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ÓÄÊ 539.4

×èñëåííûé ðàñ÷åò òðàåêòîðèè ðàñïðîñòðàíåíèÿ òðåùèíû ñ ïîìîùüþ

óñîâåðøåíñòâîâàííîãî ìåòîäà ìîäåëèðîâàíèÿ ïðîöåññà òðåùèíîîáðàçî-

âàíèÿ

Ç. Ï. Äæîíã, Ñ. Âàí
1
, Ç. Â. Äæÿíã

Ôàêóëüòåò òðàíñïîðòíûõ êîììóíèêàöèé, Þæíî-âîñòî÷íûé óíèâåðñèòåò, Íàíäæèíã, Êèòàé

Îïðåäåëåíèå òðàåêòîðèè òðåùèíû ÿâëÿåòñÿ âàæíûì ïðè ïðîãíîçèðîâàíèè íåïðåäâèäåííîãî

ðàçðóøåíèÿ èëè ïðè îöåíêå óñòàëîñòíîé äîëãîâå÷íîñòè êîíñòðóêöèîííîãî ìàòåðèàëà. Ïðåä-

ëîæåí íîâûé ìåòîä ìîäåëèðîâàíèÿ òðàåêòîðèè ëîêàëüíîé òðåùèíû ïðè íàãðóæåíèè ñìå-

øàííîãî òèïà ñ ïîìîùüþ ìîäåëè, îñíîâàííîé íà ìåòîäå êîíå÷íûõ ýëåìåíòîâ. Ýëåìåíò,

ìîäåëèðóþùèé òðåùèíó, ðàçáèâàþò íà äâà âäîëü ðàñïðîñòðàíåíèÿ òðåùèíû ñ èñïîëüçîâà-

íèåì êðèòåðèÿ ìàêñèìàëüíûõ êàñàòåëüíûõ íàïðÿæåíèé (KII �0). Çàòåì èçìåíÿåòñÿ èíôîð-

ìàöèÿ î íîìåðàõ ýëåìåíòà è óçëà, ïîñêîëüêó ìåòîä òðàíñôèêöèè èñêëþ÷àåò èñïîëüçîâàíèå

ñèíãóëÿðíûõ ýëåìåíòîâ. Ïðåèìóùåñòâà íåçíà÷èòåëüíîãî ïåðåñòðîåíèÿ êîíå÷íîýëåìåíòíîé

ñåòêè òîëüêî â ëîêàëüíîé çîíå ïîçâîëèëè èññëåäîâàòü ñ ïîìîùüþ ïðåäëîæåííîãî ìåòîäà òðè

êëàññè÷åñêèå ïðîáëåìû ðîñòà ñòàöèîíàðíîé òðåùèíû, ò.å. ðàñïðîñòðàíåíèå êðàåâîé òðå-

ùèíû â äâóõêîíñîëüíîé áàëêå, ìîäåëèðîâàíèå òðåùèíîîáðàçîâàíèÿ â àñôàëüòîáåòîííûõ

áàëêàõ è òðåùèíà â ñòàíäàðòíîì ïðîäîëüíîì ñîåäèíåíèè â ãàçîïðîâîäå. Ðàñ÷åòíûé êîýô-

ôèöèåíò èíòåíñèâíîñòè íàïðÿæåíèé è òðàåêòîðèÿ òðåùèíû, ñïðîãíîçèðîâàííàÿ ñ ïîìîùüþ

îïèñàííîãî ìåòîäà, õîðîøî ñîîòâåòñòâóþò òåîðåòè÷åñêèì äàííûì, ïðåäñòàâëåííûì â

ëèòåðàòóðíûõ èñòî÷íèêàõ. Ðàññìîòðåíà îïòèìàëüíàÿ êîíñòðóêöèÿ ñòðóêòóðû, êîòîðîé

íåñâîéñòâåííî áûñòðîå ðàçðóøåíèå.

Êëþ÷åâûå ñëîâà: êîíå÷íîýëåìåíòíûé àíàëèç, òðàåêòîðèÿ òðåùèíû, ýëåìåíò, ìîäå-

ëèðóþùèé òðåùèíó, êîýôôèöèåíò èíòåíñèâíîñòè íàïðÿæåíèé, ðàçðóøåíèå ñìåøàí-

íîãî òèïà.

Introduction. In engineering complex structures, the determination of the crack path

is important to analyze the failure mode, and assess structure strength and residual life

[1–3]. Different theoretical, numerical, and experimental methodologies have been developed

to investigate the crack propagation problem [4, 5] , among which, numerical simulation is

widely used due to its simplicity and economy, including the meshless methods and finite

element method (FEM) with remeshing [6–19]. Massless methods do not require crack

propagation paths to coincide with the meshes. Recently, Belytschko et al. [6, 7] predicted

the simple crack propagation with a high accuracy using the moving least-squares

interpolation with the Galerkin method. The numerical manifold method (NMM) was first

reported by Shi and Goodman to deal with rock joints and block [8, 9]. The displacement

discontinuity across a crack surface is approximated by independent cover functions on

different physical covers. Meanwhile the additional functions extracted from the asymptotic
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near tip field are incorporated into cover functions of singular physical covers to simulate

the stress singularity around the crack tips. Stay et al. [10] and Chou et al. [11] applied the

N.M. for crack propagation problems successfully. The extended finite element method

(XFEM) [12, 13] is another technique to solve the crack propagation problem without the

computational mesh, in which the discontinuous Heaviside function and the near-tip

asymptotic functions through a partition of unity method are added to the FEM to account

for crack. Besides, the generalized finite element method (GFEM) takes advantage of

high-order terms or handbook functions of boundary value problems to tackle the crack

problem [14, 15].

However, improvements of meshless methods should be done to dispose multiple

cracks and large deformation crack propagation problems. In an actual situation, a real

mesh discontinuity represents the crack [16], which can be effectively solved by finite

element method with remeshing despite the complicated mesh generation. Many

researchers have applied the finite-element method with remeshing algorithms to model

crack propagation problems [17–19]. Shephard et al. [18] adopted remeshing the entire

model in every step to realize crack propagation. However, a large number of state

variables such as displacement, stress and strain need to be transferred from the old to the

new mesh model in every step. Souiyah et al. [19] employed a local remeshing technique

whereby only the region around the crack tip is modified, but the well-shaped elements

can’t be generated usually due to the existing mesh surrounding the region.

An advanced remeshing technique combined with a nodal relaxation is proposed to

predict the crack growth. In order to avoid complete remeshing on the global region, we

firstly calculate the direction vector of crack propagation at the crack tip based on the

maximum circumference (K II � 0) criterion and the direction vector of the edge by taking

the crack tip point as an initial point in the triangular element. Then, after determining the

waiting crack element by vector cross product, the intersection point coordinates between

crack direction and cracking boundary are also confirmed, and the unit is split. Finally, a

new unit is added, and the node number and element number are modified. As the mesh

division is only on the local region, the modifying grid data and the interpolation of

displacement field are small. This method has such advantages as less modified area,

easiness of programming, high reliability etc. In the end, the numerical model is verified by

comparing the numerical results with the benchmark solutions and the laboratory test

results.

1. Grid Generation Strategy. In simulation of crack growth in finite element

modeling, the technique of mesh generation is very significant in dynamic crack propagation.

Various publications focus on the automatic crack propagation using finite elements

remeshing [5, 17–19]. Different from the traditional remeshing in finite modeling, the

element cracking technique is developed in this work.

1. When the equivalent stress intensity factor (SIF) of crack satisfies fracture critical

value, the crack is going to propagate along propagation direction within the element. The

element where the crack propagation direction is located should be confirmed first. Then,

search all elements around the crack tip node A, such as the cell 1, 2, 3, 4, 5, 6, and 7

(Fig. 1a).

The vector of propagation direction and vector setting point A as the initial point are

given as (Fig. 1b):

r i j AB i j

AC i

� � � � � �

� �

(cos ) (sin ) , ( ) ( ) ,

( )

� � x x y y

x x

B A B A

C A � �( ) , ... ,y yC A j

where � is the propagation direction angle, x y N A BN N, ( , , ... )� are longitudinal

coordinate and transverse coordinate values, respectively, while i and j denote the unit

vector in the x and y directions, respectively.
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By appling vector cross direction of r and two edge vectors, when the vector cross

direction is different, the element waiting crack is determined. For example, setting

F r AD1 � � and F r AC2 � � in element 4 (Fig. 2a), F r AC3 � � and F r AB4 � � in

element 3 (Fig. 2b), if F F1 2 0� � in element 4, and F F3 4 0� 	 in element 3, element 4 is

the cracking element.

2. Considering the increment of crack propagation being the size of the element, the

coordinates of a new crack vertex F can be found by intersection operations as follows

(Fig. 3):
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Fig. 1. Elements’ remeshing: (a) the cracking direction; (b) the vector in rectangular coordinate.

a b

a b

Fig. 2. Vector cross product: (a) in element 4; (b) in element 3.

Fig. 3. Increment of a cracking node.
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Via Eq. (1), the coordinate values xF and yF can be obtained.

3. After the intersection point F determined, then element 4 is split, and node A is

separated into two nodes. Update and output the data of the modified finite element grid,

and enter into the next calculation step.

To avoid the calculated crack propagation path to deviate from the true experiment

path, the crack propagation length should be limited to one or two elements every time, and

the load step magnitude should be chosen accordingly. More details of operation are

discussed in [20]. During the process of crack growth, the singular element such as the

shortest and the longest edges h H less than a given value 
 may be raised, thus affecting

computational accuracy. A node combination method is handled to deal with the above

problem (Fig. 4).

2. Crack Propagation Theory. Within a framework of the linear elastic fracture

mechanics, the fracture criterion for crack growth prediction is very important. The fracture

criterion based on the stress intensity factor (SIF) is selected as

K Keff c	 I , (2)

where

K K Keff �
�

�


�

�
� �I IIcos cos sin .

� �
�

2

3

2 2

3

Here K eff is the effective stress intensity factor, in which K I and K II are the SIFs

related to mode I and mode II loading configurations, respectively, and � is the crack

initiation angle. The value of K cI is mode I critical fracture toughness determined by

experimental test.

Prediction of deflection angles � for cracks under mixed-mode loading presents a

further challenge. There are various criteria such as the maximal strain energy release rate

[21], the criterion of maximal normal stress [22], the strain energy density fracture criterion

[23]. Based on the maximum circumferential stress theory, the angle of crack propagation �
was computed by

�� � �2
1

4
82arctan ( ( ) ).K K K KI II I II (3)

In Eqs. (2) and (3), the mode I and mode II stress intensity factors K I and K II

should be computed by interaction integral derived from the J-integral by Rice [24]. For
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Fig. 4. Node elimination, node S is eliminated, and ill-elements are removed.



simplicity, the coordinates are located at the crack tip with the x1-axis parallel to the crack

faces, as shown in Fig. 5.

The standard J-integral is

J W u n dj ij i j� �
�
�lim ( ) ,,

� �

�
0

1 1� � (4)

where W is the strain energy density, W ij ij� � 
 2, the symbol �1 j is Kronecker delta,

and n j is the unit outward normal vector to the contour �. Let (� 
ij ij iu
( ) ( ) ( )

, ,
1 1 1
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2 2 2
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By expanding and re-organizing terms,

J J J I( ) ( ) ( ) ( , ) ,1 2 1 2 1 2� � � � (6)

where I ( )1 2� is called the interaction integral for states 1 and 2,
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where W ( , )1 2 is the interaction strain energy, W ij ij ij ij
( , ) ( ) ( ) ( ) ( )1 2 1 2 2 1� �� 
 � 
 .

For isotropic materials, the relationship between the J-integral and the SIF is

J
K K

E
�

�( )
,

*

I II
2 2

(7)

where E is the Young modulus, ! is Poisson’s ratio,
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Fig. 5. Conventions at crack tip. Domain A is enclosed by �, C�, C�, and C0. Unit normal

m nj j�� on �.
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Similarly, the interaction integral can be written as

I
K K K K

E
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*
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.1 2

1 2 1 2
2
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�I I II II (8)

By assigning K I
( )

,
2

1� K II
( )2

0� and K I
( )

,
2

0� K II
( )

,
2

1� mode I and mode II SIFs

can be decoupled. The interaction integral I ( , )1 2 is not suitable for FEM and should be

translated into the equivalent domain integral form. More detail can be seen in [13].

3. Numerical Analysis and Validation. In order to evaluate the accuracy of the

present approach, three examples are applied. First, the result of a steel double cantilever

beam (DCB) specimen simulated by FEM is compared with that produced by an analytical

method. Then, attention is focused on the propagation of mode I crack in an asphalt

concrete beam and crack growth from a fillet.

3.1. Edge Crack Propagation in Double Cantilever Beam. The beam has an initial

crack length a0 100� mm, the length 2 200L� mm, height 2 20H� mm. The mechanical

properties of materials are chosen as steel for replication with E� �2 105 MPa, !� 0 3. ,

and K cI � 48 3. MPa m. Before the DCB achieves the critical fracture toughness, the

computed values of the stress intensity factor are compared with the analytical solutions

provided by [25], as shown in Fig. 6. The present values of stress intensity factors are very

close to the theoretical solutions and manifest a good agreement with the virtual crack

closure technique (VCCT) [26] with the maximum percent differences of 1.8%, which

demonstrates the validity of the SIF computed via the interaction integral.

The load/deflection curve (P vs %) is plotted in Fig. 7. It shows that the load P

increases nearly linearly with the increasing deflection % at first. The strain energy

accumulates at the crack tip, and the SIF increases at this time. When the SIF exceeds the

critical value, the crack starts to grow and the strain energy releases, then the load

decreases. Therefore, the load in point A is called critical load.

Figure 8 shows the crack propagation path with the initial crack offset ��10 mm (�
is the distance between the neutral axis and the crack), which is similar to the calculated

results in [27].
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Fig. 6 Stress intensity factor values for DCB.



3.2. Three-Point Bend Specimen. Mode-I fracture characterization of concrete and

rock materials adapting the notched three-point bend beam specimens has been researched

widely. The test configuration of an asphalt concrete specimen under three-point bending is

shown in Fig. 9. The span length of beam between the supports is S � 200 mm, the beam

height is H� 50 mm and the initial crack length a0 25� mm as illustrated in Fig. 10. The

asphalt concrete properties E� 989 MPa and !� 0.3 were chosen for the specimen, in

order to compare the numerical results with the experimental data in [28]. Figure 11a–b

shows four steps of typical crack propagation. The predicted crack propagation seems to

follow the mode I with evident tensile stress concentration at the crack tip. Figure 12 shows

the crack propagation path by the experiment [28], which is consistent with the calculated

one. The load–displacement curve is depicted in Fig. 13. The results agree well with the

experiment when the load increases, and deviate when decreasing, which may be attributed

to the linear elastic fracture mechanics. Therefore, a more complicated constitutive model

should be introduced, such as plasticity and viscoelasticity.

Z. P. Zhong, S. Wan, and Z. W. Jiang
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Fig. 7. Load/deflection curve for crack growth in DCB.

Fig. 8. The crack propagation path for DCB after limited steps of loading.

Fig. 9 Fig. 10

Fig. 9. Test configuration of three-point bending beam for mode I fracture.

Fig. 10. Three-point bending geometry dimensions.



3.3. Crack Growth from a Fillet. This last example, performed experimentally by

Sumi [29], shows the growth of a crack from a fillet in a structural member (Fig. 14). The

results presented here are for a simplified model, which only considers the bottom I-beam

for a very thick beam and a thin beam h, and various length L values. The mechanical

properties of materials are assumed to be linear elastic under plane-strain conditions with

Numerical Analysis of Crack Propagation Path ...

a b

Fig. 11. Crack growth process in three-point bending beams.

Fig. 12. Process of crack propagation of specimen in [28].

Fig. 13 Fig. 14

Fig. 13. Load–displacement curve of three-point bended beam.

Fig. 14. Crack growth from a fillet.

a b

Fig. 15. Comparison of crack paths calculated via the proposed FEA crack propagation method (a)

and calculated by [30] (b) for low values of h (h�10 mm).
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E�10 MPa and !� 0.3. The applied load is F �1 N, the fillet radius is 20 mm, and the

initial crack length is a0 5� mm.

Crack paths obtained by the element-free Galerkin method [30] and the results by the

proposed crack propagation technique are compared for a part containing a flexible I-beam.

Figures 15 and 16 show the excellent correlation of the two techniques. Figure 16 depicts

that the crack turns sharply downwards and propagates towards the structure bottom, in

case of low values of h. In contrast, when the structure is supported by a rigid I-beam, the

crack will propagate horizontally towards the opposite fillet, as shown in Fig. 16.

The crack paths for various lengths L are shown in Fig. 17. In case of high values of

L, the crack propagates to the bottom of the structure at some angle (Fig. 17a), while in

case of small values of L, it first propagates to the bottom, then goes upward to the other

side of structure (Fig. 17b).

Conclusions. In this paper, a new element cracking technique is used to simulate the

crack propagation by the finite element model. With only local remeshing and step-by-step

node relaxation in the crack zone, this technique can be applied to complex industrial

structures without complicated computation. To validate this technique, three examples are

examined by displaying the stress redistribution and consternation at the crack tip during

crack propagation. The stress intensity factors predicted by the interaction integral and the

cracking direction are in good agreement with the exact solutions and experimental

observations. The path of crack growth affects the condition of load and the geometric

parameter of structure. Hence, it is crucial to decrease the amplitude of SIFs and change the

failure model to make sure the crack extension occurs along the predetermined path by

proper designing. Further work will focus on simulating the interface crack propagation

between different materials using this method.
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a b

Fig. 16. Comparison of crack paths calculated via the proposed FEA crack propagation method (a)

and calculated by [30] (b) for high values of h (h� 30 mm).

a b

Fig. 17. Crack paths for various length L values: (a) L� 362.5 mm; (b) L� 162.5 mm.
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Ð å ç þ ì å

Âèçíà÷åííÿ òðàºêòîð³¿ òð³ùèíè º âàæëèâèì ïðè ïðîãíîçóâàíí³ íåïåðåäáà÷óâàíîãî

ðóéíóâàííÿ àáî ïðè îö³íö³ äîâãîâ³÷íîñò³ â³ä óòîìëåíîñò³ êîíñòðóêö³éíîãî ìàòåð³àëó.

Çàïðîïîíîâàíî íîâèé ìåòîä ìîäåëþâàííÿ òðàºêòîð³¿ ëîêàëüíî¿ òð³ùèíè ï³ä ÷àñ

íàâàíòàæåííÿ çì³øàíîãî òèïó çà äîïîìîãîþ ìîäåë³, ùî áàçóºòüñÿ íà ìåòîä³ ñê³í-

÷åííèõ åëåìåíò³â. Åëåìåíò, ùî ìîäåëþº òð³ùèíó, ðîçáèâàþòü íà äâà âçäîâæ ïî-

øèðåííÿ òð³ùèíè ç âèêîðèñòàííÿì êðèòåð³þ ìàêñèìàëüíèõ äîòè÷íèõ íàïðóæåíü

( ).K II � 0 Äàë³ çì³íþºòüñÿ ³íôîðìàö³ÿ ùîäî íîìåð³â åëåìåíòà ³ âóçëà, îñê³ëüêè ìåòîä

òðàíñô³êö³¿ âèêëþ÷àº âèêîðèñòàííÿ ñèíãóëÿðíèõ åëåìåíò³â. Ïåðåâàãè íåçíà÷íî¿ ïåðå-

áóäîâè ñê³í÷åííîåëåìåíòíî¿ ñ³òêè ò³ëüêè â ëîêàëüí³é çîí³ äîçâîëèëè çà äîïîìîãîþ

çàïðîïîíîâàíîãî ìåòîäó äîñë³äèòè òðè êëàñè÷í³ ïðîáëåìè ðîñòó ñòàö³îíàðíî¿ òð³ùè-

íè: ïîøèðåííÿ êðàºâî¿ òð³ùèíè â äâîêîíñîëüí³é áàëö³, ìîäåëþâàííÿ òð³ùèíîóòâî-

ðåííÿ â àñôàëüòîáåòîííèõ áàëêàõ ³ òð³ùèíà â ñòàíäàðòíîìó ïîçäîâæíüîìó ç’ºäíàíí³

ó ãàçîïðîâîä³. Ðîçðàõóíêîâèé êîåô³ö³ºíò ³íòåíñèâíîñò³ íàïðóæåíü ³ òðàºêòîð³ÿ òð³-

ùèíè, ñïðîãíîçîâàíà çà äîïîìîãîþ îïèñàíîãî ìåòîäó, äîáðå â³äïîâ³äàþòü òåîðå-

òè÷íèì äàíèì, ïðåäñòàâëåíèì ó ë³òåðàòóðíèõ äæåðåëàõ. Ðîçãëÿíóòî îïòèìàëüíó

êîíñòðóêö³þ ñòðóêòóðè, ÿê³é íåâëàñòèâå øâèäêå ðóéíóâàííÿ.
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