $a_1, a_2 \in K(KR)$ -классу Хана такие, что $a_1(H(P(X), \Theta)) \leq MV(P(X(t))) \leq a_2(H(P(X), \Theta))$ при любых $P(X(t)) \in K^n$.
- (5) выполняются неравенства $\Phi(\lambda) < A$ и $a_2(\lambda) < a_1(A)$.

Тогда из практической устойчивости состояния U=0 системы (36) относительно величин $a_2(\lambda)$ и $a_1(A)$ определенного типа следует соответствующий тип практической устойчивости семейства уравнений (1).

Доказательство. Пусть состояние U=0 системы (36) практически устойчиво относительно величин $a_2(\lambda)$ и $a_1(A)$, т.е. из условия $e^TU_0 < a_2(\lambda)$ следует, что $e^TU(t,t_0,U_0) < a_1(A)$, при всех $t \in R_+$, где $e^T=(1,\ldots,1) \in R^m$. Покажем, что при выполнении условий теоремы 8, семейство уравнений (1) практически устойчиво относительно мер H_0 и H. Пусть это не так. Тогда найдется кортеж P(X(t)) и момент $t_1 > t_0$ такие, что из условия $H_0(P(X_0),\Theta) < \lambda$ следует $H(P(X(t_1),\Theta)) = A$ и $H(P(t),\Theta) < A$ при $t_0 \le t < t_1$.

Из условий (2), (5) теоремы 8 следует, что

$$H(P(X_0), \Theta) \le \Phi(H_0(P(X_0), \Theta)) < \Phi(\lambda) < A.$$

При выполнении условия (3) теоремы 8 получим оценку

$$MV(P(X(t))) \le U(t, t_0, U_0)$$
 при всех $t_0 \le t < t_1$,

где $U_0 = MV(P(X_0))$.

Далее, из условия (4) следует, что

$$a_{1}(A) = a_{1}(H(P(X(t_{1})), \Theta)) \leq MV(P(X(t_{1})) \leq$$

$$\leq e^{T}U(t_{1}, t_{0}, U_{0}) \leq e^{T}U(t_{1}, t_{0}, e^{T}a_{2}(H_{0}(P(X_{0}), \Theta))) \leq$$

$$\leq e^{T}U(t_{1}, t_{0}, ea_{2}(\lambda)) \leq a_{1}(A).$$

Полученное противоречие доказывает, что семейство уравнений (1) практически устойчиво относительно мер (H_0, H) . Теорема 8 доказана.

Замечание 4. Критерии других типов практической устойчивости семейства уравнений (1) устанавливаются аналогично теореме 8 учитывая известные результаты, полученные для систем обыкновенных дифференциальных уравнений.

4. Заключительные замечания.

Общность прямого метода Ляпунова [3] исследования устойчивости движения уравнений допускает использование широкого класса вспомогательных функций, обладающих специальными свойствами $P_1 - P_3$ или некоторой их модификацией. Некоторые успехи в развитии прямого метода Ляпунова изложены в много-авторной монографии [12].

Предложенная в работах [4, 13] техника образования компактных выпуклых тел для множества решений семейств уравнений позволяет адаптировать для целей качественного анализа множества траекторий элементы теории С.О.М.

Идея применения в данной статье производных выше первого порядка для С.О.М. восходит к некоторым результатам общей теории устойчивости движения (см. [6-8] и библиографию там).

С.О.М., со свойствами $P_1 - P_8$, имеют некоторый потенциал для их применения при исследовании множества траекторий семейства уравнений (1) или их частного

вида, например, семейства квази-линейных уравнений. Теоремы 2-8 демонстрируют, в общем виде, способ применения С.О.М. в качественной теории множества траекторий семейства уравнений (1).

РЕЗЮМЕ. Для сімейства рівнянь з неточними значеннями параметрів наведено результати динамічного аналізу множини траєкторій шляхом застосування змішаних об'ємів Мінковського для тіл, що створюються множиною траєкторій при фіксованих значеннях параметру неточності.

- 1. *Александров А.Ю., Платонов А.В.* Метод сравнения и устойчивость движений нелинейных систем. СПб.: Изд-во С.-Петерб. ун-та, 2012. 263 с.
- 2. Бураго Ю.Д., Залгаллер В.А. Геометрические неравенства. Л.: Наука, 1980. 288 с.
- 3. Ляпунов А.М. Общая задача об устойчивости движения. Собр. соч., Т.2. М.: Изд-во АН СССР, 1956. С. 7-264.
- 4. *Мартынюк А.А.* Принцип сравнения для семейства дифференциальных уравнений на основе смешанных объемов Минковского // Дифференциальные уравнения. 2017, **53** (12). С. 1599 1606.
- 5. Conrad K. Zorn's lemma and some applications. Expository papers, 2016. 28 p.
- 6. Gunderson R.W. A comparison lemma for higher order trajectory derivatives // Proc. Amer. Math. Soc., 1971, 27 (3). P. 543 548.
- 7. Hahn W. Stability of Motion. Berlin: Springer, 1995. 446 p.
- 8. Lakshmikantham V., Matrosov V.M., Sivasundaram S. Vector Lyapunov Functions and Stability Analysis of Nonlinear Systems. Dordrecht: Kluwer Academic Publishers, 1991. 172 p.
- 9. Lakshmikantham V., Bhaskar G.T., Vasundhara Devi J. Theory of Set Differential Equations in Metric Spaces. Cambridge: Cambridge Scientific Publishers, 2006. 204 p.
- Lakshmikantham V., Leela S., Martynyuk A.A. Stability Analysis of Nonlinear Systems. Second Edition.
 – Berlin: Springer International Publishing AG Switzerland, 2015. 332 p.
- 11. Lakshmikantham V., Leela S., Martynyuk A.A. Practical Stability of Nonlinear Systems. Singapore: World Scientific, 1990. 207 p.
- 12. Martynyuk A.A. (Ed.) Advances in Stability Theory at the End of the 20th Century. London: Taylor and Francis, 2003. 340 p.
- 13. *Martynyuk A.A.* On application of mixed Minkowski volumes in qualitative theory of set differential equations // Global and Stochastic Analysis. 2018. 5, N 1. P. 39 44.
- 14. *Martynyuk A.A., Babenko E.A.* Robust Stabilization of Bilinear Systems Under Interval Initial Conditions // Int. Appl. Mech. 2017. 53, N 4. P. 454 463.
- Martynyuk A.A., Martynyuk-Chernienko Yu.A. Uncertain Dynamical Systems. Stability and Motion Control. – Boca Raton: CRC Press, Taylor and Francis Group, 2012. – 296 p.
- 16. *Martynyuk A.A., Chernetskaya L.N., Martynyuk-Chernienko Yu.A.* Stabilization of the Motion of Pseudo-Linear Affine Systems // Int. Appl. Mech. 2017, **53**, N 3. P. 334 341.
- 17. *Minkowski H*. Theorie der konvexen Korpern, insbesonder der Begrundung ihres Oberflachenbegriffs. // Gesammelte Abhandlungen, 2, Teubner 1911. P. 131 229.
- 18. Steffens R.J. Mixed Volumes, Mixed Ehrhart Theory and Applications to Tropical Geometry and Linkage Configurations // PhD Thesis, Goethe Universitat Frankfurt am Main, 2009. 90 p.
- 19. *Yoshizawa T.* Stability Theory by Liapunov's Second Method. Tokyo: Publ. Math. Soc. Japan, 1966. 223 p.

Поступила 30.03.2017	Утверждена в печать 30.01.2018
Поступила 30.03.2017	утверждена в печать 30.01.2016