le. Yu. Chapovskyi, D. I. Efimov, A. P. Petravchuk

SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS IN THREE VARIABLES

Let \mathbb{K} be an algebraically closed field of characteristic zero, $A = \mathbb{K}[x_1, x_2, x_3]$ be the polynomial ring in three variables and $R = \mathbb{K}(x_1, x_2, x_3)$ be the field of rational functions. If L is a subalgebra of the Lie algebra $W_3(\mathbb{K})$ of all \mathbb{K} -derivations of A, then RL is a Lie algebra over \mathbb{K} and $\dim_R RL$ will be called the rank of L over R. We study solvable subalgebras L of $W_3(\mathbb{K})$ of rank 3 over R. It is proved that L is isomorphic to a subalgebra of the general affine Lie algebra $aff_3(\mathbb{K})$ if L contains an abelian ideal I of rank 3 over R. If L has an ideal I with $rk_R I = 2$, then L is contained in a subalgebra \overline{L} of $\widetilde{W}_3(\mathbb{K}) = Der_{\mathbb{K}}R$ such that \overline{L} is an extension of a subalgebra of $aff_2(F)$ by a subalgebra of dimension ≤ 2 , where F is the field of constants of I in R.

Introduction. Let \mathbb{K} be an algebraically closed field of characteristic zero, $A = \mathbb{K}[x_1, x_2, x_3]$ the polynomial ring in three variables and $R = \mathbb{K}(x_1, x_2, x_3)$ the field of rational functions. Recall that a \mathbb{K} -linear operator $D: A \rightarrow A$ is called a \mathbb{K} -derivation on A if D satisfies the Leibniz's rule: D(fg) = D(f)g + fD(g) for all $f, g \in A$. The Lie algebra $W_3(\mathbb{K})$ of all \mathbb{K} -derivations on A is a very interesting mathematical object closely connected with groups of symmetries of partial differential equations. In case ${\mathbb K}$ is the field of real or comlpex numbers, all finite dimensional subalgebras of $W_1(\mathbb{K})$ and $W_2(\mathbb{K})$ were described in works of S. Lie, P. Olver, N. Kamran. The natural problem of classification of all finite dimensional subalgebras of $W_3(\mathbb{K})$ remains still open. S. Lie [7] began to study such subalgebras, but his classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2] continued study of subalgebras of $W_3(\mathbb{K})$ but his classification is unsatisfactory. Note that the problem of classifying even nilpotent finite-dimensional subalgebras of $W_4(\mathbb{K})$ is wild (i.e. it contains a hopeless problem of classifying pairs of square matrices up to simultaneous similarity [3]).

We study finite dimensional solvable subalgebras of rank 3 over R of the Lie algebra $W_3(\mathbb{K})$ (nilpotent subalgebras of $W_3(\mathbb{K})$ were studied in [10]). The main results of the paper: it is proved in Theorem 1 that a solvable finite dimensional subalgebra L of $W_3(\mathbb{K})$ possessing an abelian ideal of rank 3 over R is isomorphic to a subalgebra of the general affine Lie algebra $aff_3(\mathbb{K})$. If L has an abelian ideal I of rank 2 over R, then L can be embedded in a subalgebra \overline{L} of $W_3(\mathbb{K}) = Der_{\mathbb{K}}R$ such that \overline{L} is an extension of a subalgebra of $aff_2(F)$ by a subalgebra of dimension ≤ 2 , where F is the field of constants for the ideal I in the field R.

Notations in the paper are standard. The ground field \mathbb{K} is algebraically closed of characteristic zero. If L is a subalgebra of the Lie algebra $W_3(\mathbb{K})$, then F = F(L) is the field on constants of L in $R = \mathbb{K}(x_1, x_2, x_3)$ (we consider any derivation $D \in W_3(\mathbb{K})$ as derivation of R in the natural way: $D(f / g) = (D(f)g - fD(g)) / g^2$). If V is an n-dimensional vector space over

 \mathbb{K} and $\mathfrak{gl}(V)$ the Lie algebra of all linear operators on V we can consider the semidirect product $\mathfrak{gl}(V) \wedge V$, where V is considered as an abelian Lie algebra. The Lie algebra $\mathfrak{gl}(V) \wedge V$ will be called the general affine Lie algebra and denoted by $aff_n(\mathbb{K})$ (in case $\mathbb{K} = \mathbb{R}$ the Lie algebra $aff_n(\mathbb{R})$ corresponds to the general affine Lie group $GA_n(\mathbb{R})$).

Subalgebras with an abelian ideal of rank 3 over R.

The next two lemmas contain standard facts about derivations (see for example, [8]). More information about derivations of polynomial rings can be found in [9].

Lemma 1. Let $D_1, D_2 \in W_3(\mathbb{K})$ and $a, b \in \mathbb{R}$. Then

$$[aD_1, bD_2] = ab[D_1, D_2] + aD_1(b)D_2 - bD_2(a)D_1.$$

If $[D_1, D_2] = 0$, then $[aD_1, bD_2] = aD_1(b)D_2 - bD_2(a)D_1$.

Lemma 2. If $L \subseteq W_3(\mathbb{K})$ and F = F(L) the field of constants for L in R, then FL is a Lie algebra over F. If L is abelian, nilpotent or solvable then so is FL.

Lemma 3. Let D_1, \ldots, D_n be a basis of the vector space $W_3(\mathbb{K})$ over the field R. Then $\bigcap_{i=1}^n KerD_i = \mathbb{K}$.

Proof. Suppose that $\bigcap_{i=1}^{n} KerD_i \neq \mathbb{K}$ and let $f_1 \in \bigcap_{i=1}^{n} KerD_i$, $f_1 \in R \setminus \mathbb{K}$. Then there exists a transcendence basis $\{f_1, \ldots, f_n\}$ of R over \mathbb{K} and the subfield $\mathbb{K}(f_1, \ldots, f_n)$ is isomorphic to the field $\mathbb{K}(x_1, \ldots, x_n)$. The function f_1 defines the derivation S of the field $\mathbb{K}(f_1, \ldots, f_n)$ and this derivation can be uniquely extended to the derivation S of $\mathbb{K}(x_1, \ldots, x_n)$ (we keep the same notation for the extended derivation). But $S = \sum_{i=1}^{n} s_i D_i$ for some $s_i \in R$ and therefore $S(f_1) = \sum_{i=1}^{n} s_i D_i(f_1) = 0$ by the choice of the element f_1 . This is impossible because $S(f_1) = 1$. The obtained contradiction shows that $\bigcap_{i=1}^{n} KerD_i = \mathbb{K}$.

Corollary 1. If L is an abelian subalgebra of $W_3(\mathbb{K})$ and $rk_R L = n$, then $\dim_{\mathbb{K}} L = n$.

Proof. Let D_1, \ldots, D_n be a basis of L over R. Then any element $D \in L$ is of the form $D = \sum_{i=1}^n s_i D_i$ for some $s_i \in R$. Since $[D_i, D] = 0 = \sum_{j=1}^n D_i(s_j)D_j$ we have that $D_i(s_j) = 0$, $i, j = 1, \ldots, n$. By Lemma 3, $s_i \in \mathbb{K}$ and D_1, \ldots, D_n is a basis of L over \mathbb{K} . Thus $\dim_{\mathbb{K}} L = n$.

Theorem 1. Let L be a solvable subalgebra of the Lie algebra $W_3(\mathbb{K})$. If L has an abelian ideal I of rank 3 over R, then L is isomorphic to a solvable subalgebra of the general affine Lie algebra $aff_3(\mathbb{K})$. In particular $3 \leq \dim_{\mathbb{K}} L \leq 9$.

Proof. Take any basis D_1, D_2, D_3 of the ideal I over the field R. Then any element $D \in L$ can be written in the form

 $D = s_1 D_1 + s_2 D_2 + s_3 D_3, \quad s_i \in R.$

Since $[D_i, D] = D_i(s_1)D_1 + D_i(s_2)D_2 + D_i(s_3)D_3 \in I$ we have by Lemma 4 that $D_i(s_j) \in \mathbb{K}, i, j = 1, 2, 3$. So we can correspond to any element $D \in L$ the matrix

$$B_D = \begin{pmatrix} D_1(s_1) & D_1(s_2) & D_1(s_3) \\ D_2(s_1) & D_2(s_2) & D_2(s_3) \\ D_3(s_1) & D_3(s_2) & D_3(s_3) \end{pmatrix} \in M_3(\mathbb{K}).$$
(1)

Denote by S the set of all columns of such matrices B_D , where D runs over the subalgebra L. Since $S \subseteq \mathbb{K}^3$, the three-dimension vector space over \mathbb{K} , we have $d = rk_{\mathbb{K}}S \leq 3$. If d = 0, then all columns for all $D \in L$ are zero and therefore $s_i \in \mathbb{K}$, i = 1, 2, 3 by Lemma 3. This means L = I. So we can assume that $d \geq 1$.

<u>Case 1.</u> d = 1. Then there exists an element $D \in L \setminus I$ which can be written in the form $D = s_1D_1 + s_2D_2 + s_3D_3$ such that all columns of S are proportional to the column $(D_1(s_1), D_2(s_1), D_3(s_1))^T$ (here \cdot^T denotes the transpose of the row) of the corresponding matrix B_D . Take any element $(D_1(t), D_2(t), D_3(t))^T \in S$. Then there exists $\gamma \in \mathbb{K}$ such that

$$(D_1(t), D_2(t), D_3(t))^T = \gamma (D_1(s_1), D_2(s_1), D_3(s_1))^T.$$

It follows from the last equality that

 $D_1(t - \gamma s_1) = D_2(t - \gamma s_1) = D_3(t - \gamma s_1) = 0.$

By Lemma 3 we obtain $t - \gamma s_1 = \delta$ for some $\delta \in \mathbb{K}$, i.e. $t = \gamma s_1 + \delta$. The latter means that for any element $D \in L$, $D = t_1 D_1 + t_2 D_2 + t_3 D_3$, $t_i \in R$, the corresponding matrix B_D has the columns $(D_1(t_i), D_2(t_i), D_3(t_i))^T$, i = 1, 2, 3, with $t_i = f_i(s)$, deg $f_i \leq 1$, $f_i \in \mathbb{K}[t]$. Since $(D_1(s_1), D_2(s_1), D_3(s_1))^T$ is nonzero we can assume without loss of generality that $D_1(s_1) = 1$, $D_2(s_1) = \gamma_2$, $D_3(s_1) = \gamma_3$ for some $\gamma_2, \gamma_3 \in \mathbb{K}$. Put

$$D_{1'} = D_1, \quad D_{2'} = D_2 - \gamma_2 D_1, \quad D_{3'} = D_3 - \gamma_3 D_1$$

Then $D_{1'}(s_1) = 1$, $D_{2'}(s_1) = 0$, $D_{3'}(s_1) = 0$ and $D_{1'}, D_{2'}, D_{3'}$ form a basis of I over R. Let $D = t_1D_1 + t_2D_2 + t_3D_3$ be an arbitrary element in L and $t_i = \gamma_i s_i + \delta_i$, i = 1, 2, 3. Then the map $\varphi: L \to aff_3(\mathbb{K})$ which is defined by the rule: $\varphi(D_i) = x_i$, $\varphi(s_1D_i) = x_1x_i$ and further by linearity, is an embedding of L into the Lie algebra $aff_3(\mathbb{K})$.

<u>Case 2.</u> $d = rk_{\mathbb{K}}S = 2$. Then there exist linearly independent columns on the set S of the form

$$\left(D_{1}(s_{1}), D_{2}(s_{1}), D_{3}(s_{1})\right)^{T}, \left(D_{1}(s_{2}), D_{2}(s_{2}), D_{3}(s_{2})\right)^{T}$$

$$(2)$$

(these columns can belong to different matrices B_D , $D \in L$). Therefore any column $(D_1(t), D_2(t), D_3(t))^T \in S$ is a linear combination of columns in (2). One can easily show that $t = f(s_1, s_2)$ for some polynomial $f \in \mathbb{K}[u, v]$, deg $f \leq 1$. Note that the rank of the matrix

$$\begin{pmatrix} D_1(s_1) & D_1(s_2) \\ D_2(s_1) & D_2(s_2) \\ D_3(s_1) & D_3(s_2) \end{pmatrix}$$
(3)

is equal to 2. Without loss of generality one can assume that the first and second rows of this matrix are linearly independent. But then there exist $\gamma_1, \gamma_2 \in \mathbb{K}$ such that

$$(1,0) = \gamma_1 \left(D_1(s_1), D_1(s_2) \right) + \gamma_2 \left(D_2(s_1), D_2(s_2) \right). \tag{4}$$

Denoting $D_{1'} = \gamma_1 D_1 + \gamma_2 D_2$ we have $D_{1'}(s_1) = 1$, $D_{1'}(s_2) = 0$. Analogously one can find $\delta_1, \delta_2 \in \mathbb{K}$ such that the element $D_{2'} = \delta_1 D_1 + \delta_2 D_2$ has properties $D_{2'}(s_1) = 0$, $D_{2'}(s_2) = 1$.

Further, the third row of the matrix (3) is a linear combination of the first and second rows and therefore $(D_3 - \mu_1 D_1 - \mu_2 D_2)(s_i) = 0, i = 1, 2$. Denoting $D_{3'} = D_3 - \mu_1 D_1 - \mu_2 D_2$ we obtain $D_{i'}(s_j) = \delta_{ij}, i = 1, 2, 3, j = 1, 2$. If $D \in L$ is an arbitrary element, then $D = t_1 D_1 + t_2 D_2 + t_3 D_3$ for some $t_1, t_2, t_3 \in \mathbb{R}$. Since $t_i = f_i(s_1, s_2)$, deg $f_i \leq 1$ we see that L can be embedded in the Lie algebra $aff_3(\mathbb{K})$.

<u>Case 3</u>. $rk_{\mathbb{K}}S = 3$ can be considered analogously.

Subalgebras with abelian ideals of $rk \leq 2$ over R.

Lemma 4. Let L be a subalgebra of the Lie algebra $W_n(\mathbb{K})$ and I be an ideal of L. If F = F(I) is the field of constants for I in R, then $D(F) \subseteq F$ for any element $D \in L$.

Proof. Let $D \in L$ and $r \in F$ be arbitrarily chosen. Then for any $D_1 \in I$ we have $D_1(r) = 0$ and therefore

$$0 = D(D_1(r)) = D_1(D(r)) + [D, D_1](r)$$

Since $[D, D_1] \in I$ we have $[D, D_1](r) = 0$ and consequently $D_1(D(r)) = 0$. The latter means that $D(r) \in F$ because the element D_1 was arbitrarily chosen in the ideal I. Thus $D(F) \subseteq F$.

Theorem 2. Let L be a solvable finite dimensional subalgebra of the Lie algebra $W_3(\mathbb{K})$ with $\mathrm{rk}_R L = 3$. If L has an ideal I of rank 2 over R and F = F(L) is the field of constants of I in R, then the Lie algebra L is contained in the subalgebra $\overline{L} = F\overline{I} + L$ of $W_3(\mathbb{K})$ where $\overline{I} = (RI) \cap L$. The Lie algebra \overline{L} is solvable, $F\overline{I}$ is its ideal of rank 2 over R which is isomorphic to a subalgebra of $\mathrm{aff}_2(F)$. The Lie algebra \overline{L} is an extension of the ideal $F\overline{I}$ by a Lie algebra of dimension 1 or 2 over \mathbb{K} .

Proof. The intersection $\overline{I} = (RI) \cap L$ is an ideal of the Lie algebra L with $rk_R\overline{L} = 2$ and $\dim_{\mathbb{K}}L/\overline{I} \leq 2$ (see [8]). Let F be the field of constants for I in R. Since $D(F) \subseteq F$ for any $D \in L$ (by Lemma 4), the subalgebra $F\overline{I}$ of the algebra $W_3(\mathbb{K})$ is an ideal of the Lie algebra $F\overline{I} + L$. One can easily show that $rk_{\mathbb{R}}\overline{I} = 2$. By Theorem 1 of the paper [6], the Lie algebra $F\overline{I}$ (as a Lie algebra over the field F) is isomorphic to a subalgebra of the Lie algebra $aff_2(F)$. Since $\dim_{\mathbb{K}}L/\overline{I} \leq 2$, it holds obviously $\dim_{\mathbb{K}}L + F\overline{I} / F\overline{I} \leq 2$. Note that the Lie algebra $L + F\overline{I}$ is in general case of infinite dimension over \mathbb{K} although $\dim_F F\overline{I} \leq 7$ (the sum $F\overline{I} + L$ is not in general a Lie algebra over F but only over the field \mathbb{K}). The proof is complete.

Further notations are taken from Theorem 2. Let $I_1 = \mathbb{K}D_1$ be a onedimensional ideal of L lying in I and $\mathbb{K}D_2 + I_1$ be an ideal of the quotient algebra L / I_1 lying in I / I_1 (such ideals do exist because L is solvable and \mathbb{K} is algebraically closed). Let $\mathbb{K}D_3 + \overline{I}$ be one-dimensional ideal of the Lie algebra L / \overline{I} . Then D_1, D_2, D_3 are linearly independent over R and form a basis of RL over R. By the choice of D_1 and D_2 there exist $\lambda_1, \lambda_2 \in K$ and $g_2 \in F$ such that

$$D_3, D_1] = \lambda_1 D_1, \quad [D_3, D_2] = \lambda_2 D_2 + g_2 D_1$$

ſ.

The next statement gives more detailed description of the Lie algebra $\overline{L} = F\overline{I} + L$.

Proposition 1. Let $L \subseteq W_3(\mathbb{K})$ be a solvable finite dimensional subalgebra of rank 3 over R with dim L > 6. Under conditions of Theorem 2 either there exist $r_1, r_2 \in R$ with $D_i(r_j) = \delta_{ij}$, i, j = 1, 2, and every element $D \in F\overline{I}$ is of the form $D = f_1(r_1, r_2)D_1 + f_2(r_1, r_2)D_2$, $f_i \in \mathbb{K}[t_1, t_2]$, deg $f_i \leq 1$, or there exists $r_i \in R$, i = 1 or i = 2, with $D_i(r_j) = \delta_{ij}$ and every element $D \in F\overline{I}$ is of the form $D = g_1(r_i)D_1 + g_2(r_i)D_2$, deg $g_j \leq 1$. Then $D_3(r_1) = -\lambda_1r_1 - g_2r_2$, $D_3(r_2) = -\lambda_2r_2$. If dim_K $L / \overline{I} = 2$, then there exists $\overline{D} \in L \setminus (\mathbb{K}D_3 + \overline{I})$ such that $\overline{D} = r_3D_3 + s_2D_2$, $r_3 \in R$, $D_3(r_3) = 1$, $D_1(r_3) = D_2(r_3) = 0$, $D_1(s_2) = 0$, and in this case $\lambda_1 = 0$, $g_2 = 0$, $s_2 = \lambda_2r_2r_3 + f$, $f \in \mathbb{K}$.

Proof. Repeating considerations from the proof of Theorem 1 one can find either elements r_1, r_2 with $D_i(r_j) = \delta_{ij}, i, j = 1, 2$, or an element $r \in R$ such that either $D_1(r) = 1$, $D_2(r) = \gamma$ or $D_1(r) = \delta$, $D_2(r) = 1$ using only transformations of columns of the matrix $B_D = \begin{pmatrix} D_1(s_1) & D_1(s_2) \\ D_2(s_1) & D_2(s_2) \end{pmatrix}$. If $\delta \neq 0$ we can consider elements $D_{2'} = D_2 - \delta D_1$, $D_{1'} = D_1$ and in this case $D_{1'}(r) = 0$, $D_{2'}(r) = 1$. So we can assume that either $D_1(r) = 1$, $D_2(r) = 0$ or $D_1(r) = 0$, $D_2(r) = 1$ and r is either r_1 or r_2 .

Let us consider the action of elements D_i on r_i , s_j , i, j = 1, 2, 3.

Since $D_1(r_1) = 1$ we have $D_3(D_1(r_1)) = 0$ and therefore

 $D_1(D_3(r_1)) = D_3(D_1(r_1)) - [D_3, D_1](r_1) = 0 - \lambda_1 D_1(r_1) = -\lambda_1.$

It follows from the equalities $D_1(D_3(r_1)) = -\lambda_1$ and $D_1(-\lambda_1r_1) = -\lambda_1$ that $D_1(D_3(r_1) + \lambda_1r_1) = 0$, i.e. $D_3(r_1) = -\lambda_1r_1 + s'$ for some $s' \in KerD_1$. Analogously the equality

 $D_2(d_3(r_1)) = D_3(D_2(r_1)) - [D_3, D_2](r_1)$

implies $D_3(r_1) = -g_2r_2 + s''$ for some $s'' \in KerD_2$. Applying D_1 to both sides of the obtained equality $-\lambda_1r_1 + s' = -g_2r_2 + s''$ we get $-\lambda_1 = D_1(s'')$. After applying D_2 to the same equality we get $D_2(s') = -g_2$. But then $s'' + \lambda_1r_1 \in KerD_1$. Since $s'' + \lambda_1r_1 \in KerD_2$ we have $s'' + \lambda_1r_1 \in KerD_1 \cap KerD_2 = F$. Thus $s'' = -\lambda_1r_1 + v_1$ for some $v_1 \in F$. It follows from the equality $-\lambda_1r_1 + s' = -g_2 - \lambda_1r_1 + v_1$ that $s' = -g_2r_2 + v_1$. Finally we get

$$D_3(r_1) = -\lambda_1 r_1 - g_2 r_2 + v_1, \, v_1 \in F$$

Analogously it follows from the equalities

 $D_2(D_3(r_2)) = D_3(D_2(r_2)) - [D_3, D_2](r_2) = 0 - (\lambda_2 D_2 + g_2 D_1)(r_2) = -\lambda_2$ that $D_3(r_2) = -\lambda_2 r_2 + t'$ for some $t' \in KerD_2$ and finally

$$D_3(r_2) = -\lambda_2 r_2 + v_2, v_2 \in F.$$

Without loss of generality we can change D_3 by $D_{3'} = D_3 - v_1D_1 - v_2D_2$. Then $D_{3'}(r_1) = -\lambda_1r_1 - g_2r_2$, $D_{3'}(r_2) = -\lambda_2r_2$. Returning to the old notation we have $D_3(r_1) = -\lambda_1r_1 - g_2r_2$, $D_3(r_2) = -\lambda_2r_2$.

Let now $\dim_{\mathbb{K}} L / \overline{I} = 2$ and $\overline{D} = r_3D_3 + s_1D_1 + s_2D_2$ be any element of $L \setminus (\mathbb{K}D_3 + I)$. Then

$$\begin{split} [D,D_3] &= [r_3D_3 + s_1D_1 + s_2D_2, D_3] = \\ &= -D_3(r_3)D_3 - D_3(s_1)D_1 - s_1[D_1, D_3] - D_3(s_2)D_2 - s_2[D_2, D_3] = \\ &= -D_3(r_3)D_3 + (-D_3(s_1) + \lambda_1s_1 + s_2g_2)D_1 + (-D_3(s_2) + \lambda_2s_2)D_2 \,. \end{split}$$

It follows from these equalities that $D_3(r_3) = -\gamma$, where γ is taken from the equality $[\overline{D}, D_3] = \gamma D_3 + D$, where $D \in \overline{I}$. Analogously the equality

 $[r_3D_3 + s_1D_1 + s_2D_2, D_1] = \mu D_1$

for some $\mu \in \mathbb{K}$ implies $D_1(r_3) = 0, D_1(s_2) = 0$. The equality

$$[r_3D_3 + s_1D_1 + s_2D_2, D_2] = f_1D_1 + f_2D_2$$

for some $f_1, f_2 \in F$ yields $D_3(r_3) = 0$. Summarizing we get

$$D_1(r_3) = D_2(r_3) = 0, \quad D_3(r_3) = 1, \quad D_1(s_2) = 0.$$
 (5)

Since $[\overline{D}, D_1] = \theta D_1$ for some $\theta \in \mathbb{K}$ we have

$$\begin{split} & [r_3D_3+s_1D_1+s_2D_2,D_3]=(\lambda_1r_3-D_1(s_1))D_1\\ \text{and therefore } \lambda_1r_3-D_1(s_1)=\theta. \text{ Thus } D_1(s_1)=\lambda_1r_3+\theta, \quad \theta\in\mathbb{K}. \text{ Further }\\ & [\overline{D},D_2]=f_1D_1+f_2D_2 \text{ for some } f_1,f_2\in F. \text{ Analogously } [r_3D_3+s_1D_1+s_2D_2,D_2]=\\ & =(r_3g_2-D_2(s_1))D_1+(\lambda_2r_2-D_2(s_2))D_2 \text{ and therefore} \end{split}$$

$$D_2(s_1) = g_2 r_3 - f_2, \quad D_2(s_2) = \lambda_2 r_3 - f_2.$$
 (6)

But we have

 $s_1 = g_2 r_2 r_3 - r_2 f_2 + f_3, \quad s_2 = \lambda_2 r_2 r_3 - r_2 f_2 + f_4$

for some $f_3, f_4 \in F$. It was proved early that $D_1(s_1) = \lambda_1 r_3 + \theta$, $\theta \in \mathbb{K}$, so we have $s_1 = \lambda_1 r_1 r_3 + \theta r_1 + f_5$ for some $f_5 \in F$. Applying D_2 to the both sides of the equality

 $\lambda_1 r_1 r_3 + \theta r_1 + f_5 = g_2 r_2 r_3 - r_2 f_2 + f_3 \tag{7}$

we get $g_2r_3 - f_2 = 0$. But r_1, r_2, r_3 are linearly independent over F, so the last equality yields $g_2 = 0$. The equality (7) is now of the form

 $\lambda_1 r_1 r_3 + \theta r_1 + f_5 = -r_2 f_2 + f_3.$

Applying D_2 to the both sides of this equality we get $f_2 = 0$. Therefore $\lambda_1 r_1 r_3 + \theta r_1 + f_5 = f_3$. Applying D_1 to the both sides of the last equality we get $\lambda_1 r_3 + \theta = 0$. Since $r_3 \not\in \mathbb{K}$ we have $\lambda_1 = 0$ and therefore $s_1 = 0$. Analogously we can assume that $f_4 = 0$ and $s_2 = \lambda_2 r_2 r_3$. So we have

 $s_1=0,\quad s_2=\lambda_2r_2r_3,\quad g_2=0,\quad f_2=0,\quad \lambda_1=0\,.$ These equalities means that

$$[D_3, D_1] = 0, \quad [D_3, D_2] = \lambda_2 D_2, \quad D = r_3 D_3 + s_2 D_2,$$

where $s_2 = \lambda_2 r_2 r_3$, $D_i(r_j) = \delta_{ij}$, i, j = 1, 2, 3. The proof is complete.

- Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario I // Giornale Mat. Battaglini Prog. Studi Univ. Ital. – 1901. – 39. – P. 273–316.
- Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario II // Giornale Mat. Battaglini Prog. Studi Univ. Ital. – 1902. – 40. – P. 105–141.
- 3. Bondarenko V. M., Petravchuk. A. P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables // arXiv: 18.03.09772v1 [math. RA].
- Gonzalez-Lopez A., Kamran N. and Olver P. J. Lie algebras of differential operators in two complex variables // Amer. J. Math. 1992. 114. P. 1163-1185.
- Gonzalez-Lopez A., Kamran N. and Olver P. J. Lie algebras of vector fields in the real plane // Proc. London Math. Soc. - 1992. - 64(3). - № 2. - P. 339-368.
- Klimenko I., Lysenko S., Petravchuk A. Lie algebras of derivations with abelian ideals of maximal rank // Scientific Bulletin of Uzhhorod University, Ser. Mathematics and Informatics. - 2017. - 31. - P. 75-81 (in Ukrainian).
- 7. Lie S. Theorie der Transformationsgruppen. Leipzig, 1888, 1890, 1893. Vol. 1–3.
- Makedonskyi Ie. O. and Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations // J. of Algebra. - 2014. - 401. - P. 245-257.
- 9. Nowicki A. Polynomial Derivations and their Rings of Constants. Torun: Uniwersytet Mikolaja Kopernika, 1994. - 176 p.
- Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction fields // Algebra and Discrete Math. - 2016. - 22. - P. 118-131.

РОЗВ'ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ КІЛЕЦЬ МНОГОЧЛЕНІВ ВІД ТРЬОХ ЗМІННИХ

Нехай К – алгебраїчно замкнене поле характеристики нуль, $A = \mathbb{K}[x_1, x_2, x_3]$ – кільце многочленів від трьох змінних і $R = \mathbb{K}(x_1, x_2, x_3)$ – поле раціональних функцій. Якщо L – підалгебра алгебри Лі $W_3(\mathbb{K})$ всіх К -диференціювань кільця A, то RL є алгеброю Лі над К і dim_RRL називається рангом алгебри L над R. Вивчаються підалгебри L рангу 3 над R алгебри Лі $W_3(\mathbb{K})$. Доведено, що якщо L містить абелевий ідеал I рангу 3 над R, то L ізоморфна підалгебрі загальної афінної алгебри Лі aff₃(\mathbb{K}). Якщо L має ідеал I з $rk_RI = 2$, то L міститься в підалгебрі \overline{L} алгебри $\tilde{W}_3(\mathbb{K}) = Der_{\mathbb{K}}R$, де \overline{L} – розширення деякої підалгебри з аff₂(F) за допомогою підалгебри розмірності ≤ 2, F – поле констант для I в R.

РАЗРЕШИМЫЕ АЛГЕБРЫ ЛИ ДИФФЕРЕНЦИРОВАНИЙ КОЛЕЦ МНОГОЧЛЕНОВ ОТ ТРЕХ ПЕРЕМЕННЫХ

Пусть \mathbb{K} – алгебраически замкнутое поле характеристики нуль, $A = \mathbb{K}[x_1, x_2, x_3]$ – кольцо многочленов от трех переменных и $R = \mathbb{K}(x_1, x_2, x_3)$ – поле рациональных функций. Если L-подалгебра алгебры Ли $W_3(\mathbb{K})$ всех \mathbb{K} дифференцирований кольца A, то RL является алгеброй Ли над \mathbb{K} и dim_RRL называется рангом алгебры L над R. Исследуются подалгебры L ранга 3 над R алгебры Ли $W_3(\mathbb{K})$. Доказано, что если L содержит абелев идеал I ранга 3 над R, то L изоморфна подалгебре общей афинной алгебры Ли $aff_3(\mathbb{K})$. Если L содержит идеал I с $rk_R I = 2$, то L содержится в подалгебре \overline{L} алгебры $\tilde{W}_3(\mathbb{K}) = Der_{\mathbb{K}}R$, где \overline{L} – расширение некоторой подалгебры из $aff_2(F)$ с помощью подалгебры размерности ≤ 2 , а F – поле констант для I в R.

Київ. нац. ун-т ім. Тараса Шевченка, Київ Одержано 11.10.18