РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ ОКОЛО КРУГОВОГО ОТВЕРСТИЯ В ГИБКОЙ ОРТОТРОПНОЙ ЦИЛИНДРИЧЕСКОЙ ОБОЛОЧКЕ ЭЛЛИПТИЧЕСКОГО ПОПЕРЕЧНОГО СЕЧЕНИЯ

Е.А.Сторожук¹, С.М.Комарчук²

Институт механики им. С.П.Тимошенко НАНУ, ул. Нестерова, 3, 03057, Киев, Украина; e-mail: ¹ stevan@ukr.net, ² komarchuk.sergii@gmail.com

Abstract. A statement is given and a numerical technique is developed for solving the geometrically nonlinear problems for an orthotropic cylindrical shell of elliptical cross-section weakened by a circular hole. The system of solving equations is obtained on the basis of relations of the Kirchhoff – Love theory of non-shallow shells and Hooke's law for orthotropic materials. The proposed technique is based on application of the step-by-step loading procedure, the modified Newton – Kantorovich method, and the finite element method. For the shell loaded with axial tensile forces, an effect of finite deflections, physical-mechanical and geometrical parameters on the stress-strain state in the area of circular hole is studied.

Key words: cylindrical shell, elliptical cross section, circular hole, geometric nonlinearity, orthotropic material, Kirchhoff–Love theory, finite element method, static load.

Введение.

Тонкие цилиндрические оболочки, изготовленные из композиционных материалов, находят широкое применение в качестве несущих элементов конструкций в различных областях современной техники, промышленном и гражданском строительстве. В большинстве случаев эти элементы по конструктивным или технологическим соображениям имеют отверстия различной формы.

Значительная часть теоретических результатов по проблеме концентрации напряжений в цилиндрических оболочках с отверстиями при действии статических нагрузок получена для случая кругового поперечного сечения на основе решения линейноупругих задач и изложена в обобщающих монографиях и обзорных статьях [1, 10, 11]. Результаты решения данного класса задач с учетом нелинейных факторов приведены в работах [6, 9, 13].

Корректное решение краевой задачи для цилиндрической оболочки некругового (эллиптического) поперечного сечения впервые было получено С.П. Тимошенко [18]. Далее с помощью различных методов исследованы напряженно-деформированное состояние (НДС), устойчивость и колебания овальных и эллиптических цилиндрических оболочек без отверстий и вырезов [8, 12, 15 – 17, 19].

Исследование концентрации напряжений в некруговых цилиндрических оболочках с отверстиями выполнено в незначительном количестве работ и, в основном, в линейно-упругой постановке [2, 3, 10]. Исключение составляет работа [14], в которой численно решена упругопластическая задача для эллиптической цилиндрической оболочки с круговым отверстием при действии внутреннего давления.

Ниже дана постановка геометрически нелинейных задач статики для эллиптической цилиндрической оболочки с круговым отверстием, приведены основные уравнения, изложена методика численного решения задач данного класса и представлены конкретные числовые результаты для ортотропной оболочки, нагруженной осевыми растягивающими усилиями.

§1. Постановка задачи и основные соотношения.

Рассмотрим задачу о НДС тонкой цилиндрической оболочки эллиптического поперечного сечения, изготовленной из ортотропного материала и ослабленной круговым отверстием радиуса r_0 . Примем, что оболочка находится под действием статических поверхностных $\{p\} = \{p_1, p_2, p_3\}^T$ и краевых $\{m_k\} = \{T_k, S_k, Q_k, M_k\}^T$ сил. Отнесем оболочку к криволинейной ортогональной системе координат (s_1, s_2, γ) с началом в центре отверстия, где s_1, s_2 и γ – длины дуг на образующей, направляющей и нормали к срединной поверхности оболочки (рис. 1).

Геометрию срединной поверхности оболочки зададим в глобальной декартовой системе координат (X, Y, Z), ось OX которой параллельна образующей, а ось OZ проходит через центр отверстия. Плоскость поперечного сечения оболочки отнесем к системе координат (Y, Z), а его уравнения запишем в параметрической форме:

$$Y = a\sin\varphi; \quad Z = b\cos\varphi, \tag{1.1}$$

где a, b – полуоси эллипса; φ – параметр, который отсчитывается от вертикальной оси и изменяется в пределах от 0 до 2π радиан.

Пусть при повышенных уровнях нагрузки в оболочке возникают большие (конечные) прогибы, сравнимые с толщиной. Деформирование гибкой оболочки опишем соотношениями геометрически нелинейной теории непологих оболочек в квадратичном приближении, основанной на гипотезах Кирхгофа – Лява [1].

Выражения для компонент мембранной (ε_{ij}) и изгибной (μ_{ij}) деформаций представим в векторной форме [6, 13]:

$$\varepsilon_{11} = \varepsilon_{11}^{0} + \varepsilon_{11}^{*}; \quad \varepsilon_{11}^{0} = \vec{e}_{1} \cdot \frac{\partial \vec{u}}{\partial s_{1}}; \quad \varepsilon_{11}^{*} = \frac{1}{2} \mathcal{G}_{s_{1}}^{2}; \quad \mathcal{G}_{s_{1}} = \vec{n} \cdot \frac{\partial \vec{u}}{\partial s_{1}};$$

$$\varepsilon_{22} = \varepsilon_{22}^{0} + \varepsilon_{22}^{*}; \quad \varepsilon_{22}^{0} = \vec{e}_{2} \cdot \frac{\partial \vec{u}}{\partial s_{2}}; \quad \varepsilon_{22}^{*} = \frac{1}{2} \mathcal{G}_{s_{2}}^{2}; \quad \mathcal{G}_{s_{2}} = \vec{n} \cdot \frac{\partial \vec{u}}{\partial s_{2}};$$

$$\varepsilon_{12} = \varepsilon_{12}^{0} + \varepsilon_{12}^{*}; \quad \varepsilon_{12}^{0} = \vec{e}_{2} \cdot \frac{\partial \vec{u}}{\partial s_{1}} + \vec{e}_{1} \cdot \frac{\partial \vec{u}}{\partial s_{2}}; \quad \varepsilon_{12}^{*} = \mathcal{G}_{s_{1}}^{*} \mathcal{G}_{s_{2}}^{*};$$

$$\mu_{11} = \mu_{11}^{0} = -\vec{e}_{1} \cdot \frac{\partial \vec{g}}{\partial s_{1}}; \quad \mu_{22} = \mu_{22}^{0} = -\vec{e}_{2} \cdot \frac{\partial \vec{g}}{\partial s_{2}}; \quad 2\mu_{12} = 2\mu_{12}^{0} = -\vec{e}_{2} \cdot \frac{\partial \vec{g}}{\partial s_{1}} - \vec{e}_{1} \cdot \frac{\partial \vec{g}}{\partial s_{2}};$$

$$e_{11} = \varepsilon_{11} + \gamma \mu_{11}; \quad e_{22} = \varepsilon_{22} + \gamma \mu_{22}; \quad e_{12} = \varepsilon_{12} + 2\gamma \mu_{12},$$
(1.2)

87

где $\vec{u} = u\vec{e}_1 + v\vec{e}_2 + w\vec{n} = u_1\vec{i}_1 + u_2\vec{i}_2 + u_3\vec{i}_3$ – вектор перемещений точек координатной поверхности оболочки; $\vec{e}_1, \vec{e}_2, \vec{n}$ – орты криволинейной ортогональной системы координат (s_1, s_2, γ) ; $\vec{i}_1, \vec{i}_2, \vec{i}_3$ – орты глобальной декартовой системы координат (X, Y, Z); $\vec{\mathcal{G}} = \mathcal{G}_{s_1}\vec{e}_1 + \mathcal{G}_{s_2}\vec{e}_2 = \mathcal{G}_1\vec{i}_1 + \mathcal{G}_2\vec{i}_2 + \mathcal{G}_3\vec{i}_3$ – вектор углов поворота касательных к координатным линиям; индексы «0» и «*» вверху соответствуют линейной и нелинейной частям компонент деформации.

Принимая, что направления ортотропии материала в каждой точке оболочки совпадают с направлениями осей координат (s_1, s_2, γ) , физические соотношения согласно закону Гука записываем в виде [1, 7]:

$$\begin{split} T_{11} &= T_{11}^0 + T_{11}^*; \quad T_{22} = T_{22}^0 + T_{22}^*; \quad T_{12} = T_{12}^0 + T_{12}^*; \\ T_{11}^0 &= C_{11}\varepsilon_{11}^0 + C_{12}\varepsilon_{22}^0; \quad T_{22}^0 = C_{21}\varepsilon_{11}^0 + C_{22}\varepsilon_{22}^0; \quad T_{12}^0 = C_{33}\varepsilon_{12}^0; \\ T_{11}^* &= C_{11}\varepsilon_{11}^* + C_{12}\varepsilon_{22}^*; \quad T_{22}^* = C_{21}\varepsilon_{11}^* + C_{22}\varepsilon_{22}^*; \quad T_{12}^* = C_{33}\varepsilon_{12}^*; \\ M_{11} &= M_{11}^0 = D_{11}\mu_{11} + D_{12}\mu_{22}; \quad M_{22} = M_{22}^0 = D_{21}\mu_{11} + D_{22}\mu_{22}; \quad M_{12} = M_{12}^0 = 2D_{33}\mu_{12}. \end{split}$$

Здесь T_{ij}, M_{ij} – внутренние усилия и моменты; C_{mn}, D_{mn} – жесткостные характеристики оболочки.

§2. Методика численного решения геометрически нелинейных задач для эллиптической цилиндрической оболочки с круговым отверстием.

Учитывая существенную нелинейность геометрических соотношений (1.2) и с целью отслеживания истории процесса деформирования эллиптической цилиндрической оболочки с отверстием, при построении разрешающей системы уравнений использована процедура пошагового нагружения и представления исходных уравнений в инкрементальной форме. Такая система получена из принципа возможных перемещений с помощью модифицированного метода Ньютона – Канторовича и метода конечных элементов (МКЭ) [6, 13].

Вариационное уравнение принципа возможных перемещений для гибкой ортотропной цилиндрической оболочки эллиптического сечения с отверстием, записанное в конце *n* - го шага нагружения, имеет вид [6, 13]:

$$\iint_{(\Sigma)} \delta \left\{ \Delta \vartheta \right\}^{T} \left\{ \left\{ \overline{m} \right\} + \left\{ \Delta m^{0} \right\} + \left\{ \Delta m^{*} \right\} \right) d\Sigma -$$

$$- \iint_{(\Sigma_{p})} \delta \left\{ \Delta u \right\}^{T} \left\{ \left\{ \overline{p} \right\} + \left\{ \Delta p \right\} \right) d\Sigma - \int_{(\Gamma_{k})} \delta \left\{ \Delta u_{k} \right\}^{T} \left\{ \left\{ \overline{m}_{k} \right\} + \left\{ \Delta m_{k} \right\} \right) ds = 0,$$

$$(2.1)$$

где $\{u\} = \{u, v, w\}^{T}, \{u_{k}\} = \{u_{m}, u_{\tau}, w, -\mathcal{G}_{m}\}^{T}$ – векторы перемещений точек срединной поверхности и контура оболочки; $\{\vartheta\} = \{\varepsilon_{11}, \varepsilon_{22}, \varepsilon_{12}, \mu_{11}, \mu_{22}, 2\mu_{12}\}^{T}$ – вектор деформаций; $\{m\} = \{T_{11}, T_{22}, T_{12}, M_{11}, M_{22}, M_{12}\}^{T}$ – вектор внутренних силовых факторов; (Σ_{p}) – часть срединной поверхности оболочки (Σ), на которой заданы поверхностные силы; (Γ_{k}) – часть контура срединной поверхности оболочки, на которой заданы краевые силы; символами Δf и \overline{f} обозначены приращение функции f на n - м шаге нагружения и ее значение в конце предыдущего шага нагружения.

В результате проведения линеаризации приходим к такому функционалу:

$$\Pi^{\ell} = \frac{1}{2} \iint_{(\Sigma)} (\{\Delta \mathfrak{I}^{\ell}\}^{T} [D] \{\Delta \mathfrak{I}^{\ell}\} + \{\Delta \mathfrak{I}\}^{T} [\overline{S}] \{\Delta \mathfrak{I}\}) d\Sigma +$$

+
$$\iint_{(\Sigma)} (\{\Delta \mathfrak{I}^{\ell}\}^{T} \{\Delta m^{*}\} + \{\Delta \mathfrak{I}\}^{T} [\Delta A_{L}]^{T} \{\Delta T\}) d\Sigma - \iint_{(\Sigma_{p})} \{\Delta u\}^{T} \{\Delta p\} d\Sigma -$$
(2.2)

88

$$-\int_{(\Gamma_k)} \{\Delta u_k\}^T \{\Delta m_k\} ds + \iint_{(\Sigma)} \{\Delta \mathfrak{I}^\ell\}^T \{\overline{m}\} d\Sigma - \iint_{(\Sigma_p)} \{\Delta u\}^T \{\overline{p}\} d\Sigma - \int_{(\Gamma_k)} \{\Delta u_k\}^T \{\overline{m}_k\} ds .$$

Здесь $\{\Delta \mathfrak{I}^{\ell}\}$ – линейные относительно приращений компонент векторов перемещений и углов поворота составляющие приращений деформаций; $[\overline{S}]$ – симметричная матрица накопленных тангенциальных усилий; $\{\Delta T\}$ – значения приращений компонент вектора внутренних усилий; $[\Delta A_L]$, $\{\Delta \mathfrak{I}\}$ – матрица и вектор приращений углов поворота; [D] – матрица жесткостей оболочки.

Линейная задача решается с помощью варианта МКЭ, разработанного для расчета тонких композитных оболочек сложной геометрии с отверстием.

Предложенная модификация МКЭ имеет ряд особенностей.

Во-первых, для компонент деформации используются соотношения в векторной форме. В этом случае при вычислении компонент тангенциальной деформации оболочки вектор перемещений точек координатной поверхности \vec{u} аппроксимируется билинейной функцией

$$u_i = \sum_{k=1}^{4} u_i^{(k)} L_k(\xi_1, \xi_2) \quad (i = 1, 2, 3),$$
(2.3)

где $u_i^{(k)}$ – проекции вектора перемещений на оси глобальной декартовой системы координат в k - ом узле; $L_k(\xi_1, \xi_2)$ – билинейные функции формы локальных координат ξ_1, ξ_2 .

Во-вторых, вектор углов поворота касательных к координатным линиям $\vec{\mathcal{G}}$ не определяется по формулам (1.2), как это принято в классическом МКЭ для тонких оболочек, а аппроксимируется биквадратичными полиномами серендипового типа

$$\mathcal{G}_{i} = \sum_{k=1}^{8} \mathcal{G}_{i}^{(k)} N_{k}(\xi_{1}, \xi_{2}) \quad (i = 1, 2, 3)$$
(2.4)

с выполнением зависимостей (1.2) для углов поворота только в узлах конечного элемента (КЭ) [4, 6, 13]. Здесь $\mathcal{G}_{i}^{(k)}$ – проекции вектора углов поворота $\vec{\mathcal{G}}$ на оси глобальной декартовой системы координат в k - ом узле; $N_k(\xi_1, \xi_2)$ – биквадратичные функции формы.

В третьих, с целью исключения отрицательного влияния явления мембранного запирания на сходимость результатов численных расчетов для компонент тангенциальной деформации оболочки применяется метод двойной аппроксимации [5].

Из условий стационарности дискретного аналога функционала (2.2) получим систему разрешающих уравнений для гибкой ортотропной цилиндрической оболочки эллиптического поперечного сечения, ослабленной отверстием, которая в матричной форме для *n* - го шага нагружения имеет вид

$$\left(\left[K_{0}\right]+\left[K_{\sigma}\right]+\left[K_{\sigma}\right]\right)\left\{\Delta q\right\}=\left\{\Delta P\right\}-\left\{\Delta \Omega\right\}+\left\{\Delta \Psi\right\},$$
(2.5)

где $[K_0]$ – матрица жесткости линейно-упругой оболочки; $[K_g], [K_\sigma]$ – матрицы влияния начальных углов поворота и напряжений; $\{\Delta q\}$ – вектор приращений узловых степеней свободы; $\{\Delta P\}$ – вектор нагрузок; $\{\Delta \Omega\}$ – вектор нелинейностей; $\{\Delta \Psi\}$ – вектор невязок уравнений равновесия в конце (n-1)- го шага нагружения.

§3. Апробация численной методики.

В качестве тестового примера рассмотрим краевую задачу о НДС замкнутой бесконечно длинной цилиндрической оболочки эллиптического поперечного сечения при действии равномерно распределенной вдоль образующей нагрузки интенсивности P $(P/h = \tilde{P}/h \cdot 10^5 \,\Pi a)$ и имеющей на диаметрально противоположной образующей оболочки шарнирные опоры, препятствующие вертикальному смещению (рис. 2).

Расчеты выполнены для оболочки с такими исходными параметрами:

 $a/h = 100; b/h = 25; E = 210 \Gamma\Pi a; v = 0,3.$

Ниже (в табл. 1 – 3) приведены значения напряжений $\tilde{\sigma}_{22}$ ($\sigma_{22} = \tilde{\sigma}_{22} \cdot 10^5 \, \Pi a$) на внешней ($\tilde{\gamma} = \gamma / h = 0,5$; $\tilde{\sigma}_{22}^+$) и внутренней ($\tilde{\gamma} = -0,5$; $\tilde{\sigma}_{22}^-$) поверхностях оболочки в точках $s_2 = 0$, $s_2 = \ell/2$ и $s_2 = \ell$ контура поперечного сечения, где 2ℓ – длина эллипса. Данные получены с помощью трех вариантов МКЭ для интенсивности действующей нагрузки $\tilde{P}/h = 1$. Первый вариант (табл. 1) будем называть векторным методом конечных элементов (ВМКЭ), поскольку он базируется на представлении компонент деформации в векторной форме и их вычислении с привлечением аппроксимаций векторов перемещений и углов поворота [6, 13]. Второй вариант (табл. 2) это скалярный метод конечных элементов (СМКЭ), в котором используются выражения для компонент деформации в скалярной форме и аппроксимации проекций векторов перемещений и углов поворота на оси криволинейной системы координат (s_1, s_2, γ) . Третий вариант (табл. 3), разработанный в данной работе, является сочетанием векторного метода конечных элементов и метода двойной аппроксимации компонент мембранной деформации. Отметим, что во всех трех вариантах МКЭ геометрическая часть гипотез Кирхгофа – Лява реализована дискретно, а количество степеней свободы в узле равно пяти. В табл. 1 – 3 также представлены результаты аналитическичисленного решения (АЧР), варианта ВМКЭ с восемнадцатью степенями свободы в узле [8] и значения отклонений Δ численных решений от АЧР в зависимости от количества элементов N вдоль половины контура поперечного сечения.

Векторный МКЭ							
Ν	γ̈́	$ ilde{\sigma}_{_{22}}(0)$	$\Delta,\%$	$ ilde{\sigma}_{_{22}}(\ell/2)$	$\Delta, \%$	$ ilde{\sigma}_{_{22}}(\ell)$	$\Delta,\%$
100	0,5	- 73,1	53,9	72,2	48,8	- 73,1	53,9
	- 0,5	103,3	38,4	- 73,6	48,2	103,3	38,4
200	0,5	- 123,6	22,0	112,4	20,3	- 123,6	22,0
	- 0,5	135,8	14,3	- 113,6	20,0	135,8	14,3
400	0,5	-148,1	6,3	132,4	6,1	- 148,1	6,3
	- 0,5	151,7	4,3	- 133,5	6,0	151,7	4,3
800	0,5	- 155,8	1,7	138,7	1,6	- 155,8	1,7
	- 0,5	156,7	1,1	- 139,7	1,6	156,7	1,1
1600	0,5	- 157,8	0,4	140,4	0,4	- 157,8	0,4
	- 0,5	158,1	0,3	- 141,4	0,4	158,1	0,3
AUP: $\tilde{\sigma}_{22}^{-}(0) = \tilde{\sigma}_{22}^{-}(\ell) = -\tilde{\sigma}_{22}^{+}(0) = -\tilde{\sigma}_{22}^{+}(\ell) = 158,5; \tilde{\sigma}_{22}^{-}(\ell/2) = -142; \tilde{\sigma}_{22}^{+}(\ell/2) = 141$							
BMKƏ [8]: $\tilde{\sigma}_{22}^{-}(0) = \tilde{\sigma}_{22}^{-}(\ell) = 157,5 (\Delta = 0,6\%); \tilde{\sigma}_{22}^{+}(0) = \tilde{\sigma}_{22}^{+}(\ell) = -157,33 (\Delta = 0,7\%)$							

Таблица 2

Скалярный МКЭ							
Ν	$ ilde{\gamma} ilde{\sigma}_{22}(0)$		$\Delta,\%$,% $ ilde{\sigma}_{22}(\ell/2)$		$ ilde{\sigma}_{_{22}}(\ell)$	Δ,%
100	0,5	- 81,6	48,5	24,0	83,0	0,44	100,3
100	- 0,5	74,6	52,9	-22,5	84,2	- 0,84	100,5
200	0,5	-114,1	28,0	52,2	63,0	-21,2	86,6
200	- 0,5	106,2	33,0	- 51,7	63,6	20,4	87,1
400	0,5	- 136,4	13,9	91,4	35,2	- 77,4	51,2
400	- 0,5	132,9	16,2	- 91,7	35,4	76,3	51,9
800	0,5	- 150,6	5,0	122,7	13,0	- 128,1	19,2
800	- 0,5	149,5	5,7	- 123,4	13,1	127,6	19,5
1600	0,5	- 156,3	1,4	135,8	3,7	- 149,8	5,5
1000	- 0,5	156,0	1,6	- 136,7	3,7	149,7	5,6
2200	0,5	- 158,1	0,3	140,1	0,6	- 157,1	0,9
3200	- 0,5	158,0	0,3	- 141,0	0,7	157,0	0,9

Анализ данных, представленных в табл. 1-3, показывает, что результаты повариантных расчетов значительно различаются между собой. Так, во втором варианте расчета (скалярная аппроксимация искомых величин) при $N \le 400$ напряжения в точке $s_2 = 0$ значительно превосходят напряжения, вычисленные в точке $s_2 = \ell$, хотя эти напряжения должны быть равны между собой, вследствие условия равновесия. В первом и третьем вариантах расчета (векторные варианты аппроксимации) имеем полное совпадение значений напряжений в точках $s_2 = 0$ и $s_2 = \ell$ для всех сеток дискретизации, что согласуется с результатами, приведенными в работе [8].

							· · · · · , · · ·	
Векторный МКЭ с двойной аппроксимацией деформаций								
N	$\tilde{\gamma}$	$ ilde{\sigma}_{_{22}}(0)$	$\Delta,\%$	$\tilde{\sigma}_{_{22}}(\ell/2)$	Δ,%	$ ilde{\sigma}_{_{22}}(\ell)$	Δ,%	
10	0,5	- 106,9	32,6	144,2	2,3	- 106,9	32,6	
	- 0,5	106,8	32,6	- 145,3	2,3	106,8	32,6	
20	0,5	- 153,0	3,5	141,4	0,3	- 153,0	3,5	
	-0,5	153,0	3,5	- 142,5	0,4	153,0	3,5	
40	0,5	- 159,5	- 0,6	141,0	0,0	- 159,5	- 0,6	
40	-0,5	159,5	- 0,6	- 142,0	0,0	159,5	- 0,6	
80	0,5	- 159,1	- 0,4	141,0	0,0	- 159,1	- 0,4	
	- 0,5	159,1	- 0,4	- 142,0	0,0	159,1	- 0,4	

Таблица 3

Сравнение результатов, полученных ВМКЭ и СМКЭ без двойной аппроксимации деформаций, с аналитически-численным (практически точным) решением свидетельствует о том, что при решении данной задачи указанными методами возникает явление так называемого мембранного запирания. Так для того, чтобы погрешность численного решения задачи в этих случаях была менее 1% необходимо разбить половину контура поперечного сечения на 1600 элементов для ВМКЭ и на 3200 элементов для СМКЭ. В то же время для достижения указанной точности при использовании ВМКЭ с двойной аппроксимацией достаточно всего 40 элементов.

Таким образом, можно сделать вывод, что векторный МКЭ с двойной аппроксимацией мембранных деформаций обладает значительными преимуществами перед скалярным и векторным вариантами МКЭ без двойной аппроксимации и может быть использован при расчете цилиндрической оболочки эллиптического поперечного сечения.

§4. Числовые результаты.

Представим результаты исследования нелинейного деформирования гибкой цилиндрической оболочки эллиптического поперечного сечения, ослабленной круговым отверстием (рис. 1). Оболочка изготовлена из ортотропного органопластика и растягивается распределенными по ее торцам осевыми усилиями интенсивности T_k ($T_k / h = \tilde{T}_k / h \cdot 10^5 \, \Pi a$).

Расчеты проведены для оболочки с такими геометрическими и физико-механическими параметрами:

$$(a+b)/h = 400; a/b = 0,5;1,0;2,0; r_0/h = 20;$$

 $E_{11} = 38,4 \ \Gamma\Pi a; E_{22} = 25,3 \ \Gamma\Pi a; v_{12} = 0,238; G_{12} = 7,6 \ \Gamma\Pi a$

где E_{11}, E_{22} – модули упругости в направлениях образующей и направляющей, соответсвенно; G_{12} – модуль сдвига в плоскости, паралельной координатной поверхности; v_{12} – коэффициент Пуассона; h – толщина оболочки.

Конкретные числовые результаты решения линейных (ЛЗ) и геометрически нелинейных задач (ГНЗ) получены для равномерно распределенных осевых усилий интенсивности $\tilde{T}_k / h = 500$.

В табл. 4 даны значения относительных прогибов $\tilde{w} = w/h$ и коэффициентов концентрации окружных напряжений $k_{\theta} = \sigma_{\theta}h/T_k$ в нескольких точках контура отверстия ($0^{\circ} \le \theta \le 90^{\circ}$, где угол θ отсчитывается от образующей) на внешней и внутренней поверхностях оболочки ($\tilde{\gamma} = \pm 0, 5$). Результаты приведены для двух эллиптических (a = 2b и b = 2a) и одной круговой (a = b) цилиндрических оболочек как для ЛЗ, так и ГНЗ.

1	Габлица	4	
-	uonnyu	7	

Решение	θ,°	γ̃	ЛЗ			ГН3		
			b = 2a	a = b	a = 2b	b = 2a	a = b	a = 2b
ŵ	0	0	0,8354	0,6938	0,5824	0,9725	1,163	1,058
	45	0	0,2048	0,3324	0,3918	0,4862	0,8908	0,9192
	90	0	- 0,4623	- 0,0648	0,1794	0,1108	0,6798	0,8123
	0	0,5	1,13	0,01	- 0,47	1,07	0,15	- 0,39
		- 0,5	- 2,73	- 2,21	- 1,63	- 2,24	- 1,81	- 1,40
k	45	0,5	0,81	0,97	0,92	0,75	0,85	0,81
$\kappa_{ heta}$		- 0,5	- 0,32	0,22	0,49	0,56	0,67	0,69
	90	0,5	5,23	4,35	4,03	5,39	4,43	4,01
		- 0,5	9,05	6,34	4,92	6,53	4,93	4,21

Анализ представленных результатов свидетельствует о том, что при действии осевых растягивающих усилий как для эллиптической, так и круговой цилиндрических оболочек, наиболее опасными являются точки, которые расположены на контуре отверстия в сечении $\theta = 90^{\circ}$ на внутренней поверхности оболочек, где имеют место наибольшие напряжения.

Учет геометрической нелинейности приводит к уменьшению максимальных напряжений по сравнению с результатами линейно-упругого решения: на 27,9% при b = 2a; на 22,3% при a = b и на 14,5% при a = 2b. Кроме этого, максимальные прогибы для ГНЗ больше соответствующих данных ЛЗ на 16,4% при b = 2a, на 67,6% при a = b и на 81,7% при a = 2b.

Заключение.

Таким образом, в работе дана постановка и изложена методика численного решения двумерных геометрически нелинейных задач для ортотропной цилиндрической оболочки эллиптического поперечного сечения, ослабленной круговым отверстием, которая базируется на применении пошагового нагружения, метода Ньютона – Канторовича и метода конечных элементов с двойной аппроксимацией мембранных деформаций. С помощью разработанной методики исследовано напряженно-деформированное состояние гибкой эллиптической цилиндрической оболочки с круговым отверстием при действии осевых растягивающих усилий. Числовые результаты представлены в виде таблицы для нескольких значений отношения полуосей поперечного сечения оболочки. В дальнейшем представляет интерес решение физически и геометрически нелинейных краевых задач для тонких цилиндрических оболочек произвольного (некругового) поперечного сечения, ослабленных криволинейными отверстиями, при действии разного вида нагрузок.

Р Е З Ю М Е. Дано постановку і розроблено чисельну методику розв'язання геометрично нелінійних задач для ортотропної циліндричної оболонки еліптичного поперечного перерізу, ослабленої круговим отвором. Система розв'язувальних рівнянь отримана на основі співвідношень теорії непологих оболонок Кірхгофа – Лява і закону Гука для ортотропних матеріалів. Запропонована методика базується на застосуванні процедури покрокового навантаження, модифікованого методу Ньютона – Канторовича і методу скінченних елементів. Для оболонки, навантаженої осьовими розтягувальними зусиллями, досліджено вплив скінченних прогинів, фізико-механічних і геометричних параметрів на напружено-деформований стан в області кругового отвору.

- 1. Концентрация напряжений / А.Н. Гузь, А.С. Космодамианский, В.П. Шевченко и др. К.: «А.С.К.», 1998. 387 с. (Механика композитов: В 12-ти т.; Т. 7).
- Кузнецов Ю.М. НДС некруговой цилиндрической оболочки с вырезом под воздействием неравномерно распределенного вдоль направляющей давления // Исследования по теории пластин и оболочек: Тр. семинара КФТИ КФ АН СССР. – Казань: Изд-во КГУ, 1992. – Вып. 24. – С. 35 – 39.
- 3. Сторожук Е.А., Чернышенко И.С., Яцура А.В. Напряженно-деформированное состояние возле отверстия в податливой на сдвиг композитной цилиндрической оболочке эллиптического сечения // Прикл. механика. – 2018. – 54, № 5. – С.78 – 86.
- Areias P.M.A., Song J.-H., Belytschko T. A finite-strain quadrilateral shell element based on discrete Kirchhoff-Love constraints // Int. J. Numer. Meth. Eng. – 2005. – 64. – P. 1166 – 1206.
- Bathe K.-J., Dvorkin E.N. A four-node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation // Int. J. Numer. Meth. Eng. – 1985. – 21, N 2. – P. 367 – 383.
- Chernyshenko I.S., Storozhuk E.A. Inelastic Deformation of Flexible Cylindrical Shells with a Curvilinear Hole // Int. Appl. Mech. – 2006. – 42, N 12. – P. 1414 – 1420.
- Karpov V.V. Models of the shells having ribs, reinforcement plates and cutouts // Int. J. of Solids and Struct. 2018. – 146. – P. 117 – 135.
- Kiseleva T.A., Klochkov Yu.V., Nikolaev A.P. Comparison of scalar and vector FEM forms in the case of an elliptic cylinder // J. Comput. Math. Math. Phys. – 2015. – 55, N 3. – P. 422 – 431.
- Maksimyuk V.A., Chernyshenko I.S. Stress State around Holes in Orthotropic Cylindrical Shells with Allowance for Nonlinearly Elastic Material Properties // Int. Appl. Mech. – 1991. – 27, N 10. – P. 991 – 995.
- Oterkus E., Madenci E., Nemeth M. Stress analysis of composite cylindrical shells with an elliptical cutout // J. Mechanics of Materials and Structures. – 2007. – 2, N 4. – P. 695 – 727.
- 11. Pilkey W.D., Pilkey D.D. Peterson's Stress Concentration Factors. New York: John Wiley & Sons, 2008. 560 p.
- Soldatos K. P. Mechanics of cylindrical shells with non-circular cross-section: a survey // Appl. Mech. Rev. 1999. – 52, N 8. – P. 237 – 274.
- Storozhuk E.A., Chernyshenko I.S. Stress Distribution in Physically and Geometrically Nonlinear Thin Cylindrical Shells with Two Holes // Int. Appl. Mech. – 2005. – 41, N 11. – P. 1280 – 1287.
- Storozhuk E.A., Chernyshenko I.S., Pigol O.V. Elastoplastic State of an Elliptical Cylindrical Shell with a Circular Hole // Int. Appl. Mech. 2017. 53, N 6. P. 647 654.
- Storozhuk E.A., Yatsura A.V. Analytical-Numerical Solution of Static Problems for Noncircular Cylindrical Shells of Variable Thickness // Int. Appl. Mech. – 2017. – 53, N 3. – P. 313 – 325.
- Storozhuk E.A., Yatsura A.V. Exact Solutions of Boundary-Value Problems for Noncircular Cylindrical Shells // Int. Appl. Mech. – 2016. – 52, N 4. – P. 386–397.
- 17. Tennyson R.C., Booton M., Caswell R.D. Buckling of imperfect elliptical cylindrical shells under axial compression // AIAA J. 1971. 9, N 2. P. 250 255.
- Timoshenko S. Strength of materials. Part II, Advanced theory and problems. 2nd ed. New York: D. Van Nostrand Company, 1941. – 510 p.
- Tornabene F., Fantuzzi N., Bacciocchi M., Dimitri R. Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method // Thin Walled Struct. – 2015. – 97. – P. 114 – 129.

Поступила 26.09.2017

Утверждена в печать 22.05.2018