Ie. Yu. Chapovskyi, D. I. Efimov, A. P. Petravchuk

SOLVABLE LIE ALGEBRAS OF DERIVATIONS OF POLYNOMIAL RINGS IN THREE VARIABLES

Let \mathbb{K} be an algebraically closed field of characteristic zero, $A=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$ be the polynomial ring in three variables and $R=\mathbb{K}\left(x_{1}, x_{2}, x_{3}\right)$ be the field of rational functions. If L is a subalgebra of the Lie algebra $W_{3}(\mathbb{K})$ of all \mathbb{K}-derivations of A, then $R L$ is a Lie algebra over \mathbb{K} and $\operatorname{dim}_{R} R L$ will be called the rank of L over R. We study solvable subalgebras L of $W_{3}(\mathbb{K})$ of rank 3 over R. It is proved that L is isomorphic to a subalgebra of the general affine Lie algebra $a f f_{3}(\mathbb{K})$ if L contains an abelian ideal I of rank 3 over R. If L has an ideal I with $r k_{R} I=2$, then L is contained in a subalgebra \bar{L} of $\tilde{W}_{3}(\mathbb{K})=\operatorname{Der_{\mathbb {K}}R}$ such that \bar{L} is an extension of a subalgebra of $a f f_{2}(F)$ by a subalgebra of dimension ≤ 2, where F is the field of constants of I in R.

Introduction. Let \mathbb{K} be an algebraically closed field of characteristic zero, $A=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$ the polynomial ring in three variables and $R=\mathbb{K}\left(x_{1}, x_{2}, x_{3}\right)$ the field of rational functions. Recall that a \mathbb{K}-linear operator $D: A \rightarrow A$ is called a \mathbb{K}-derivation on A if D satisfies the Leibniz's rule: $D(f g)=D(f) g+f D(g)$ for all $f, g \in A$. The Lie algebra $W_{3}(\mathbb{K})$ of all \mathbb{K}-derivations on A is a very interesting mathematical object closely connected with groups of symmetries of partial differential equations. In case \mathbb{K} is the field of real or comlpex numbers, all finite dimensional subalgebras of $W_{1}(\mathbb{K})$ and $W_{2}(\mathbb{K})$ were described in works of S. Lie, P. Olver, N. Kamran. The natural problem of classification of all finite dimensional subalgebras of $W_{3}(\mathbb{K})$ remains still open. S. Lie [7] began to study such subalgebras, but his classification even of nilpotent subalgebras is incomplete. U. Amaldi [1, 2] continued study of subalgebras of $W_{3}(\mathbb{K})$ but his classification is unsatisfactory. Note that the problem of classifying even nilpotent finite-dimensional subalgebras of $W_{4}(\mathbb{K})$ is wild (i.e. it contains a hopeless problem of classifying pairs of square matrices up to simultaneous similarity [3]).

We study finite dimensional solvable subalgebras of rank 3 over R of the Lie algebra $W_{3}(\mathbb{K})$ (nilpotent subalgebras of $W_{3}(\mathbb{K})$ were studied in [10]). The main results of the paper: it is proved in Theorem 1 that a solvable finite dimensional subalgebra L of $W_{3}(\mathbb{K})$ possessing an abelian ideal of rank 3 over R is isomorphic to a subalgebra of the general affine Lie algebra $a f f_{3}(\mathbb{K})$. If L has an abelian ideal I of rank 2 over R, then L can be embedded in a subalgebra \bar{L} of $W_{3}(\mathbb{K})=\operatorname{Der}_{\mathbb{K}} R$ such that \bar{L} is an extension of a subalgebra of $a f f_{2}(F)$ by a subalgebra of dimension ≤ 2, where F is the field of constants for the ideal I in the field R.

Notations in the paper are standard. The ground field \mathbb{K} is algebraically closed of characteristic zero. If L is a subalgebra of the Lie algebra $W_{3}(\mathbb{K})$, then $F=F(L)$ is the field on constants of L in $R=\mathbb{K}\left(x_{1}, x_{2}, x_{3}\right)$ (we consider any derivation $D \in W_{3}(\mathbb{K})$ as derivation of R in the natural way: $\left.D(f / g)=(D(f) g-f D(g)) / g^{2}\right)$. If V is an n-dimensional vector space over

ISSN 1810-3022. Прикл. проблеми мех. і мат. - 2018. - Вип. 16. - С. 7-13.
\mathbb{K} and $\mathfrak{g l}(V)$ the Lie algebra of all linear operators on V we can consider the semidirect product $\mathfrak{g l}(V)<V$, where V is considered as an abelian Lie algebra. The Lie algebra $\mathfrak{g l}(V) \wedge V$ will be called the general affine Lie algebra and denoted by $\operatorname{aff}_{n}(\mathbb{K})$ (in case $\mathbb{K}=\mathbb{R}$ the Lie algebra $a f f_{n}(\mathbb{R})$ corresponds to the general affine Lie group $G A_{n}(\mathbb{R})$).

Subalgebras with an abelian ideal of rank 3 over R.
The next two lemmas contain standard facts about derivations (see for example, [8]). More information about derivations of polynomial rings can be found in [9].

Lemma 1. Let $D_{1}, D_{2} \in W_{3}(\mathbb{K})$ and $a, b \in R$. Then

$$
\left[a D_{1}, b D_{2}\right]=a b\left[D_{1}, D_{2}\right]+a D_{1}(b) D_{2}-b D_{2}(a) D_{1}
$$

If $\left[D_{1}, D_{2}\right]=0$, then $\left[a D_{1}, b D_{2}\right]=a D_{1}(b) D_{2}-b D_{2}(a) D_{1}$.
Lemma 2. If $L \subseteq W_{3}(\mathbb{K})$ and $F=F(L)$ the field of constants for L in R, then $F L$ is a Lie algebra over F. If L is abelian, nilpotent or solvable then so is $F L$.

Lemma 3. Let D_{1}, \ldots, D_{n} be a basis of the vector space $W_{3}(\mathbb{K})$ over the field R. Then $\bigcap_{i=1}^{n} \operatorname{KerD} D_{i}=\mathbb{K}$.

Proof. Suppose that $\bigcap_{i=1}^{n} \operatorname{Ker} D_{i} \neq \mathbb{K}$ and let $f_{1} \in \bigcap_{i=1}^{n} \operatorname{Ker} D_{i}, f_{1} \in R \backslash \mathbb{K}$. Then there exists a transcendence basis $\left\{f_{1}, \ldots, f_{n}\right\}$ of R over \mathbb{K} and the subfield $\mathbb{K}\left(f_{1}, \ldots, f_{n}\right)$ is isomorphic to the field $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$. The function f_{1} defines the derivation S of the field $\mathbb{K}\left(f_{1}, \ldots, f_{n}\right)$ and this derivation can be uniquely extended to the derivation S of $\mathbb{K}\left(x_{1}, \ldots, x_{n}\right)$ (we keep the same notation for the extended derivation). But $S=\sum_{i=1}^{n} s_{i} D_{i}$ for some $s_{i} \in R$ and therefore $S\left(f_{1}\right)=\sum_{i=1}^{n} s_{i} D_{i}\left(f_{1}\right)=0$ by the choice of the element f_{1}. This is impossible because $S\left(f_{1}\right)=1$. The obtained contradiction shows that $\bigcap_{i=1}^{n} \operatorname{KerD} D_{i}=\mathbb{K}$.

Corollary 1. If L is an abelian subalgebra of $W_{3}(\mathbb{K})$ and $r k_{R} L=n$, then $\operatorname{dim}_{\mathbb{K}} L=n$.

Proof. Let D_{1}, \ldots, D_{n} be a basis of L over R. Then any element $D \in L$ is of the form $D=\sum_{i=1}^{n} s_{i} D_{i}$ for some $s_{i} \in R$. Since $\left[D_{i}, D\right]=0=\sum_{j=1}^{n} D_{i}\left(s_{j}\right) D_{j}$ we have that $D_{i}\left(s_{j}\right)=0, i, j=1, \ldots, n$. By Lemma $3, s_{i} \in \mathbb{K}$ and D_{1}, \ldots, D_{n} is a basis of L over \mathbb{K}. Thus $\operatorname{dim}_{\mathbb{K}} L=n$.

Theorem 1. Let L be a solvable subalgebra of the Lie algebra $W_{3}(\mathbb{K})$. If L has an abelian ideal I of rank 3 over R, then L is isomorphic to a solvable subalgebra of the general affine Lie algebra aff (\mathbb{K}). In particular $3 \leq \operatorname{dim}_{\mathbb{K}} L \leq 9$.

Proof. Take any basis D_{1}, D_{2}, D_{3} of the ideal I over the field R. Then any element $D \in L$ can be written in the form

$$
D=s_{1} D_{1}+s_{2} D_{2}+s_{3} D_{3}, \quad s_{i} \in R .
$$

Since $\left[D_{i}, D\right]=D_{i}\left(s_{1}\right) D_{1}+D_{i}\left(s_{2}\right) D_{2}+D_{i}\left(s_{3}\right) D_{3} \in I$ we have by Lemma 4 that $D_{i}\left(s_{j}\right) \in \mathbb{K}, i, j=1,2,3$. So we can correspond to any element $D \in L$ the matrix

$$
B_{D}=\left(\begin{array}{lll}
D_{1}\left(s_{1}\right) & D_{1}\left(s_{2}\right) & D_{1}\left(s_{3}\right) \tag{1}\\
D_{2}\left(s_{1}\right) & D_{2}\left(s_{2}\right) & D_{2}\left(s_{3}\right) \\
D_{3}\left(s_{1}\right) & D_{3}\left(s_{2}\right) & D_{3}\left(s_{3}\right)
\end{array}\right) \in M_{3}(\mathbb{K}) .
$$

Denote by S the set of all columns of such matrices B_{D}, where D runs over the subalgebra L. Since $S \subseteq \mathbb{K}^{3}$, the three-dimension vector space over \mathbb{K}, we have $d=r k_{\mathbb{K}} S \leq 3$. If $d=0$, then all columns for all $D \in L$ are zero and therefore $s_{i} \in \mathbb{K}, i=1,2,3$ by Lemma 3 . This means $L=I$. So we can assume that $d \geq 1$.

Case 1. $d=1$. Then there exists an element $D \in L \backslash I$ which can be written in the form $D=s_{1} D_{1}+s_{2} D_{2}+s_{3} D_{3}$ such that all columns of S are proportional to the column $\left(D_{1}\left(s_{1}\right), D_{2}\left(s_{1}\right), D_{3}\left(s_{1}\right)\right)^{T}$ (here \cdot^{T} denotes the transpose of the row) of the corresponding matrix B_{D}. Take any element $\left(D_{1}(t), D_{2}(t), D_{3}(t)\right)^{T} \in S$. Then there exists $\gamma \in \mathbb{K}$ such that

$$
\left(D_{1}(t), D_{2}(t), D_{3}(t)\right)^{T}=\gamma\left(D_{1}\left(s_{1}\right), D_{2}\left(s_{1}\right), D_{3}\left(s_{1}\right)\right)^{T}
$$

It follows from the last equality that

$$
D_{1}\left(t-\gamma s_{1}\right)=D_{2}\left(t-\gamma s_{1}\right)=D_{3}\left(t-\gamma s_{1}\right)=0 .
$$

By Lemma 3 we obtain $t-\gamma s_{1}=\delta$ for some $\delta \in \mathbb{K}$, i.e. $t=\gamma s_{1}+\delta$. The latter means that for any element $D \in L, D=t_{1} D_{1}+t_{2} D_{2}+t_{3} D_{3}, t_{i} \in R$, the corresponding matrix B_{D} has the columns $\left(D_{1}\left(t_{i}\right), D_{2}\left(t_{i}\right), D_{3}\left(t_{i}\right)\right)^{T}, i=1,2,3$, with $t_{i}=f_{i}(s)$, $\operatorname{deg} f_{i} \leq 1, f_{i} \in \mathbb{K}[t]$. Since $\left(D_{1}\left(s_{1}\right), D_{2}\left(s_{1}\right), D_{3}\left(s_{1}\right)\right)^{T}$ is nonzero we can assume without loss of generality that $D_{1}\left(s_{1}\right)=1, D_{2}\left(s_{1}\right)=\gamma_{2}, D_{3}\left(s_{1}\right)=\gamma_{3}$ for some $\gamma_{2}, \gamma_{3} \in \mathbb{K}$. Put

$$
D_{1^{\prime}}=D_{1}, \quad D_{2^{\prime}}=D_{2}-\gamma_{2} D_{1}, \quad D_{3^{\prime}}=D_{3}-\gamma_{3} D_{1}
$$

Then $D_{1^{\prime}}\left(s_{1}\right)=1, D_{2^{\prime}}\left(s_{1}\right)=0, D_{3^{\prime}}\left(s_{1}\right)=0$ and $D_{1^{\prime}}, D_{2^{\prime}}, D_{3^{\prime}}$ form a basis of I over R. Let $D=t_{1} D_{1}+t_{2} D_{2}+t_{3} D_{3}$ be an arbitrary element in L and $t_{i}=\gamma_{i} s_{i}+\delta_{i}, i=1,2,3$. Then the $\operatorname{map} \varphi: L \rightarrow a f f_{3}(\mathbb{K})$ which is defined by the rule: $\varphi\left(D_{i}\right)=x_{i}, \varphi\left(s_{1} D_{i}\right)=x_{1} x_{i}$ and further by linearity, is an embedding of L into the Lie algebra $a f f_{3}(\mathbb{K})$.

Case 2. $d=r k_{\mathbb{K}} S=2$. Then there exist linearly independent columns on the set S of the form

$$
\begin{equation*}
\left(D_{1}\left(s_{1}\right), D_{2}\left(s_{1}\right), D_{3}\left(s_{1}\right)\right)^{T},\left(D_{1}\left(s_{2}\right), D_{2}\left(s_{2}\right), D_{3}\left(s_{2}\right)\right)^{T} \tag{2}
\end{equation*}
$$

(these columns can belong to different matrices $B_{D}, D \in L$). Therefore any column $\left(D_{1}(t), D_{2}(t), D_{3}(t)\right)^{T} \in S$ is a linear combination of columns in (2). One can easily show that $t=f\left(s_{1}, s_{2}\right)$ for some polynomial $f \in \mathbb{K}[u, v], \operatorname{deg} f \leq 1$. Note that the rank of the matrix

$$
\left(\begin{array}{ll}
D_{1}\left(s_{1}\right) & D_{1}\left(s_{2}\right) \tag{3}\\
D_{2}\left(s_{1}\right) & D_{2}\left(s_{2}\right) \\
D_{3}\left(s_{1}\right) & D_{3}\left(s_{2}\right)
\end{array}\right)
$$

is equal to 2 . Without loss of generality one can assume that the first and second rows of this matrix are linearly independent. But then there exist $\gamma_{1}, \gamma_{2} \in \mathbb{K}$ such that

$$
\begin{equation*}
(1,0)=\gamma_{1}\left(D_{1}\left(s_{1}\right), D_{1}\left(s_{2}\right)\right)+\gamma_{2}\left(D_{2}\left(s_{1}\right), D_{2}\left(s_{2}\right)\right) . \tag{4}
\end{equation*}
$$

Denoting $D_{1^{\prime}}=\gamma_{1} D_{1}+\gamma_{2} D_{2}$ we have $D_{1^{\prime}}\left(s_{1}\right)=1, D_{1^{\prime}}\left(s_{2}\right)=0$. Analogously one can find $\delta_{1}, \delta_{2} \in \mathbb{K}$ such that the element $D_{2^{\prime}}=\delta_{1} D_{1}+\delta_{2} D_{2}$ has properties $D_{2^{\prime}}\left(s_{1}\right)=0, D_{2^{\prime}}\left(s_{2}\right)=1$.

Further, the third row of the matrix (3) is a linear combination of the first and second rows and therefore $\left(D_{3}-\mu_{1} D_{1}-\mu_{2} D_{2}\right)\left(s_{i}\right)=0, i=1,2$. Denoting $D_{3^{\prime}}=D_{3}-\mu_{1} D_{1}-\mu_{2} D_{2}$ we obtain $D_{i^{\prime}}\left(s_{j}\right)=\delta_{i j}, i=1,2,3, j=1,2$. If $D \in L$ is an arbitrary element, then $D=t_{1} D_{1}+t_{2} D_{2}+t_{3} D_{3}$ for some $t_{1}, t_{2}, t_{3} \in R$. Since $t_{i}=f_{i}\left(s_{1}, s_{2}\right)$, $\operatorname{deg} f_{i} \leq 1$ we see that L can be embedded in the Lie algebra $a f f_{3}(\mathbb{K})$.

Case 3. $r k_{\mathbb{K}} S=3$ can be considered analogously.

Subalgebras with abelian ideals of $r k \leq 2$ over R.

Lemma 4. Let L be a subalgebra of the Lie algebra $W_{n}(\mathbb{K})$ and I be an ideal of L. If $F=F(I)$ is the field of constants for I in R, then $D(F) \subseteq F$ for any element $D \in L$.

Proof. Let $D \in L$ and $r \in F$ be arbitrarily chosen. Then for any $D_{1} \in I$ we have $D_{1}(r)=0$ and therefore

$$
0=D\left(D_{1}(r)\right)=D_{1}(D(r))+\left[D, D_{1}\right](r) .
$$

Since $\left[D, D_{1}\right] \in I$ we have $\left[D, D_{1}\right](r)=0$ and consequently $D_{1}(D(r))=0$. The latter means that $D(r) \in F$ because the element D_{1} was arbitrarily chosen in the ideal I. Thus $D(F) \subseteq F$.

Theorem 2. Let L be a solvable finite dimensional subalgebra of the Lie algebra $W_{3}(\mathbb{K})$ with $r k_{R} L=3$. If L has an ideal I of rank 2 over R and $F=F(L)$ is the field of constants of I in R, then the Lie algebra L is contained in the subalgebra $\bar{L}=F \bar{I}+L$ of $W_{3}(\mathbb{K})$ where $\bar{I}=(R I) \cap L$. The Lie algebra \bar{L} is solvable, $F \bar{I}$ is its ideal of rank 2 over R which is isomorphic to a subalgebra of aff $f_{2}(F)$. The Lie algebra \bar{L} is an extension of the ideal $\bar{F} \bar{I}$ by a Lie algebra of dimension 1 or 2 over \mathbb{K}.

Proof. The intersection $\bar{I}=(R I) \cap L$ is an ideal of the Lie algebra L with $r k_{R} \bar{L}=2$ and $\operatorname{dim}_{\mathbb{K}} L / \bar{I} \leq 2$ (see [8]). Let F be the field of constants for I in R. Since $D(F) \subseteq F$ for any $D \in L$ (by Lemma 4), the subalgebra $F \bar{I}$ of the algebra $W_{3}(\mathbb{K})$ is an ideal of the Lie algebra $F \bar{I}+L$. One can easily show that $\mathrm{rk}_{\mathbb{R}} \bar{I}=2$. By Theorem 1 of the paper [6], the Lie algebra $F \bar{I}$ (as a Lie algebra over the field F) is isomorphic to a subalgebra of the Lie algebra $a f f_{2}(F)$. Since $\operatorname{dim}_{\mathbb{K}} L / \bar{I} \leq 2$, it holds obviously $\operatorname{dim}_{\mathbb{K}} L+F \bar{I} / F \bar{I} \leq 2$. Note that the Lie algebra $L+F \bar{I}$ is in general case of infinite dimension over \mathbb{K} although $\operatorname{dim}_{F} F \bar{I} \leq 7$ (the sum $F \bar{I}+L$ is not in general a Lie algebra over F but only over the field \mathbb{K}). The proof is complete.

Further notations are taken from Theorem 2. Let $I_{1}=\mathbb{K} D_{1}$ be a onedimensional ideal of L lying in I and $\mathbb{K} D_{2}+I_{1}$ be an ideal of the quotient
algebra L / I_{1} lying in I / I_{1} (such ideals do exist because L is solvable and \mathbb{K} is algebraically closed). Let $\mathbb{K} D_{3}+\bar{I}$ be one-dimensional ideal of the Lie algebra L / \bar{I}. Then D_{1}, D_{2}, D_{3} are linearly independent over R and form a basis of $R L$ over R. By the choice of D_{1} and D_{2} there exist $\lambda_{1}, \lambda_{2} \in K$ and $g_{2} \in F$ such that

$$
\left[D_{3}, D_{1}\right]=\lambda_{1} D_{1}, \quad\left[D_{3}, D_{2}\right]=\lambda_{2} D_{2}+g_{2} D_{1}
$$

The next statement gives more detailed description of the Lie algebra $\bar{L}=F \bar{I}+L$.

Proposition 1. Let $L \subseteq W_{3}(\mathbb{K})$ be a solvable finite dimensional subalgebra of rank 3 over R with $\operatorname{dim} L>6$. Under conditions of Theorem 2 either there exist $r_{1}, r_{2} \in R$ with $D_{i}\left(r_{j}\right)=\delta_{i j}, i, j=1,2$, and every element $D \in F \bar{I}$ is of the form $D=f_{1}\left(r_{1}, r_{2}\right) D_{1}+f_{2}\left(r_{1}, r_{2}\right) D_{2}, \quad f_{i} \in \mathbb{K}\left[t_{1}, t_{2}\right]$, $\operatorname{deg} f_{i} \leq 1$, or there exists $r_{i} \in R, \quad i=1$ or $i=2$, with $D_{i}\left(r_{j}\right)=\delta_{i j}$ and every element $D \in F \bar{I}$ is of the form $D=g_{1}\left(r_{i}\right) D_{1}+g_{2}\left(r_{i}\right) D_{2}, \quad \operatorname{deg} g_{j} \leq 1$. Then $D_{3}\left(r_{1}\right)=-\lambda_{1} r_{1}-g_{2} r_{2}$, $D_{3}\left(r_{2}\right)=-\lambda_{2} r_{2}$. If $\operatorname{dim}_{\mathbb{K}} L / \bar{I}=2$, then there exists $\bar{D} \in L \backslash\left(\mathbb{K} D_{3}+\bar{I}\right)$ such that $\bar{D}=r_{3} D_{3}+s_{2} D_{2}, \quad r_{3} \in R, \quad D_{3}\left(r_{3}\right)=1, \quad D_{1}\left(r_{3}\right)=D_{2}\left(r_{3}\right)=0, D_{1}\left(s_{2}\right)=0$, and in this case $\lambda_{1}=0, g_{2}=0, s_{2}=\lambda_{2} r_{2} r_{3}+f, f \in \mathbb{K}$.

Proof. Repeating considerations from the proof of Theorem 1 one can find either elements r_{1}, r_{2} with $D_{i}\left(r_{j}\right)=\delta_{i j}, i, j=1,2$, or an element $r \in R$ such that either $D_{1}(r)=1, D_{2}(r)=\gamma$ or $D_{1}(r)=\delta, D_{2}(r)=1$ using only transformations of columns of the matrix $B_{D}=\left(\begin{array}{ll}D_{1}\left(s_{1}\right) & D_{1}\left(s_{2}\right) \\ D_{2}\left(s_{1}\right) & D_{2}\left(s_{2}\right)\end{array}\right)$. If $\delta \neq 0$ we can consider elements $D_{2^{\prime}}=D_{2}-\delta D_{1}, \quad D_{1^{\prime}}=D_{1}$ and in this case $D_{1^{\prime}}(r)=0$, $D_{2^{\prime}}(r)=1$. So we can assume that either $D_{1}(r)=1, D_{2}(r)=0$ or $D_{1}(r)=0$, $D_{2}(r)=1$ and r is either r_{1} or r_{2}.

Let us consider the action of elements D_{i} on $r_{i}, s_{j}, i, j=1,2,3$.
Since $D_{1}\left(r_{1}\right)=1$ we have $D_{3}\left(D_{1}\left(r_{1}\right)\right)=0$ and therefore

$$
D_{1}\left(D_{3}\left(r_{1}\right)\right)=D_{3}\left(D_{1}\left(r_{1}\right)\right)-\left[D_{3}, D_{1}\right]\left(r_{1}\right)=0-\lambda_{1} D_{1}\left(r_{1}\right)=-\lambda_{1} .
$$

It follows from the equalities $D_{1}\left(D_{3}\left(r_{1}\right)\right)=-\lambda_{1}$ and $D_{1}\left(-\lambda_{1} r_{1}\right)=-\lambda_{1}$ that $D_{1}\left(D_{3}\left(r_{1}\right)+\lambda_{1} r_{1}\right)=0$, i.e. $D_{3}\left(r_{1}\right)=-\lambda_{1} r_{1}+s^{\prime}$ for some $s^{\prime} \in \operatorname{Ker} D_{1}$. Analogously the equality

$$
D_{2}\left(d_{3}\left(r_{1}\right)\right)=D_{3}\left(D_{2}\left(r_{1}\right)\right)-\left[D_{3}, D_{2}\right]\left(r_{1}\right)
$$

implies $D_{3}\left(r_{1}\right)=-g_{2} r_{2}+s^{\prime \prime}$ for some $s^{\prime \prime} \in \operatorname{Ker} D_{2}$. Applying D_{1} to both sides of the obtained equality $-\lambda_{1} r_{1}+s^{\prime}=-g_{2} r_{2}+s^{\prime \prime}$ we get $-\lambda_{1}=D_{1}\left(s^{\prime \prime}\right)$. After applying D_{2} to the same equality we get $D_{2}\left(s^{\prime}\right)=-g_{2}$. But then $s^{\prime \prime}+\lambda_{1} r_{1} \in \operatorname{Ker} D_{1} . \quad$ Since $\quad s^{\prime \prime}+\lambda_{1} r_{1} \in \operatorname{Ker} D_{2} \quad$ we have $s^{\prime \prime}+\lambda_{1} r_{1} \in \operatorname{Ker} D_{1} \cap \operatorname{Ker} D_{2}=F$. Thus $s^{\prime \prime}=-\lambda_{1} r_{1}+v_{1}$ for some $v_{1} \in F$. It follows from the equality $-\lambda_{1} r_{1}+s^{\prime}=-g_{2}-\lambda_{1} r_{1}+v_{1}$ that $s^{\prime}=-g_{2} r_{2}+v_{1}$. Finally we get

$$
D_{3}\left(r_{1}\right)=-\lambda_{1} r_{1}-g_{2} r_{2}+v_{1}, v_{1} \in F .
$$

Analogously it follows from the equalities

$$
D_{2}\left(D_{3}\left(r_{2}\right)\right)=D_{3}\left(D_{2}\left(r_{2}\right)\right)-\left[D_{3}, D_{2}\right]\left(r_{2}\right)=0-\left(\lambda_{2} D_{2}+g_{2} D_{1}\right)\left(r_{2}\right)=-\lambda_{2}
$$

that $D_{3}\left(r_{2}\right)=-\lambda_{2} r_{2}+t^{\prime}$ for some $t^{\prime} \in \operatorname{Ker} D_{2}$ and finally

$$
D_{3}\left(r_{2}\right)=-\lambda_{2} r_{2}+v_{2}, v_{2} \in F
$$

Without loss of generality we can change D_{3} by $D_{3^{\prime}}=D_{3}-v_{1} D_{1}-v_{2} D_{2}$. Then $D_{3^{\prime}}\left(r_{1}\right)=-\lambda_{1} r_{1}-g_{2} r_{2}, D_{3^{\prime}}\left(r_{2}\right)=-\lambda_{2} r_{2}$. Returning to the old notation we have $D_{3}\left(r_{1}\right)=-\lambda_{1} r_{1}-g_{2} r_{2}, D_{3}\left(r_{2}\right)=-\lambda_{2} r_{2}$.

Let now $\operatorname{dim}_{\mathbb{K}} L / \bar{I}=2$ and $\bar{D}=r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}$ be any element of $L \backslash\left(\mathbb{K} D_{3}+I\right)$. Then

$$
\begin{aligned}
{\left[\bar{D}, D_{3}\right] } & =\left[r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}, D_{3}\right]= \\
& =-D_{3}\left(r_{3}\right) D_{3}-D_{3}\left(s_{1}\right) D_{1}-s_{1}\left[D_{1}, D_{3}\right]-D_{3}\left(s_{2}\right) D_{2}-s_{2}\left[D_{2}, D_{3}\right]= \\
& =-D_{3}\left(r_{3}\right) D_{3}+\left(-D_{3}\left(s_{1}\right)+\lambda_{1} s_{1}+s_{2} g_{2}\right) D_{1}+\left(-D_{3}\left(s_{2}\right)+\lambda_{2} s_{2}\right) D_{2}
\end{aligned}
$$

It follows from these equalities that $D_{3}\left(r_{3}\right)=-\gamma$, where γ is taken from the equality $\left[\bar{D}, D_{3}\right]=\gamma D_{3}+D$, where $D \in \bar{I}$. Analogously the equality

$$
\left[r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}, D_{1}\right]=\mu D_{1}
$$

for some $\mu \in \mathbb{K}$ implies $D_{1}\left(r_{3}\right)=0, D_{1}\left(s_{2}\right)=0$. The equality

$$
\left[r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}, D_{2}\right]=f_{1} D_{1}+f_{2} D_{2}
$$

for some $f_{1}, f_{2} \in F$ yields $D_{3}\left(r_{3}\right)=0$. Summarizing we get

$$
\begin{equation*}
D_{1}\left(r_{3}\right)=D_{2}\left(r_{3}\right)=0, \quad D_{3}\left(r_{3}\right)=1, \quad D_{1}\left(s_{2}\right)=0 \tag{5}
\end{equation*}
$$

Since $\left[\bar{D}, D_{1}\right]=\theta D_{1}$ for some $\theta \in \mathbb{K}$ we have

$$
\left[r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}, D_{3}\right]=\left(\lambda_{1} r_{3}-D_{1}\left(s_{1}\right)\right) D_{1}
$$

and therefore $\lambda_{1} r_{3}-D_{1}\left(s_{1}\right)=\theta$. Thus $D_{1}\left(s_{1}\right)=\lambda_{1} r_{3}+\theta, \quad \theta \in \mathbb{K}$. Further $\left[\bar{D}, D_{2}\right]=f_{1} D_{1}+f_{2} D_{2}$ for some $f_{1}, f_{2} \in F$. Analogously $\left[r_{3} D_{3}+s_{1} D_{1}+s_{2} D_{2}, D_{2}\right]=$ $=\left(r_{3} g_{2}-D_{2}\left(s_{1}\right)\right) D_{1}+\left(\lambda_{2} r_{2}-D_{2}\left(s_{2}\right)\right) D_{2}$ and therefore

$$
\begin{equation*}
D_{2}\left(s_{1}\right)=g_{2} r_{3}-f_{2}, \quad D_{2}\left(s_{2}\right)=\lambda_{2} r_{3}-f_{2} . \tag{6}
\end{equation*}
$$

But we have

$$
s_{1}=g_{2} r_{2} r_{3}-r_{2} f_{2}+f_{3}, \quad s_{2}=\lambda_{2} r_{2} r_{3}-r_{2} f_{2}+f_{4}
$$

for some $f_{3}, f_{4} \in F$. It was proved early that $D_{1}\left(s_{1}\right)=\lambda_{1} r_{3}+\theta, \theta \in \mathbb{K}$, so we have $s_{1}=\lambda_{1} r_{1} r_{3}+\theta r_{1}+f_{5}$ for some $f_{5} \in F$. Applying D_{2} to the both sides of the equality

$$
\begin{equation*}
\lambda_{1} r_{1} r_{3}+\theta r_{1}+f_{5}=g_{2} r_{2} r_{3}-r_{2} f_{2}+f_{3} \tag{7}
\end{equation*}
$$

we get $g_{2} r_{3}-f_{2}=0$. But r_{1}, r_{2}, r_{3} are linearly independent over F, so the last equality yields $g_{2}=0$. The equality (7) is now of the form

$$
\lambda_{1} r_{1} r_{3}+\theta r_{1}+f_{5}=-r_{2} f_{2}+f_{3}
$$

Applying D_{2} to the both sides of this equality we get $f_{2}=0$. Therefore $\lambda_{1} r_{1} r_{3}+\theta r_{1}+f_{5}=f_{3}$. Applying D_{1} to the both sides of the last equality we get $\lambda_{1} r_{3}+\theta=0$. Since $r_{3} \notin \mathbb{K}$ we have $\lambda_{1}=0$ and therefore $s_{1}=0$. Analogously we can assume that $f_{4}=0$ and $s_{2}=\lambda_{2} r_{2} r_{3}$. So we have

$$
s_{1}=0, \quad s_{2}=\lambda_{2} r_{2} r_{3}, \quad g_{2}=0, \quad f_{2}=0, \quad \lambda_{1}=0
$$

These equalities means that

$$
\left[D_{3}, D_{1}\right]=0, \quad\left[D_{3}, D_{2}\right]=\lambda_{2} D_{2}, \quad \bar{D}=r_{3} D_{3}+s_{2} D_{2}
$$

where $s_{2}=\lambda_{2} r_{2} r_{3}, D_{i}\left(r_{j}\right)=\delta_{i j}, i, j=1,2,3$. The proof is complete.

1. Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario I // Giornale Mat. Battaglini Prog. Studi Univ. Ital. - 1901. - 39. P. 273-316.
2. Amaldi U. Contributo all determinazione dei gruppi continui finiti dello spazio ordinario II // Giornale Mat. Battaglini Prog. Studi Univ. Ital. - 1902. - 40. P. 105-141.
3. Bondarenko V. M., Petravchuk. A. P. Wildness of the problem of classifying nilpotent Lie algebras of vector fields in four variables // arXiv: 18.03 .09772 v 1 [math. RA].
4. Gonzalez-Lopez A., Kamran N. and Olver P. J. Lie algebras of differential operators in two complex variables // Amer. J. Math. - 1992. - 114. - P. 1163-1185.
5. Gonzalez-Lopez A., Kamran N. and Olver P. J. Lie algebras of vector fields in the real plane // Proc. London Math. Soc. - 1992. - 64(3). - № 2. - P. 339-368.
6. Klimenko I., Lysenko S., Petravchuk A. Lie algebras of derivations with abelian ideals of maximal rank // Scientific Bulletin of Uzhhorod University, Ser. Mathematics and Informatics. - 2017. - 31. - P. 75-81 (in Ukrainian).
7. Lie S. Theorie der Transformationsgruppen. - Leipzig, 1888, 1890, 1893. Vol. 1-3.
8. Makedonskyi Ie. O. and Petravchuk A. P. On nilpotent and solvable Lie algebras of derivations // J. of Algebra. - 2014. - 401. - P. 245-257.
9. Nowicki A. Polynomial Derivations and their Rings of Constants. - Torun: Uniwersytet Mikolaja Kopernika, 1994. - 176 p.
10. Petravchuk A. P. On nilpotent Lie algebras of derivations of fraction fields // Algebra and Discrete Math. - 2016. - 22. - P. 118-131.

РОЗВ'ЯЗНІ АЛГЕБРИ ЛІ ДИФЕРЕНЦІЮВАНЬ КІЛЕЦЬ МНОГОЧЛЕНІВ ВІД ТРЬОХ ЗМІННИХ

Нехай \mathbb{K} - алгебраїчно замкнене поле характеристики нулъ, $A=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$ кільце многочленів від тръох змінних $i \quad R=\mathbb{K}\left(x_{1}, x_{2}, x_{3}\right)$ - поле рачіоналъних функиій. Якщо L - підалгебра алгебри Лі $W_{3}(\mathbb{K})$ всіх \mathbb{K}-диференціювань кільия A, то $R L є$ алгеброю Лі над $\mathbb{K} i \operatorname{dim}_{R} R L$ називаєтъся рангом алгебри L над R. Вивчаються підалгебри L рангу 3 над R алгебри Лі $W_{3}(\mathbb{K})$. Доведено, що якщо L містить абелевий ідеал I рангу 3 над R, то L ізоморфна підалгебрі загальної афінної алгебри Лі аff $f_{3}(\mathbb{K})$. Яжщо L має ідеал I з $r k_{R} I=2$, то L міститься в підалгебрі \bar{L} алгебри $\tilde{W}_{3}(\mathbb{K})=\operatorname{Der}_{\mathbb{K}} R$, де \bar{L} - розширення деякої підалгебри з $a f f_{2}(F)$ за допомогою підалгебри розмірності $\leq 2, F$ - поле констант для I в R.

РАЗРЕШИМЫЕ АЛГЕБРЫ ЛИ ДИФФЕРЕНЦИРОВАНИЙ КОЛЕЦ МНОГОЧЛЕНОВ ОТ TPEX ПЕРЕМЕННЫХ

Пусть \mathbb{K} - алгебраически замкнутое поле характеристики нулъ, $A=\mathbb{K}\left[x_{1}, x_{2}, x_{3}\right]$ - кольчо многочленов от трех переменных и $R=\mathbb{K}\left(x_{1}, x_{2}, x_{3}\right)$ поле рачиональных функиий. Если L-подалгебра алгебръ Ли $W_{3}(\mathbb{K})$ всех \mathbb{K} диффјерениирований кольца A, то $R L$ является алгеброй Ли над \mathbb{K} и $\operatorname{dim}_{R} R L$ называется рангом алгебръ L над R. Исследуются подалгебръ L ранга 3 над R алгебрь Ли $W_{3}(\mathbb{K})$. Доказано, что если L содержит абелев идеал I ранга 3 над R, то L изоморфна подалгебре общей афинной алгебръ Ли аff $\mathcal{S}_{3}(\mathbb{K})$. Если L содержит идеал I с $r k_{R} I=2$, то L содержится в подалгебре \bar{L} алгебръ $\tilde{W}_{3}(\mathbb{K})=\operatorname{Der} \mathbb{K} R$, где $\bar{L}-$ расширение некоторой подалгебръ из $a f f_{2}(F)$ с помошъю подалгебры размерности ≤ 2, а F - поле констант для I в R.

Київ. нац. ун-т
Одержано
ім. Тараса Шевченка, Київ

