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B crarri gpociimkeHa JnHiHA Ta
HeNiHIHA TiApOAWHAMIYHA HECTIMKICTh
NOTOKY B KaHajl, 3allOBHEHOMY IOpH-
ctuM  cepepoBumeM. Edexrtn miHIAHOT
HECTIKOCTI pPO3MIAHYTi, BUKOPHCTOBYIO-
YM METOJl JiHIHHMX 30ypeHb. Heminiiina
HECTIHKICTD MOTOKY PO3IIISTHYTa, BUKOPH-
CTOBYIOUH PEHOPMAIi3ipOBaHU BUpaA3 IS
koe(ilieHTa KiIHEMaTUYIHOT B'SI3KOCTI.

B cratbe wuccnenoBaHa nHMHEHHas
U HENWHEHHAs THIPOJMHAMHUYECKas He-
YCTOWYMBOCTb IIOTOKAa B KaHaJe, 3aIoj-
HEHHOM TIOpHCTOH cpenoil. QeKTs
JIMHEHOW HEYCTOMYMBOCTH pPaccMoTpe-
HBI, UCTIONB3ys METOJ JMHEHHBIX BO3MY-
meHnil. HenuneliHas HEyCTOHMUMBOCTB
MIOTOKa PAacCMOTPEHA, MCIOJIB3Yysl PEHOP-
MaJIU3UPOBAHHOE BBIPAKEHHE JUIST KOA(-

The paper investigates linear and
nonlinear hydrodynamic instability of flow
in channel ocuped porous medium. The
effects of linear instability are considered
using the method of linear perturbations.
The nonlinear instability of the flow
is considered using the renormalized
expression for the coefficient of the
kinematic viscosity.
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¢, — Forchheimer's coefficient;
d — dimensionality of space;

D — constant;

E — spectrum of turbulent energy;

f— solenoidal force;

F — Fourier transform of solenoidal force;

K — permeability;

p — pressure;

P — pressure transform;

s — direction cosines of velocity vector;

S — Fourier transform of the direction cosines of velocity
vector;

t —time;

u, v, w — velocity component;

X, y, z — cartesian coordinates;

U — Fourier transform of velocity;

V — velocity vector;

B, k¥ — wave numbers;

€ — dissipation rate;

p — effective coefficient of dynamic viscosity;

Introduction

The investigation into the physics of flow in a porous
medium has provided the basis for many theoretical and
practical studies in various fields such as the mechanics
of grounds, hydrology of ground water, oil engineering,
industrial filtration, powder metallurgy, atomic power
engineering, etc. For some time now the processes of
turbulent flow in a porous medium have been studied
closely and intensively. In [1, 2], the derivation of the k—¢
model equations is set out for modeling the processes of
macroscopic turbulence in porous media. The results of
numerical simulation obtained with the use of the model

v — effective coefficient kinematic viscosity ;

p — density;

T — positive parameter;

@ — porosity;

o — frequency.

Indices:

¢, h k [, m n 1 s, o—projections on coordinates;
e — effective parameter;

¢ — turbulent parameter;

0 — start point.

Complexes:

Da = —-— the Darcy criterion;
h

M =(Da)"1/2;

u h o
Re = —*——Reynolds criterion;
A%

u,h

v, 7

proposedin[1,2]arepresentedin[3].In[4—7], various aspects
of macroscopic modeling of turbulence in homogeneous
porous media are considered. Using the procedure of
averaging over the time, the authors of [4] obtained an
equation for the kinetic energy of turbulence. Experimental
investigation of the chaotic behavior of flow through porous
media in time is described in [8]. In that investigation, a
porous medium was considered as a pencil of narrow
tubes. In [9], Barr proposed a technique for determining the
origination of turbulence in porous media and calculating
the effective permeability. A one-equation model for
calculating two-dimensional turbulent flow through porous
media was suggested in [10]. The model is based on the
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assumption that the turbulent energy generation term in the
turbulent equation for kinetic energy is proportional to the
cubed velocity. Semiempirical modeling of flow and of heat
transfer in porous media is considered in [11]. Calculations
at a low level of turbulence that may occur in a porous layer
heated from below are presented in [12]. Work [13] contains
the results of direct numerical simulation of turbulent flow
in a pipe with porous and liquid media. In [14] the authors
investigated the influence of turbulence effects on flow
through a pseudoporous medium by numerically solving
the Reynolds-averaged Navier-Stokes equations with the
use of the k—¢ model of turbulence. The two-dimensional
porous medium represented a random arrangement of solid
particles.

As it is known, flow in a porous medium can have a
laminar, transient, and turbulent character depending on
the Reynolds number and the porosity parameters of the
medium. For adequately describes the above-mentioned
regimes it is necessary to know the conditions under which
flow in a porous medium loses its stability. In [15], the linear
instability of a laminar flow in a plane channel filled with a
porous medium was studied. The dependence of the critical

Reynolds number on the medium porosity and permeability
was analyzed numerically. The hydrodynamic instability of
flow in a hyperporous medium was considered in [16]. The
dependence of the critical Reynolds number on the medium
porosity and Knudsen number was analyzed.

The purpose of this paper is determinating the
parameters of the linear and nonlinear hydrodynamic
instability of flow in occupied porous medium channel (fig.
1.) that allow to optimize the choice of various geometric
parameters of the media for their realization in technological
processes.

The theory of renormalized groups (RNG), used in the
present article, has been developed in quantum physics.
This theory was applied to studying turbulent flows in [18].
Using the RNG theory, Yakhot and Orzag [19] developed a
closed model of turbulence.

The renormalization group method was also applied to
studying turbulent flows in a porous medium in [20]. In the
case of a porous medium, this approach made it possible
to reveal the physical essence of the effect exerted by the
Forchheimer component on the behavior of flow turbulence
not resorting to empirical information.

*.* +". porous media * -

o
—

Fig. 1. Calculating domain scheme.

Linaer instability

To describe the porous medium, one can use the Darcy-
Brickman-Forchaymer model [17]. This model was used
as the basis for studying the hydrodynamic instability
in a macroporous medium using a two-dimensional
approach [15]. The present study uses a three-dimensional
approximation.

The flow dynamics in a porous medium is described by
a system of modified Navier-Stokes differential equations
and the continuity equation.

a—u+ua—u+oa—u+wa—u:—l@+v,vzu+vf$u—(pzc—F\V\u, (La)
ot ox dy 0z pox 'K JK
DL a—U=—la—p+v,VZU+v,»$u—(p2 r Vv, (1,8)
o0 ox oy 0z poy K JK
%+u@ U@-F %z—laﬁ+vtvzw+vf$w—(pz r Viw (1c)
o ox  dy  0z  pdy K JK

Qu, o, oy (1d)
ox 0Oy Oz

This system of equations includes terms that take into
account the hydraulic resistance caused by the porosity of
the medium. The first one describes the Darcy line resistance
and the second describes nonlinear resistance of Forchimer.

To determine the criteria of hydrodynamic instability
one can use the method of linear perturbations. According
to this method, the flow parameters are represented in the
following form:

u=U®y)+u'(t,x,y,2), v=0t,x,7,z),

w=w(,x,y,z), p=Plx)+p't,x,y,2), ?)
where U, P are the parameters of the basic unperturbed
flow. u', v, w', p' — perturbation parameters. The basic
unperturbed flow is determined by the quantities:

u=U(y), v=w=0, p=P(x).

We substitute expressions (2) in the system of basic
differential equations (1), discard the quadratic terms relative
to the components of the velocity of the disturbing motion.
The perturbed quantities u’, v, w', p' can be represented as
3D waves in the form of such functions:
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u' = u, (v )exp (iloce +yz = B1), 3.1)
"= v, (v)exp(iloo + vz~ Br)), (3.2)
w' = w, (v)exp (i(ox + vz —Br)). (3.3)
p' = p,(v)exp(ilooe + vz~ i), (3.4)

where  — is a complex quantity and can be represented in
such a form B = _+ i, where B is the circular frequency of
the individual oscillation, B, is the growth coefficient, a and
y are the wave numbers, u, v, w, p, are the amplitudes. In
the course of mathematical trans ormations, amplitudes u,,
w,, p, were eliminated, and an equation of the fourth order
was obtained:

AMY,
- ek +

6”(10

O+ 220" |+
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where the prime denotes differentiation with respect to ¥
(y =y /h). In equation (4) k*= o + k%, h is channel half
widht, u — velocity in the center of the channel & = a4,

kK=kh, O=U/lu,.c=p/ou,.

In the case when M = A = 0 equation (4) is transformed
into a classical equation for calculating the instability of a
pure liquid.

In order to determine the criterion of hydrodynamic
instability, it is necessary to study equation (4) for
eigenvalues. The boundary conditions have the following
form:
y=-1,85=0'=0, (5,2)

(5,b)

Further, critical stability parameters were calculated for
different sets of values of the parameters M and A. The
results of calculations are presented in fig. 2.
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Fig. 2. Dependence of the critical Reynolds number on the parameters M and A.

In case M = A = 0 the critical parametr of stability is
Re = 5725, which agrees with the data of [19]. It can be
seen from the figure if the parameters M and A increase, the
value of Re_ increases as weel. This is due to the fact that as
the parameters M increase and the velocity profile becomes
more filled and this, in accordance with the second Rayleigh
theorem on the stability of the flow, leads to the stabilization
of the flow and to an increase in the value of the critical
Reynolds number.

Further we considernonlinear effects of instability which
can occur after linear regime of instability. The nonlinear
effects cannot be described by the Orr—Sommerfeld linear
equations. To carry out an analysis of the indicated stage of
instability in a porous medium, we may avail ourselves of
dependence for the turbulent viscosity. In order to receive
equation for turbulent viscosity we use RNG theory.

Renormalized group transformation

For it instability analysis one can use RNG approach.
As is shown in [1], the equation of flow motion in a
porous medium involves a term that accounts for the linear
hydrodynamic resistance and is described by the Darcy
law, terms that account for the Forchheimer hydrodynamic
resistance, and Brinkman'’s correction. We rewrite equation
(1) in this form

lap ou,u

0 P 2

Yy 7_‘] V — “n"m m 6,a
(61‘ Vo T )”" L ©6.2)
ou
Zmo—,
ox,, (6.b)
where H =¢? °F ,J = /uis a viscosity ratio and V is the

¢ K n/u y

velocity vector. The projection of the velocity vector on the
coordinate axis is described by the expression

u, = VCOS(VAMMJ =|Vls,,

(7

where s 1is the direction cosine.
We apply the Fourier transformation to the velocity, pressure,
and force parameters in Eq. (6):

u, = (21)d+1j- d? K.[d(DU” (K,m)exp(iK-X —io)t), (8,a)
I K<K,.
p= (znl)d“.[wx | d’ KJ.d(x)P(K, o)exp(ik - X —imt), (8,b)
u,u, = (21)d+1_|‘ dx Idm (R 0)exp(ik-x—iot), (8,0
T
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Sn = (2 d+1 j ddKId(DS X, co)exp(nq )‘{—zmt) (8,e)
s u2 — %J’< ddKJ.dG)SS MZ(K’Q))eXp(lKX—lO)t), (S,D

nm (ZTC)

where & — vector of wave number, X — vector of point
coordinate.
Substitution egs. (8) into Egs. (6) gives

G,'U, =F, —ix, B—lean HW 2 9)
p

-1
where G, = (—Z(D-i- A Kj .
K

Then we apply renormalization procedure to eq. (9).
The procedure of renormalization analysis consists of the
subdivision of the velocity and force fields into fast and
slow modes [21]. As a result, we obtain an expression for
the fast and slow modes. Next, we exclude the fast modes
from equation for fast modes. Using the averaging rules [21]
we integrate the resalting expression. After that we have

AV(R) = —8)yk 2 DM, ()| ( ac

T)d-ﬁ-l“

Gy(6) M (k~o)M,, (o)

d—4+e*
(o)

G,(5-%) (10)

and

AN =82 HM :, (x)D,

J‘GO(R‘_G)‘GO(E)‘ Mnh(K_G) .[
(2 Tc)d” o

Expression (11) describes the renormahzed component
of the Forchheimer nonlinear resistance. The process of
renormalization continues up to a fixed point. As this fixed
point is approached, we get

G R) U3 8) £ 8+ M 0] 5 020 50

(B)U 5+1 )dﬁ.(ll)

a3 ] 0 5. P @ - s)} (12)
where
G(a):{_{m_iUAnjzﬁ)}KuK (VO+AV)T 13)

The next step is the determination of the turbulent
coefficient of kinematic viscosity with account for the
porosity and for Forchheimer’'s correction. To obtain a
differential equation that would describe the effective
viscosity, we compute integral (10) over the entire spectrum
of frequencies.

As a result, we get the renormalized viscosity equation
in form:

2 * -1
o=y s 2791
VoKe &
B 22D exp (2+e*)t)—1
-BJ™ 5 8*+2 0 ( S ex ) , (14)
voke (K / ¢) +€
where
Sd d -1 _ Sd -d+3 (15)

T 2@+’ T dd+2)

In order to obtain a differential equation for the effective
viscosity, we differentiate (14) with respect to t for T — 0:

dv_AdJ_g XODZ 20 dz—d+3.
dt v2ict JKx2 d(d-1)

(& (&

(16)

The subscript "0" is omitted, since the renormalization
procedure takes place when v(k, ) — v(K).

With account for the boundary condition w(0) = 0,
integration of (16) leads to the equation

34,Dy [ 1 2 d* —d +3 "

I e JKiCQ2+en) d(d-1)

which is an expression for the renormalized effective
viscosity with account for the porosity of the medium.
Next, we exclude the wave number from (17). To do
this, we calculate the turbulence energy spectrum from
the formula of [20]. Substituting the expression for the
correlation function of effective random forces and taking
into account the expression for the effective viscosity with
account for the porosity of the medium (17), we obtain

d-1 (e*)7 & -2
E(K)Z—J( j 4 pi 3
2 B4 (an)
2 -1/3
* —
- 22(ps d d+3 . (18)
JK?(2 +g%) d(d-1)

Just as in the expression for turbulent viscosity, we
replace k_by Kk in eq. (18). In the case of * =4 and K — oo,
a porous medium is absent, and Eq. (18) is transformed into
the Kolmogorov law.

Then from eq. (17) one can get

16(3 + (-1 +d)de" IS
1(1+4(1 b );;P—du Ke? 19)
LA AN VAT

373737 JKi? d(d—1)

where v, is defined in [20]. As it is seen from Eq. (19), at
certain values of the parameters of flow and of the properties
of a porous medium, the turbulent viscosity may degenerate.
This problem will be considered below.

Nonlinear isntability

In order to carry out a non-linear analysis of the instability
in porous medium we may use equation (17) for the
renormalized turbulent viscosity. It follows from (17) that
this viscosity is equal to zero, i.e., all nonlinear perturbations
attenuate provided that

V, =V, 1-

27Crd(l +d)2F13(
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. 2¢e* d*>—d+3
JCQ2+er) dd-1)

Eliminating the wave number from (20) and using a
Gaussian filter
L=

K,

K <K

cr

(20)

21

we obtain the instability criterion in the form of the Darcy
number:

Da<Da, ee* d*—d+3 ’ (22)
212J(2+¢%) d(d-1)
K
Da = d—7 , (23)

where the size d_ is the average size of the particle or the
diameter of the filter that forms porous medium. This size
can be used as Gaussian filter.

If for the permeability we use the Kozeny relation [17]

- 4o 24
180(1— ) @4
and the expression for the viscosity ratio
IS (25)
¢

we obtain the following equation for the critical value of the
porosity:
360+ (n* +120)d(d —1)+ 7, [d(d 1720+ (= +240)d(d ~1))
- = 120(d° —d +3)
For three-dimensional flow Eq. (26) yields

(26)

90" =0,72, (27)
for two-dimensional flow we have
0 =0,775. (28)

A comparison of (27) and (28) shows that the three-
dimensional flow is less stable in comparison with the two-
dimensional one. This conclusion is directly opposite to the
Squire stability theorem for the linear stage of instability
development, in porous media too.

Conclusions

Using the method of the linear perturbations, equation
for disturbing amplitudes of motion is obtained. This
equation makes it possible to analyze the influence of the
parameters M and A on the linear instability of the flow in
a porous medium. With the help of the RNG approach, an
expression for the kinematic viscosity was obtained. The
resulting expression was used to determine the criterion
of nonlinear instability. The results of instability analysis
make possible to optimize the choice of various (geometric)
characteristics of the porous medium for the realization of
flows in various technological processes.
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JIMHEVMHAS 1 HEJIUHEMHASI HEYCTONYU-
BOCTH IOTOKA B KAHAJIE,  _
3AIIOJTHEHHOM IMOPHUCTOM CPEJOMN

ABpameHKo A.A., un.-kop. HAH VYkpaussl,
JAmvutpenko H.IIL., kana. texs. Hayk, KoBenkas 10.10.

WNuctutyT Texumueckoil terumopmsmkn HAH VYikpauHbl.
03057, r. Kues, yn. XKensbona, 2a

KuaroueBble cjioBa: peHOpMaNH3allMOHHBIN aHAIH3, Mare-
MaTH4YecKasi MOJIeIb, IIOPUCTOCTh, HEYCTOWYHBOCTH, TypOY-
JIEHTHOCTh

bu6n. 21, puc. 2.

B nopucToii cpene NoTok MOXKET HOCUTh JJAMUHAPHBIN, 1e-
pexoaHol nin TypOyJIeHTHBIN XapakTep. M mpu 3TOM Bax-
HO 3HAaTh IapaMeTphbl, IPU KOTOPBIX OJUH PEKUM TECUCHHS
NepexouT B Jpyrod. B Hacrosmieil crathe uccienoBaHa
JIMHEMHAsd 1 HeIMHEHAs THAPOINHAMHUYECKas HEyCTOMIH-
BOCTh MOTOKa B KaHaJie, 3allOJITHEHHOM IMOPUCTOM Cpeoi.
Jns npoBeneHus TMHEHHOTO aHAJIN3a HEYCTOMYMBOCTH HC-
nosib3oBasIack Mojenb Jlapcu-bpunkmana-dopxaiimepa B
TpexMepHOM mnpuOnmwkeHnu. [lomyueHnble naHHbie 0000-
LIEHBI 3aBUCUMOCTBI0 . HenmmHelHbI aHanu3 HeycToiuu-
BOCTH OBUI NPOBENEH, MCHOJIB3YsI PCHOPMAIN3UPOBAHHOE
BbIp@KEHHE I KOA(pPULHEHTa KUHEMaTH4eCKON BS3KO-
ctu. B pesynbrare nonydyeH Kputepuil rTHAPOINHAMAYECKON
HEYCTOMYMBOCTH.

Pesynbrarsl IPOBEJEHHOIO UCCIIEL0BAHUS I1O3BOJISIOT OI-
TUMHU3UPOBATh BBIOOP XaPAKTEPUCTHK (TEOMETPHUYECKHX)
MTOPUCTON Cpeabl ISl PeATU3alui €€ B TEXHOJIOTHYECKUX
poreccax.
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