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SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS  
IN THREE VARIABLES 
 

Let  be an algebraically closed field of characteristic zero, 1 2 3= [ , , ]A x x x  be 

the polynomial ring in three variables and  1 2 3( , , )R x x x  be the field of rational 

functions. If L  is a subalgebra of the Lie algebra 3 ( )W  of all -derivations of 

A , then RL  is a Lie algebra over  and Rdim RL  will be called the rank of L  

over R . We study solvable subalgebras L  of 3 ( )W  of rank 3  over R . It is 

proved that L  is isomorphic to a subalgebra of the general affine Lie algebra 

3 ( )aff  if L  contains an abelian ideal I  of rank 3  over R . If L  has an ideal I  

with = 2Rrk I , then L  is contained in a subalgebra L  of 3( )=W Der R  such 

that L  is an extension of a subalgebra of 2( )aff F  by a subalgebra of dimension 

 2 , where F  is the field of constants of I  in R . 

 

Introduction. Let  be an algebraically closed field of characteristic 

zero,  1 2 3[ , , ]A x x x  the polynomial ring in three variables and 

1 2 3= ( , , )R x x x  the field of rational functions. Recall that a -linear 

operator :D A A  is called a -derivation on A  if D  satisfies the 

Leibniz’s rule: ( ) = ( ) ( )D fg D f g fD g  for all ,f g A . The Lie algebra 3( )W  

of all -derivations on A  is a very interesting mathematical object closely 
connected with groups of symmetries of partial differential equations. In case 

 is the field of real or comlpex numbers, all finite dimensional subalgebras 

of 1( )W  and 2( )W  were described in works of S. Lie, P. Olver, N. Kamran. 

The natural problem of classification of all finite dimensional subalgebras of 

3( )W  remains still open. S. Lie [7] began to study such subalgebras, but his 

classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2] 

continued study of subalgebras of 3( )W  but his classification is unsatisfac-

tory. Note that the problem of classifying even nilpotent finite-dimensional 

subalgebras of 4( )W  is wild (i.e. it contains a hopeless problem of classifying 

pairs of square matrices up to simultaneous similarity [3]). 

We study finite dimensional solvable subalgebras of rank 3  over R  of 

the Lie algebra 3( )W  (nilpotent subalgebras of 3( )W  were studied in [10]). 

The main results of the paper: it is proved in Theorem 1 that a solvable finite 

dimensional subalgebra L  of 3( )W  possessing an abelian ideal of rank 3  

over R  is isomorphic to a subalgebra of the general affine Lie algebra 

3( )aff . If L  has an abelian ideal I  of rank 2  over ,R  then L  can be 

embedded in a subalgebra L  of 3( ) =W Der R  such that L  is an extension 

of a subalgebra of 2( )aff F  by a subalgebra of dimension  2,  where F  is the 

field of constants for the ideal I  in the field R . 

Notations in the paper are standard. The ground field  is algebraically 

closed of characteristic zero. If L  is a subalgebra of the Lie algebra 3( ),W  

then = ( )F F L  is the field on constants of L  in R = 1 2 3( , , )x x x  (we consider 

any derivation  3( )D W  as derivation of R  in the natural way: 

 2( / ) = ( ( ) ( )) /D f g D f g fD g g ). If V  is an n -dimensional vector space over 
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 and ( )Vgl  the Lie algebra of all linear operators on V  we can consider the 

semidirect product ( )V Vgl , where V  is considered as an abelian Lie algeb-

ra. The Lie algebra ( )V Vgl  will be called the general affine Lie algebra and 

denoted by ( )naff  (in case =  the Lie algebra ( )naff  corresponds to 

the general affine Lie group ( )nGA ). 

Subalgebras with an abelian ideal of rank 3 over .R  

The next two lemmas contain standard facts about derivations (see for 
example, [8]). More information about derivations of polynomial rings can be 
found in [9].  

Lemma 1. Let 1 2 3, ( )D D W  and ,a b R . Then  

  1 2 1 2 1 2 2 1[ , ] = [ , ] ( ) ( ) .aD bD ab D D aD b D bD a D   

If 1 2[ , ] = 0D D , then 1 2 1 2 2 1[ , ] = ( ) ( ) .aD bD aD b D bD a D   

Lemma 2. If  3( )L W  and = ( )F F L  the field of constants for L  in R , 

then FL  is a Lie algebra over F . If L  is abelian, nilpotent or solvable then so 

is FL .  

Lemma 3. Let 1, , nD D  be a basis of the vector space 3( )W  over the 

field R . Then 
=1

=
n

ii
KerD .  

Proof. Suppose that 
=1

n

ii
KerD  and let  1 1=1

, \
n

ii
f KerD f R . 

Then there exists a transcendence basis 1{ , , }nf f  of R  over  and the 

subfield 1( , , )nf f  is isomorphic to the field 1( , , )nx x . The function 1f  

defines the derivation S  of the field 1( , , )nf f  and this derivation can be 

uniquely extended to the derivation S  of 1( , , )nx x  (we keep the same 

notation for the extended derivation). But  =1
=

n

i ii
S s D  for some is R  and 

therefore 1 1=1
( ) = ( ) = 0

n

i ii
S f s D f  by the choice of the element 1f . This is 

impossible because 1( ) = 1S f . The obtained contradiction shows that 

=1
=

n

ii
KerD .  

Corollary 1. If L  is an abelian subalgebra of 3( )W  and =Rrk L n , then 

dim L n .  

Proof. Let 1, , nD D  be a basis of L  over R . Then any element D L  is 

of the form  =1
=

n

i ii
D s D  for some is R . Since  =1

[ , ] = 0 = ( )
n

i i j jj
D D D s D  

we have that ( ) = 0i jD s , , = 1, ,i j n . By Lemma 3, is  and 1, , nD D  is 

a basis of L  over . Thus dim L n .  

Theorem 1. Let L be a solvable subalgebra of the Lie algebra 3( )W . If L 

has an abelian ideal I  of rank 3  over R , then L  is isomorphic to a solvable 

subalgebra of the general affine Lie algebra 3( )aff . In particular 

 3 dim 9L .  

Proof. Take any basis 1 2 3, ,D D D  of the ideal I  over the field R . Then 

any element D L  can be written in the form  

   1 1 2 2 3 3= , .iD s D s D s D s R   
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Since   1 1 2 2 3 3[ , ] = ( ) ( ) ( )i i i iD D D s D D s D D s D I  we have by Lemma 4 that 

( ) , , =1,2,3i jD s i j . So we can correspond to any element D L  the matrix  

 

 
  
 
 

1 1 1 2 1 3

2 1 2 2 2 3 3

3 1 3 2 3 3

( ) ( ) ( )

= ( ) ( ) ( ) ( )

( ) ( ) ( )
D

D s D s D s

B D s D s D s M

D s D s D s

.  (1) 

Denote by S  the set of all columns of such matrices DB , where D  runs 

over the subalgebra L . Since  3S , the three-dimension vector space over 

,  we have = 3d rk S . If = 0d , then all columns for all D L  are zero 

and therefore  , = 1,2,3is i  by Lemma 3. This means =L I . So we can 

assume that  1d . 

Case 1. = 1d . Then there exists an element  \D L I  which can be 

written in the form  1 1 2 2 3 3=D s D s D s D  such that all columns of S  are 

proportional to the column  1 1 2 1 3 1( ), ( ), ( )
T

D s D s D s  (here T  denotes the trans-

pose of the row) of the corresponding matrix DB . Take any element 

  1 2 3( ), ( ), ( )
T

D t D t D t S . Then there exists    such that  

    1 2 3 1 1 2 1 3 1( ), ( ), ( ) = ( ), ( ), ( ) .
T T

D t D t D t D s D s D s   

It follows from the last equality that  

      1 1 2 1 3 1( ) = ( ) = ( ) = 0D t s D t s D t s .  

By Lemma 3 we obtain   1 =t s  for some   ,  i.e.   1=t s . The latter 

means that for any element  ,D L    1 1 2 2 3 3= , iD t D t D t D t R , the corres-

ponding matrix DB  has the columns  1 2 3( ), ( ), ( )
T

i i iD t D t D t , = 1,2,3i , with 

 = ( ), deg 1, [ ]i i i it f s f f t . Since  1 1 2 1 3 1( ), ( ), ( )
T

D s D s D s  is nonzero we can 

assume without loss of generality that  1 1 2 1 2 3 1 3( ) = 1, ( ) = , ( ) =D s D s D s  for 

some   2 3, . Put  

      1 2 2 1 3 3 11 2 3
= , = , =D D D D D D D D .  

Then   1 1 11 2 3
( ) = 1, ( ) = 0, ( ) = 0D s D s D s  and   1 2 3

, ,D D D  form a basis of I  over 

R . Let  1 1 2 2 3 3=D t D t D t D  be an arbitrary element in L  and 

  = , = 1,2,3.i i i it s i  Then the map   3: ( )L aff  which is defined by 

the rule: ( ) =i iD x ,  1 1( ) =i is D x x  and further by linearity, is an embedding 

of L  into the Lie algebra 3( )aff . 

Case 2. = = 2d rk S . Then there exist linearly independent columns on 

the set S  of the form  

    1 1 2 1 3 1 1 2 2 2 3 2( ), ( ), ( ) , ( ), ( ), ( )
T T

D s D s D s D s D s D s  (2) 

(these columns can belong to different matrices ,DB D L ). Therefore any 

column   1 2 3( ), ( ), ( )
T

D t D t D t S  is a linear combination of columns in (2). One 

can easily show that 1 2= ( , )t f s s  for some polynomial  [ , ]f u v , deg 1f . 

Note that the rank of the matrix  

 

 
 
 
 

1 1 1 2

2 1 2 2

3 1 3 2

( ) ( )

( ) ( )

( ) ( )

D s D s

D s D s

D s D s

 (3) 
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is equal to 2 . Without loss of generality one can assume that the first and 
second rows of this matrix are linearly independent. But then there exist 

  1 2,  such that  

      1 1 1 1 2 2 2 1 2 2(1,0) = ( ), ( ) ( ), ( ) .D s D s D s D s   (4) 

Denoting    1 1 2 21
=D D D  we have  1 21 1

( ) = 1, ( ) = 0D s D s . Analogously one 

can find   1 2,  such that the element    1 1 2 22
=D D D  has properties 

 1 22 2
( ) = 0, ( ) = 1D s D s . 

Further, the third row of the matrix (3) is a linear combination of the 

first and second rows and therefore    3 1 1 2 2( )( ) = 0, = 1,2iD D D s i . 

Denoting     3 1 1 2 23
=D D D D  we obtain  ( ) = , = 1,2,3, = 1,2j i ji

D s i j . If 

D L  is an arbitrary element, then  1 1 2 2 3 3=D t D t D t D  for some 

1 2 3, ,t t t R . Since 1 2= ( , ), deg 1i i it f s s f  we see that L  can be embedded 

in the Lie algebra 3( )aff . 

Case 3. = 3rk S  can be considered analogously.  

Subalgebras with abelian ideals of  2rk  over .R  

Lemma 4. Let L  be a subalgebra of the Lie algebra ( )nW  and I  be an 

ideal of L . If = ( )F F I  is the field of constants for I  in R , then ( )D F F  

for any element D L .  

Proof. Let D L  and r F  be arbitrarily chosen. Then for any 1D I  

we have 1( ) = 0D r  and therefore  

 1 1 10 = ( ( )) = ( ( )) [ , ]( )D D r D D r D D r . 

Since 1[ , ]D D I  we have 1[ , ]( ) = 0D D r  and consequently 1( ( )) = 0D D r . The 

latter means that ( )D r F  because the element 1D  was arbitrarily chosen in 

the ideal I . Thus ( )D F F .  

Theorem 2. Let L  be a solvable finite dimensional subalgebra of the Lie 

algebra 3( )W  with r = 3Rk L . If L  has an ideal I  of rank 2  over R  and 

= ( )F F L  is the field of constants of I  in R , then the Lie algebra L  is 

contained in the subalgebra =L FI L  of 3( )W  where = ( )I RI L . The Lie 

algebra L  is solvable, FI  is its ideal of rank 2  over R  which is isomorphic to 

a subalgebra of 2( )aff F . The Lie algebra L  is an extension of the ideal FI  by 

a Lie algebra of dimension 1  or 2  over .  

Proof. The intersection = ( )I RI L  is an ideal of the Lie algebra L  with 

r = 2Rk L  and dim / 2L I  (see [8]). Let F  be the field of constants for I  in 

R . Since ( )D F F  for any D L  (by Lemma 4), the subalgebra FI  of the 

algebra 3( )W  is an ideal of the Lie algebra FI L . One can easily show 

that r = 2k I . By Theorem 1 of the paper [6], the Lie algebra FI  (as a Lie 

algebra over the field F ) is isomorphic to a subalgebra of the Lie algebra 

2( )aff F . Since dim / 2L I , it holds obviously  dim / 2L FI FI . Note 

that the Lie algebra L FI  is in general case of infinite dimension over  

although dim 7FFI  (the sum FI L  is not in general a Lie algebra over F  

but only over the field ). The proof is complete.  

Further notations are taken from Theorem 2. Let 1 1=I D  be a one-

dimensional ideal of L  lying in I  and 2 1D I  be an ideal of the quotient 
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algebra 1/L I  lying in 1/I I  (such ideals do exist because L  is solvable and 

 is algebraically closed). Let 3D I  be one-dimensional ideal of the Lie 

algebra /L I . Then 1 2 3, ,D D D  are linearly independent over R  and form a 

basis of RL  over R . By the choice of 1D  and 2D  there exist   1 2, K  and 

2g F  such that  

   3 1 1 1 3 2 2 2 2 1[ , ] = , [ , ] =D D D D D D g D . 

The next statement gives more detailed description of the Lie algebra 

=L FI L .  

Proposition 1. Let  3( )L W  be a solvable finite dimensional subalgebra 

of rank 3  over R  with dim > 6L . Under conditions of Theorem 2  either 

there exist 1 2,r r R  with ( ) =i j ijD r , , = 1,2i j , and every element D FI  is 

of the form 1 1 2 1 2 1 2 2= ( , ) ( , )D f r r D f r r D ,  1 2[ , ]if t t , deg 1if , or there 

exists  ,ir R  = 1i  or = 2i , with ( ) =i j ijD r  and every element D FI  is of 

the form 1 1 2 2= ( ) ( )i iD g r D g r D , deg 1jg . Then  3 1 1 1 2 2( ) =D r r g r , 

3 2 2 2( ) =D r r . If dim / 2L I , then there exists  3\ ( )D L D I  such 

that 3 3 2 2= ,D r D s D  3 ,r R  3 3( ) = 1D r , 1 3 2 3( ) = ( ) = 0D r D r , 1 2( ) = 0D s , and 

in this case 1 = 0 , 2 = 0g ,  2 2 2 3=s r r f , f . 

Proof. Repeating considerations from the proof of Theorem 1 one can 

find either elements 1 2,r r  with ( ) = , , = 1,2i j ijD r i j , or an element r R  

such that either 1 2( ) = 1, ( ) =D r D r  or 1 2( ) = , ( ) = 1D r D r  using only trans-

formations of columns of the matrix 
 
 
 

1 1 1 2

2 1 2 2

( ) ( )
=

( ) ( )D

D s D s
B

D s D s
. If   0  we can 

consider elements   2 12
=D D D ,  11

=D D  and in this case 1
( ) = 0D r , 

2
( ) = 1D r . So we can assume that either 1( ) = 1D r , 2( ) = 0D r  or 1( ) = 0D r , 

2( ) = 1D r  and r  is either 1r  or 2 .r  

Let us consider the action of elements iD  on ir , js , , = 1,2,3i j . 

Since 1 1( ) = 1D r  we have 3 1 1( ( )) = 0D D r  and therefore  

    1 3 1 3 1 1 3 1 1 1 1 1 1( ( )) = ( ( )) [ , ]( ) = 0 ( ) =D D r D D r D D r D r .  

It follows from the equalities 1 3 1 1( ( )) =D D r  and  1 1 1 1( ) =D r  that 

 1 3 1 1 1( ( ) ) = 0,D D r r  i.e.  3 1 1 1( ) =D r r s  for some   1s KerD . Analogously 

the equality  

 2 3 1 3 2 1 3 2 1( ( )) = ( ( )) [ , ]( )D d r D D r D D r  

implies  3 1 2 2( ) =D r g r s  for some   2s KerD . Applying 1D  to both sides of 

the obtained equality     1 1 2 2=r s g r s  we get 1 1= ( )D s . After 

applying 2D  to the same equality we get  2 2( ) =D s g . But then 

   1 1 1s r KerD . Since    1 1 2s r KerD  we have 

    1 1 1 2 =s r KerD KerD F . Thus    1 1 1=s r v  for some 1v F . It follows 

from the equality       1 1 2 1 1 1r s g r v  that    2 2 1s g r v . Finally we get  

    3 1 1 1 2 2 1 1( ) = ,D r r g r v v F .  

Analogously it follows from the equalities  
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     2 3 2 3 2 2 3 2 2 2 2 2 1 2 2( ( )) = ( ( )) [ , ]( ) = 0 ( )( ) =D D r D D r D D r D g D r  

that  3 2 2 2( ) =D r r t  for some   2t KerD  and finally  

   3 2 2 2 2 2( ) = ,D r r v v F .  

Without loss of generality we can change 3D  by   3 1 1 2 23
=D D v D v D . Then 

  1 1 1 2 23
( ) =D r r g r ,  2 2 23

( ) =D r r . Returning to the old notation we have 

  3 1 1 1 2 2 3 2 2 2( ) = , ( ) =D r r g r D r r . 

Let now dim / 2L I  and  3 3 1 1 2 2=D r D s D s D  be any element of 

3\ ( )L D I . Then  

    3 3 3 1 1 2 2 3[ , ] [ , ]D D r D s D s D D  

       3 3 3 3 1 1 1 1 3 3 2 2 2 2 3( ) ( ) [ , ] ( ) [ , ]D r D D s D s D D D s D s D D  

           3 3 3 3 1 1 1 2 2 1 3 2 2 2 2( ) ( ( ) ) ( ( ) )D r D D s s s g D D s s D . 

It follows from these equalities that 3 3( ) =D r , where   is taken from the 

equality  3 3[ , ] =D D D D , where  .D I  Analogously the equality  

   3 3 1 1 2 2 1 1[ , ] =r D s D s D D D  

for some    implies 1 3 1 2( ) = 0, ( ) = 0D r D s . The equality  

   3 3 1 1 2 2 2 1 1 2 2[ , ] =r D s D s D D f D f D  

for some 1 2,f f F  yields 3 3( ) = 0D r . Summarizing we get  

 1 3 2 3 3 3 1 2( ) = ( ) = 0, ( ) = 1, ( ) = 0D r D r D r D s . (5) 

Since 1 1[ , ] =D D D  for some    we have  

    3 3 1 1 2 2 3 1 3 1 1 1[ , ] = ( ( ))r D s D s D D r D s D   

and therefore   1 3 1 1( ) =r D s . Thus   1 1 1 3( ) =D s r ,  . Further 

2 1 1 2 2[ , ] =D D f D f D  for some 1 2,f f F . Analogously  3 3 1 1 2 2 2[ , ] =r D s D s D D  

    3 2 2 1 1 2 2 2 2 2( ( )) ( ( ))r g D s D r D s D  and therefore 

   2 1 2 3 2 2 2 2 3 2( ) = , ( ) =D s g r f D s r f . (6) 

But we have  

     1 2 2 3 2 2 3 2 2 2 3 2 2 4= , =s g r r r f f s r r r f f   

for some 3 4,f f F . It was proved early that   1 1 1 3( ) =D s r ,   , so we 

have    1 1 1 3 1 5=s r r r f  for some 5f F . Applying 2D  to the both sides of 

the equality  

      1 1 3 1 5 2 2 3 2 2 3=r r r f g r r r f f   (7) 

we get 2 3 2 = 0g r f . But 1 2 3, ,r r r  are linearly independent over F , so the last 

equality yields 2 = 0g . The equality (7) is now of the form  

      1 1 3 1 5 2 2 3=r r r f r f f .  

Applying 2D  to the both sides of this equality we get 2 = 0f . Therefore 

   1 1 3 1 5 3=r r r f f . Applying 1D  to the both sides of the last equality we get 

  1 3 = 0r . Since 3r  we have 1 = 0  and therefore 1 = 0.s  Analogously 

we can assume that 4 = 0f  and 2 2 2 3= .s r r  So we have  

  1 2 2 2 3 2 2 1= 0, = , = 0, = 0, = 0s s r r g f .  

These equalities means that  
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  3 1 3 2 2 2 3 3 2 2[ , ] = 0, [ , ] = , =D D D D D D r D s D ,  

where 2 2 2 3=s r r , ( ) =i j ijD r , , = 1,2,3i j . The proof is complete. 
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РОЗВ’ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ КІЛЕЦЬ МНОГОЧЛЕНІВ ВІД ТРЬОХ ЗМІННИХ 

 

Нехай  – алгебраїчно замкнене поле характеристики нуль, 1 2 3= [ , , ]A x x x  – 

кільце многочленів від трьох змінних і  1 2 3( , , )R x x x  – поле раціональних 

функцій. Якщо L  – підалгебра алгебри Лі 3 ( )W  всіх -диференціювань кільця 

A , то RL  є алгеброю Лі над  і Rdim RL  називається рангом алгебри L  над R . 

Вивчаються підалгебри L  рангу 3  над R  алгебри Лі 3 ( )W . Доведено, що якщо 

L  містить абелевий ідеал I  рангу 3  над R , то L  ізоморфна підалгебрі загаль-

ної афінної алгебри Лі 3 ( )aff . Якщо L  має ідеал I  з = 2Rrk I , то L  міститься 

в підалгебрі L  алгебри 3( )=W Der R , де L  – розширення деякої підалгебри з 

2( )aff F  за допомогою підалгебри розмірності  2 , F  – поле констант для I  в R .  

 
РАЗРЕШИМЫЕ АЛГЕБРЫ ЛИ ДИФФЕРЕНЦИРОВАНИЙ КОЛЕЦ МНОГОЧЛЕНОВ  
ОТ ТРЕХ ПЕРЕМЕННЫХ 

 

Пусть  – алгебраически замкнутое поле характеристики нуль, 

1 2 3= [ , , ]A x x x  – кольцо многочленов от трех переменных и  1 2 3( , , )R x x x  – 

поле рациональных функций. Если L -подалгебра алгебры Ли 3 ( )W  всех -

дифференцирований кольца A , то RL  является алгеброй Ли над  и Rdim RL  

называется рангом алгебры L  над R . Исследуются подалгебры L  ранга 3  над R  

алгебры Ли 3 ( )W . Доказано, что если L  содержит абелев идеал I  ранга 3  над 

R , то L  изоморфна подалгебре общей афинной алгебры Ли 3 ( )aff . Если L  

содержит идеал I  с = 2Rrk I , то L  содержится в подалгебре L  алгебры 

3( ) =W Der R , где L  – расширение некоторой подалгебры из 2( )aff F  с помощью 

подалгебры размерности  2 , а F  – поле констант для I  в R .  
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