ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ВИРОБНИЦТВА ТА ВИКОРИСТАННЯ ЕНЕРГЕТИЧНИХ РЕСУРСІВ

УДК 620:621.31

С.В. ДУБОВСКОЙ, д-р техн. наук, **М.Е. БАБИН, А.П. ЛЕВЧУК**, канд. техн. наук, **В.А. РЕЙСИГ**, д-р техн. наук

Институт общей энергетики НАН Украины, г. Киев

ГРАНИЦЫ ЭКОНОМИЧЕСКОЙ ЦЕЛЕСООБРАЗНОСТИ ЦЕНТРАЛИЗАЦИИ И ДЕЦЕНТРАЛИЗАЦИИ ТЕПЛОСНАБЖЕНИЯ

На примере модельного района определены границы экономической целесообразности применения современных систем индивидуального и централизованного теплоснабжения на основе газовых котлов в широком диапазоне изменения цен на топливо.

Ключевые слова: централизованное теплоснабжение, индивидуальное теплоснабжение, теплоплотность, ГВС, газ, котлы

В последнее время в связи с тенденцией перехода на системы индивидуального теплоснабжения не только одноэтажных, но и многоэтажных домов, ставится вопрос о соответствии её реальным затратам. Наличие такой тенденции объясняется как недостатками существующих систем централизованного теплоснабжения (СЦТ), так и не вполне экономически обусловленным положением с ценообразованием на природный газ. Известно, что во многих странах Европы, США цены на природный газ падают с ростом объемов его потребления, что обусловлено соответствующими затратами на его транспорт и распределение. Так, например, в Польше $1000 \,\mathrm{m}^3$ газа для котельной стоит $130 \,\mathrm{m}^3$ USD, а для бытового потребителя – 450 USD [1]. В то же время в Украине существует противоположный порядок тарификации, предполагающий рост тарифов с ростом потребления газа. Такой порядок создает экономические преимущества для систем индивидуального теплоснабжения.

Существенным является и то, что в настоящее время при рассмотрении вариантов теплоснабжения проводят сравнение с технико-экономическими показателями существующих СЦТ, тогда как более правильно прово-

© С.В. ДУБОВСКОЙ, М.Е. БАБИН, А.П. ЛЕВЧУК, В.А. РЕЙСИГ, 2011

дить сравнение с показателями модернизированных СЦТ, выполненных на современном техническом уровне.

Объективному сравнению также мешает несовершенная система цен (тарифов) на топливо и электроэнергию, сложившаяся вследствие практики перекрестного субсидирования бытовых потребителей за счет промышленных. В связи с этим объективное сравнение таких систем представляется возможным по критерию реальной стоимости тепловой энергии без учета факторов перекрестного субсидирования.

В этой работе и ее выводах использован широко применяемый в настоящее время в энергетике метод стоимости жизненного цикла (СЖЦ) [2].

Основная цель настоящей работы состоит в оценке реальных затрат на теплоснабжение потребителей от реконструированных систем СЦТ и индивидуальных систем теплоснабжения на основе поквартирных генераторов теплоты. Предполагается рассмотрение района жилой застройки с различной преобладающей этажностью и различной численностью населения с учетом климатических отличий (расчетная температура систем отопления, продолжительность отопительного сезона и др.), свойственных каждому региону Украины, а также теплотехнических свойств жилых зданий.

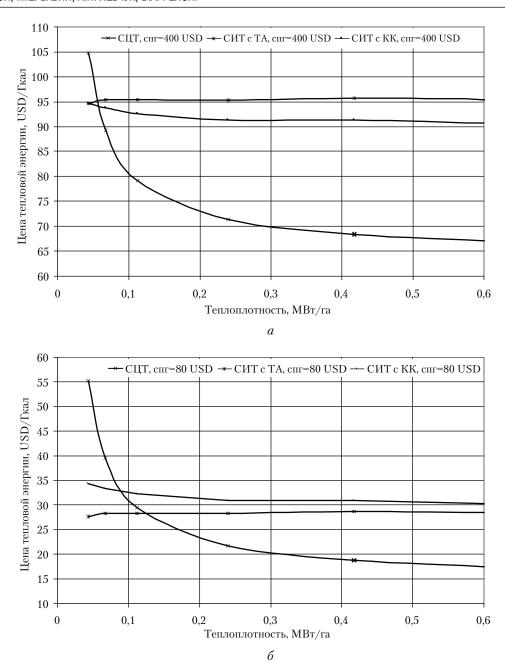
Для удобства сравнения экономических и экологических показателей рассматриваемых систем отопления геометрические параметры модельного района приняты кратными аналогичным параметрам в работе [3], где рассмотрены экологические последствия централизациидецентрализации теплоснабжения.

Аналогичный подход приведен в работах [4, 5], где проводился технико-экономический анализ вариантов оптимального тепло- и электроснабжения небольшого города с использованием больших, малых и средних ТЭЦ, а также раздельного тепло- и электроснабжения с использованием котельных и электроэнергии АЭС и КЭС.

Форма рассматриваемого района застройки – квадратная, длина и ширина – 2500 м. Этажность – от 1 до 24, теплотехнические характеристики зданий принимались по данным типовых проектов домов соответствующей этажности, а также на основании нормативных теплотехнических характеристик [6], учитывающих срок ввода зданий в эксплуатацию, возможность утепления зданий при реконструкции жилья.

При этом в соответствии с работой [7] учитывались затраты на теплоснабжение не только жилищного фонда, но и зданий социально-бытового назначения.

Предполагалось, что основным теплоисточником СЦТ района служит котельная на природном газе, расположенная вблизи газораспределительной станции (ГРС) высокого давления на окраине района. Система теплоснабжения построена на основе новых технологий, а именно, с использованием предварительно изолированных трубопроводов бесканальной прокладки и индивидуальных тепловых пунктов (ИТП) на каждый дом.

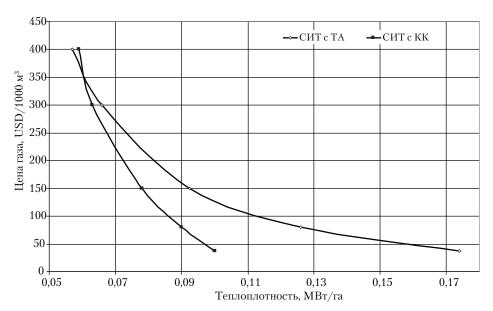

В расчете СЖЦ систем централизованного теплоснабжения учитывались капитальные затраты на строительство котельной, прокладку тепловых сетей, создание тепловых пунктов и соответствующие эксплуатационные затраты на содержание котельной и тепловой сети.

В расчете приняты две системы индивидуального теплоснабжения (СИТ) (отопление и горячее водоснабжение): одна основана на поквартирных котлах комбинированного типа (СИТ с КК) и другая, состоящая из отопительного котла с тепловым аккумулятором (СИТ с ТА), рассчитанным на нужды горячего водоснабжения. СИТ с КК включают двухконтурный отопительный котел мощностью 24 кВт, а СИТ с ТА — отопительный котел мощностью 6 кВт с тепловым аккумулятором.

При расчетах приняты следующие статистические данные, характерные для Украины:

Таблица 1

Системы теплоснабжения	Цена природно- го газа, USD	Плотность нагрузок, МВт/га									
		1,67	1,25	1,04	0,83	0,63	0,42	0,24	0,11	0,07	0,04
СЦТ	37	9,13	9,52	9,82	10,25	10,94	12,23	15,23	22,96	33,10	48,67
СИТ с ТА	37	17,95	18,05	18,12	18,22	18,38	18,65	18,22	18,31	18,26	17,62
СИТ с КК	37	21,00	21,25	21,43	21,68	22,07	22,76	22,80	24,15	25,25	26,20
СЦТ	80	15,67	16,06	16,36	16,79	17,47	18,76	21,77	29,49	39,64	55,21
СИТ с ТА	80	27,95	28,05	28,12	28,22	28,38	28,65	28,22	28,31	28,26	27,62
СИТ с КК	80	29,12	29,36	29,54	29,80	30,18	30,87	30,92	32,27	33,37	34,31
СЦТ	150	26,30	26,70	27,00	27,43	28,11	29,40	32,41	40,13	50,28	65,85
СИТ с ТА	150	42,62	42,72	42,80	42,90	43,05	43,33	42,90	42,98	42,94	42,29
СИТ с КК	150	42,32	42,57	42,75	43,00	43,39	44,08	44,12	45,47	46,57	47,52
СЦТ	300	49,66	50,06	50,36	50,79	51,48	52,77	55,76	63,48	73,62	89,18
СИТ с ТА	300	74,07	74,17	74,24	74,34	74,50	74,77	74,34	74,42	74,38	73,74
СИТ с КК	300	70,62	70,87	71,05	71,30	71,69	72,38	72,42	73,77	74,87	75,82
СЦТ	400	65,28	65,67	65,97	66,40	67,09	68,39	71,38	79,09	89,23	104,79
СИТ с ТА	400	95,03	95,13	95,20	95,30	95,46	95,73	95,30	95,39	95,34	94,70
СИТ с КК	400	89,49	89,73	89,92	90,17	90,56	91,24	91,29	92,64	93,74	94,69


Рис. 1. Изменение удельных затрат жизненного цикла от плотности тепловых нагрузок для рассматриваемых систем теплоснабжения при различных ценах на природный газ: $a-400~{\rm USD/m^3}$, $6-80~{\rm USD/m^3}$

средний состав семьи, согласно статистическим данным -2,65 человека, средняя обеспеченность жилой площадью -21 м 2 /чел. [8], нормативная средняя мощность ГВС -0,33 кВт/чел. [7]. Нормативы потребления газа на отопление, ГВС и пищеприготовление принимаются согласно постановлению [9].

Предполагалось, что рассматриваемые СИТ потребуют перекладки сетей газоснабжения района с применением индивидуальных газораспределительных пунктов (ИРП) на каждый дом.

В расчете СЖЦ систем индивидуального теплоснабжения учитывались капитальные затраты на их создание, перекладку системы газоснабжения района на сеть среднего давления, эксплуатационные затраты.

Расчет систем теплоснабжения и газоснабжения производился по методикам, описанным в работах [7, 10], при этом данные об удельных затратах в трубопроводах, распределительных узлах, оборудовании котельных и т.п. приняты по результатам обобщения большого числа

Puc. 2. Границы экономической целесообразности применения индивидуальных систем теплоснабжения в зависимости от изменения теплоплотности района при изменении цен на природный газ

проектов, реализованных в последние годы [11–14].

Расчет индивидуальных систем теплоснабжения производился с учетом литературных данных, обобщающих опыт применения таких систем [15–18], а также фактических расценок газовых сервисных компаний на обустройство и сервисное обслуживание индивидуальных систем теплоснабжения.

Расчет осуществлялся в широком диапазоне изменения цен на природный газ высокого давления, подаваемый на ГРС: от 37 до 400 USD/ $1000 \, \mathrm{M}^3$.

Основные результаты расчета зависимости удельных затрат жизненного цикла (USD/Гкал) от теплоплотности района застройки для рассматриваемых систем теплоснабжения при различных ценах на природный газ высокого давления представлены в табл. 1 и иллюстрированы рис. 1.

Ориентировочная зависимость теплоплотности района жилой застройки от преобладающей этажности, полученная на основе обработки данных по характерным районам жилой застройки населенных пунктов Украины, представлена в табл. 2.

Анализируя полученные результаты расчетов, следует отметить, что при значениях теплоплотности 0,13 МВт/га и выше, что соответствует преобладающей этажности, равной или большей 3 (рис. 1 б), реконструированные СЦТ выигрывают по экономическим характеристикам у систем индивидуального теплоснабжения при любых ценах на природный газ, и с увеличением цены на него эффективность СЦТ растет (рис. 1 a). Это объясняется тем, что КПД крупных котельных, даже с учетом потерь в тепловых сетях (напомним, что в расчете учитывались современные тепловые сети с потерями около 4 ... 6 %), выше, чем у котла автономной системы теплоснабжения. Это вполне согласуется с результатами технико-экономических сопоставлений, выполненных специалистами – фундаторами существующих СЦТ.

Границы равноэкономичности СИТ с ТА и СЦТ (верхняя кривая) и СИТ с КК и СЦТ (нижняя кривая) в зависимости от теплоплотности района при различных ценах на природный газ высокого давления представлены на рис. 2.

Сравнение систем индивидуального теплоснабжения (рис. 2) с комбинированным котлом, обеспечивающим отопление и горячее водо-

Таблица 2

Преобладающая этажность	24	16	9	7	6	5	4	3	2	1
Теплоплотность, МВт/га	1,1-1,7	1-1,45	0,75- 0,92	0,58- 0,82	0,47- 0,64	0,29- 0,47	0,17- 0,23	0,15-0,1	0,08- 0,05	0,05- 0,03

снабжение квартир, и с отопительным котлом и тепловым аккумулятором горячего водоснабжения в условиях малоэтажной застройки (рис. 2) приводит к следующим результатам.

При высоких ценах на природный газ (350 USD/1000 м³ и выше) системы с комбинированным котлом эффективнее систем с тепловым аккумулятором, а при более низких ценах на природный газ более экономичны системы с тепловым аккумулятором.

При цене на природный газ 350 USD/1000 м³ экономическая эффективность СИТ с ТА и СИТ с КК выравнивается, и их стоит использовать при преобладающей этажности 1, при этом системы СИТ с ТА эффективнее использовать при ценах на природный газ ниже 350 USD/1000 м³ (300 ... 120 USD/1000 м³ – для преобладающей этажности, равной или меньшей 2; 120 USD/1000 м³ и ниже для преобладающей этажности, равной или меньшей 3), а при ценах на природный газ выше 350 USD/1000 м³ более эффективно использовать СИТ с КК (350 ... 400 USD/1000 м³ – для преобладающей этажности, равной 1).

Хотя различия себестоимости тепла от СИТ с ТА и СИТ с КК в диапазоне изменения цен на газ от 150 до 400 USD/1000 м³ составляют от 10 до 1 % (табл. 1), на выбор той или иной системы в домах малоэтажной застройки будут влиять другие, неэкономические факторы.

Здесь следует отметить, что в системах комбинированного теплоснабжения на отопление в условиях всех регионов Украины достаточно около 4 кВт установленной тепловой мощности, а на отопление с одновременным горячим водоснабжением требуемая установленная мощность составляет 24 кВт. При этом большую часть времени суток и года комбинированные котлы должны работать на пониженных нагрузках в тяжелом повторно-кратковременном режиме с низкой продолжительностью включения [19]. Это сокращает срок их жизненного цикла с 25 до 10...15 лет, что также учитывалось при проведении расчетов.

Вопросы, связанные с рассмотрением экономичности систем теплоснабжения с использованием домовых и квартальных котельных, СИТ и СЦТ на основе котлов с конденсацией выхлопа, низкотемпературных систем индивидуального теплоснабжения, не затрагивались в данной статье как требующие отдельного рассмотрения.

В проведенных расчетах и анализе бралась во внимание только одна сторона проблемы — экономическая, но есть еще экологическая, связанная с уровнем приземных концентраций вредных веществ, которые для поквартирных систем по сравнению с СЦТ увеличиваются в 20 раз [3]. Есть также и энергетическая сторона проблемы, а именно то, что поквартирные системы теплоснабжения не способствуют развитию когенерационных систем теплоснабжения в жилищно-коммунальном секторе.

В этой связи следует отметить, что в промышленно-развитых странах мира уклон сделан в сторону развития СЦТ (конечно, на современных типах оборудования в отличие от подавляющего большинства украинских СЦТ, требующих существенной модернизации) благодаря целому ряду их преимуществ по сравнению с системами децентрализованного теплоснабжения [20].

выводы

- 1. Основным фактором, определяющим целесообразность применения тех или иных систем теплоснабжения, является плотность населения данного населенного пункта и площадь его селитебной территории.
- 2. В населенных пунктах с плотностью населения от 0,8 до 1,6 тыс./км², что соответствует 1–3 этажной жилой застройке, экономически целесообразно применение индивидуального теплоснабжения на базе поквартирных генераторов тепла.
- 3. При больших плотностях населения, начиная с этажности застройки 3 и выше, экономически и экологически целесообразно применение систем централизованного теплоснабжения.
- Малиновський Б. Скільки коштує тепло: [Электронный ресурс]. http://www.dt.ua/2000/ 2675/64113.
- 2. *Щуровский В.А.* Применение показателя стоимости жизненного цикла ГТУ // Газотурбинные технологии. -2002. -№ 5. C. 30-31.
- 3. Чистович А.С. Экологическая оценка степени централизации-децентрализации теплоснабжения при сжигании газа // Теплоэнергоэффективные технологии. 2003. № 3. С. 31–36.
- 4. Волкова Е.А., Панкрушина Г.Г., Шульгина В.С. Эффективность некрупных коммунально-быто-

- вых ТЭЦ и рациональные области их применения // Электрические станции. 2010. № 7. С. 2–10.
- Волкова Е.А., Макарова А.С., Хоршев А.А. Исследование эффективности развития теплофикации в России // Изв. Рос. акад. наук. Энергетика. 2010. № 4. С. 95–110.
- 6. Норми та вказівки про нормування витрат палива та теплової енергії на опалення житлових та громадських споруд, а також на господарські потреби в Україні. КТМ 204 України 244-94. / Затверджено наказом Держкомунгоспу України № 24 від 14.12.2003 р. 617 с.
- Соколов Е.Я. Теплофикация и тепловые сети. М.: Энергия, 1975. – 376 с.
- Статистичний щорічник України за 2005 рік / Держкомстат України. За ред. Осауленка О.Г. – К.: Консультант, 2006. – 575 с.
- 9. *Постанова НКРЕ* від 13.07.2010 № 812 "Про затвердження роздрібних цін на природний газ, що використовується для потреб населення".
- 10. Ионин А.А. Газоснабжение. М.: Стройиздат, 1989. 439 с.
- Соколов Е.Я., Побегаева Г.А. Определение материальной характеристики тепловых сетей // Изв. Вузов СССР. Энергетика. –1984. № 7. С. 87–90.
- 12. Соколов Е.Я., Побегаева Г.А. Метод определения материальной характеристики и протяженности тепловой сети в пределах площади застройки района теплоснабжения // Изв. Вузов СССР. Энергетика. 1985. № 3. С. 63–68.
- 13. Тихомиров А.К. Теплоснабжение района города. Хабаровск: Изд. Тихоокеанского гос. ун-та, 2006. 135 с.

- 14. Техническое задание на разработку инвестиционной программы муниципального унитарного предприятия "Теплосеть" по развитию системы теплоснабжения города Ставрополя на 2006–2009 годы: Приложение к Решению Ставропольской городской Думы от 28 июня 2006 года. № 57.
- 15. Корсунский В.Х., Корсунский И.В. Экономические аспекты проблемы реконструкции систем теплоснабжения // Мат. конф. "Системы теплоснабжения. Современные решения". 16–18 мая 2006 г. НП "Российское теплоснабжение".
- 16. *Скоробогаткина М*. Центральное и автономное отопление // Коммунальный комплекс России. 2006. № 9. С. 48–51.
- 17. Семенов В.Г., Разоренов Р.Н. Децентрализованное теплоснабжение на примере г. Смоленска: [Электронный ресурс]. //http://www.rosteplo.ru/Tech stat/stat shablon/php? id=90.
- 18. Автономные или централизованные системы отопления и теплоснабжения проблемы выбора: [Электронный ресурс]. //www.cogeneration.ru/tech real/stirling.html.
- 19. Бабін М.Є., Григор'єв Р.В., Дубовський С.В., Левчук А.П. Річна ефективність використання палива індивідуальними газовими котлами // Проблеми загальної енергетики. 2010. Вип. 3 (23). С. 34—40.
- 20. Дубовський С.В. Стан та тенденції розвитку теплопостачання країн центральної Європи // Комунальна теплоенергетика України: стан, проблеми, шляхи модернізації. К., 2007. Т. 2. С. 659—702.

Надійшла до редколегії: 15.02.2011