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Espocmanoapm EN 1993-1-1 onucvieaem obwuii memoo onpeoeneHusi npedeibHoll Hazpy3Ku OJisl
CMANLHBIX CMeEpdCcHell Npu NPOOOIbHOM us2ube ¢ KpyyeHueMm. B memooe yuumwléaromcs Kpusvle,
onucwleaiowue NOMepIo YCmoudueocmu npu npooorvHom useube. Ilpedenvras nacpyska npu npo-
0071bHOM U32Ube C KpyUeHuem moxcem Oblms paccuumana MemooOM KOHEUHbIX JIeEMEHN08 Ha OCHOBe
2€0MEMPUYECKO20 U HEUHEIHO20 AHANU3A MAMEPUAnos cmepaichs ¢ degekmamu. Ilposedeno conoc-
maenenue 3HAYeHUll NPeoebHOl Haspy3Ku 6 coomeemcmeuu ¢ Hopmamu Eepocmanoapma EN
1993-1-1 0na npooonvHo20 uzeuba NONEPeyHo 3AKPENIeHHbIX CIEPAHCHell KpPYYeHUs ¢ MaKoebiMi,
NOJYUEHHBIMU NYymeM MOOeIUPOSAHUs MemoOOM KOHEUHbIX SJIeEMEHN06 HA OCHO8e napamempuiec-
K020 UCCAe008AHUA.

Knroueevte cnoea: cTanbHON CTEPKEHD, IPOIOIBHBIN M3THO ¢ KpydeHHeM, EBpocTaHmapt
EN 1993-1-1, MeTon KOHEUHBIX AJIEMEHTOB, porpammHasi cuctema ANSYS.

Introduction. Buckling and lateral stability are among the key parameters in the
design of steel structures [1-4]. Flexural members subjected to bending about their major
axis may develop buckling in the compression flange combined with lateral bending, leading
to what is known as lateral torsional buckling [3, 4]. For doubly symmetric laterally
unbraced slender beams, lateral torsional buckling can govern their ultimate limit state.

Lateral Torsional Buckling. A short beam with a compact cross section can reach its
full plastic moment capacity without any lateral instability. However, if the beam is slender
and the compression flange is not adequately braced in the lateral direction, a different
phenomenon occurs. As the beam is loaded in bending about its strong axis, it deforms in
the direction of loading, but after buckling it demonstrates an angular deformation (Fig. 1).
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Fig. 1. Lateral torsional buckling at angle 6.
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The lateral torsional buckling capacity depends upon a number of material and
geometric properties, support conditions, and location of the applied load relative to the
shear centre and bending moment distribution along the length of the member. The critical
elastic lateral torsional buckling capacity for the uniform moment gradient is given by [5]:
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where M, is the elastic lateral torsional buckling strength, £ is the modulus of elasticity,
G is the shear modulus, /., is the moment of inertia about weak axis, /, is the Saint-
Venant torsional constant, and 7,, is the warping constant of the section.

Generally, consideration of the nonuniform bending moment diagram is taken into
account by means of the equivalent uniform moment factor C; [5]. The elastic critical
moment of a simply supported beam with a uniform moment is multiplied by this factor to
obtain the elastic critical moment for any bending moment diagram,

C, = 188—140p+ 052> <27,

where 1 is the ratio of the smaller factored moment to the larger one at the end points of
lateral support, =M, /M, for M, <M, (—1<y<]I). This ratio is positive for the
double curvature and negative for the single curvature. The moments are applied at the end
points of lateral support.

Code Requirements. For both the general and specific methods in Eurocode 3 [5] to
determine the ultimate lateral torsional buckling (LTB) load of beams in bending, the
design buckling resistance moment should be taken as

W, fy
Myra =211 , 2)
Y Mm1

in which W, is the appropriate section modulus: W, =W for class 1 or 2 sections.

ply
The reduction factor y;; is a function of the imperfection factor «;; and the relative

slenderness is given by
_ W, f
2 — Y7,y ) 3
1=\, (3)

This relative slenderness will be used in subsequent equations to determine the
reduction factor. It should be noted that the elastic critical bending moment for LTB is not
specified by Eurocode 3 [5], but its determination is left to a designer.

General Method. This method is presented in clause 6.3.2.2 of Eurocode 3 [5] as the

“general case,” hereafter referred to as the general method (GM). According to the GM, the
reduction factor yx;; for LTB of beams is similar to that for column buckling [6, 7]:

1
Xir = ==, 4
o H\lpir —Air] )
g7 =05[1+a (A —02)+A57 1. ®)
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When 1 rr =04 or the design bending moment My, <016 M

imperfection factor «;; is selected according to the required buckling curve for the
design of the beam. The appropriate buckling curve is given in Eurocode 3 [5].

Finite Element Method. ANSYS [8], a commercial finite element software, was
used for the analysis. An eigenvalue analysis was used to get the deflected shape (mode
shape or eigenvector) and the associated load factor (eigenvalue). The resulting eigenvalues
are actually the load factors to be multiplied by the applied loading, in order to obtain the
critical buckling load.

The element used in ANSYS [8], BEAM 188, is a quadratic three-dimensional beam
element suitable for analyzing slender to moderately stocky beams. It possesses warping
degrees of freedom, in addition to the conventional six degrees of freedom (Fig.2). The
results of the buckling analysis are shown in Fig. 3, where the buckled shape and the load
factor («) are indicated.
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Fig. 2. Finite element model and boundary conditions for (a) simply supported and (b) cantilever
beams.
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Fig. 3. Buckled shape and load factor for (a) simply supported and (b) cantilever beams.

The above figure depicts the behavior of the lateral torsional buckling, where lateral
displacement combined with twisting can be observed.

Validation. In order to validate the finite element model developed for this
investigation, an eigenvalue buckling analysis was carried out for the model shown in
Fig. 2, and the predicted load factors (Table 1) were compared with the theoretical values
of the lateral torsional buckling capacity.

The difference between the results calculated using formula is A = | asys = Psreor | .
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Table 1
Predicted Load Factors
Section Boundary conditions loading Loading Load factors
locati
OCON | i peor | Mansys | A, %
Double symetrical ’ Upper 1.735 1.747 | 0.57
I section I - l flange
h'=300 mm Shear | 2333 | 2.343 | 043
by =bs, =15 mm L=10m, F =10 kN center
tpy =tp =10 mm At beam fixing:
, =10 mm v, 0, v', 0 (fixed) Lower 2.670 2.676 | 0.21
flange
Double symetrical F Upper 3.245 | 3.251 | 0.18
I section A—I—A flange
— -—
h'=300 mm L Shear | 4.245 | 4250 | 0.11
bpy =by, =15 mm L=10m, F =10 kN center
te =ty =10 mm o
e om At beam fixing: Lower | 4.643 | 4650 | 0.15
w v, 6 (free), v, 8 (fixed) flange

The buckling capacity predicted using the beam element BEAM 188 of ANSYS [8] is
within 0.6% of the theoretical value.

Conclusions. This paper compares the ultimate lateral torsional buckling loads of
unrestrained beams in bending based on the design rules in Eurocode 3 for the ultimate
loads obtained via finite element simulations. For the calculations performed in the
parameter study, worrisome results have been obtained on the validity of the general
methods for lateral torsional buckling of rolled sections. It can be concluded that the
general method can lead to the underestimations of even less than 0.6% of the ultimate
lateral torsional buckling load of unrestrained beams obtained via the finite element
simulations. The general method gives good results for lateral torsional buckling of steel
beams without restraints between the supports.

For these situations, there is quite good agreement between the values given by the
Eurocode 3 design code and the numerical results of the finite element methods.

Pe3ome

€ppocrangapt EN 1993-1-1 ommcye 3araiabHuUNl MeTOJ BU3HAYEHHS TPAHUYHOTO HaBaH-
TaXCHHS U1 CTAJbHUX CTPWKHIB TPH TO3OBKHBOMY 3THHI 3 KpPYTiHHAM. Y METOII
BPaxOBYIOTbCSI KPHBI, IO ONHUCYIOTh BTpaTy CTIHKOCTI IpPU IO3JI0BXHBbOMY 3ruHi. I'pa-
HUYHE HABAHTAXCHHS NPH MO3J0OBXXHBOMY 3THHI 3 KPYTIHHSAM MOXeE OyTH PO3paxoBaHO
METOJIOM CKIHYCHHHX EJIEMECHTIB Ha OCHOBI T€OMETPUYHOTO 1 HENHIHHOTrO aHaji3y MaTe-
piamiB ctpmwkHS 3 Aedexramu. lIpoBeneHO 3iCTaBICHHS 3HAYEHb T'PAHMYHOTO HABaHTa-
JKeHHs y BiJnoBinHocTi 3 HopMamu EBpoctannapty EN 1993-1-1 asst mo310BKHBOTO 3THHY
TIOTICPEYHO 3aKPIIUICHUX CTPYDKHIB KPYTIHHA 3 TaKWMH, IO OTPHMaHi MIISIXOM MOJEINIO-
BaHHsS METOJIOM CKIHUCHHHX CJICMCHTIB HA OCHOBI MapaMeTPUYHOIO IAOCIIIHKECHHS.
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