Б. И. Огородников^{1, 2}, В. Е. Хан¹, В. П. Ковальчук¹

¹Институт проблем безопасности АЭС НАН Украины, ул. Кирова, 36а, Чернобыль, 07270, Украина ² Физико-химический институт им. Л. Я. Карпова, пер. Обуха, д. 3-1/12, стр. 6, Москва, 105064, Россия

АЭРОЗОЛИ – СВИДЕТЕЛИ РАЗРУШЕНИЯ ЛАВООБРАЗНЫХ ТОПЛИВОСОДЕРЖАЩИХ МАТЕРИАЛОВ В ОБЪЕКТЕ «УКРЫТИЕ»

Представлены радионуклидный состав, дисперсность и концентрации аэрозолей в 2010 - 2011 гг. в помещении 012/7 объекта «Укрытие». Пробы отбирали на трехслойные фильтры Петрянова в 15 – 20 см от южного края лавообразных топливосодержащих материалов (ЛТСМ). Одновременно с помощью радоновой сейсмической станции определяли содержание в воздухе радона и торона. Установлено, что суммарная концентрация аэрозолей-носителей ⁹⁰Sr + ⁹⁰Y и ¹³⁷Cs колебалась в диапазоне 5 – 100 Бк/м³. При этом на долю ¹³⁷Cs приходилось 10 – 20 %. Соотношение концентраций ¹³⁷Cs/²⁴¹Am было близко к 15. Носителями радионуклидов были аэрозоли крупнее 1 мкм. Максимальное содержание радона достигало 100 – 300 Бк/м³. Концентрации ²¹²Pb – дочернего продукта торона – колебались от 0,3 до 30 Бк/м³, а его носителями были преимущественно частицы диаметром 0,1 – 0,3 мкм. Гамма-спектрометрические измерения и радиохимические анализы показали, что состав и соотношения радионуклидов-продуктов аварии 4-го блока ЧАЭС в аэрозольных пробах и образцах ЛТСМ практически идентичны. Это свидетельствует, что происходит деструкция ЛТСМ и частичный переход материалов в аэрозольное состояние.

Ключевые слова: объект «Укрытие», лавообразные топливосодержащие материалы, трехслойные фильтры, радиоактивные аэрозоли, концентрация, дисперсность, соотношение радионуклидов, радон, торон.

Введение

Исследования ЛТСМ, начавшиеся в 1990 г. [1], выявили, по крайней мере, три процесса их изменения:

разрушение поверхности и появление на ней топливной пыли;

образование на поверхности под воздействием влаги новых соединений урана и выщелачивание радионуклидов;

появление микротрещин из-за внутренних напряжений, вызванных неоднородностью ЛТСМ.

Хотя с момента аварии и образования ЛТСМ прошло четверть века, сведений об их состоянии, а тем более разрушении, крайне мало. Результаты первых исследований относятся к марту 1990 г. [2], когда с «языка» лавы у юго-западного входа в помещение 210/7 были взяты спиртовой мазок, мазок на беззольный фильтр и проба аэрозолей при прокачке воздуха через фильтр Петрянова. Измерения мазков свидетельствовали об обеднении «языка» цезием в три раза и рутением в 20 раз. Наоборот, воздушный фильтр имел более чем полуторное обогащение изотопами цезия относительно среднетопливного состава.

В 1995 г. аэрозоли отобрали на фильтр в помещении 305/2 вблизи наиболее крупного скопления ЛТСМ [3]. Около 70 % частиц были сферическими и имели диаметры 1 – 3 мкм. При этом присутствовали отдельные частицы неправильной формы размером до 50 мкм. Авторы публикации приходят к выводу, что такие частицы, если и поднимаются в воздух, то не могут мигрировать на большие расстояния.

В 2006 – 2008 гг. под руководством А. Э. Меленевского были проведены 14 отборов проб радиоактивных аэрозолей в помещении 207/4 и 15 отборов в помещении 318/2 [4]. Предполагалось, что в этих помещениях могут находиться аэрозоли, характеризующие состояние ЛТСМ, поскольку отсюда пробурены многочисленные скважины в места скоплений остатков ядерного топлива, включая ЛТСМ. Установлено, что в смеси бета-излучающих нуклидов-продуктов аварии ($\Sigma\beta$) преобладает ¹³⁷Cs. Причем отношение ¹³⁷Cs/ $\Sigma\beta$ = 0,67, т.е. почти вдвое превышает расчетное значение (0,37) для топлива на момент аварии [4]. Отметим, что в ЛТСМ ¹³⁷Cs/ $\Sigma\beta$ еще меньше, поскольку в процессе их образования при высоких температурах цезий испарялся [5]. Эти данные не позволяют отнести отбираемые аэрозоли в помещениях 207/4 и 318/2 к продуктам разрушения ЛТСМ.

В 2008 – 2009 гг. авторы работы [4], неудовлетворенные аэрозольной средой в помещении 318/2, стали отбирать пробы в помещениях 304/3 и 305/2 через трубы диаметром 11 см, проложенные из помещения 318/2 [6]. В дальнейшем, включая 2011 г., они сосредоточили внимание на аэрозолях из помещения 304/3, которые продолжили отбирать через скважину В.12.76. Из [7] следует, что

© Б. И. Огородников, В. Е. Хан, В. П. Ковальчук, 2013

«отрывавшиеся от поверхности топливные частицы были связаны силами аутогезии с толстым слоем находящихся на поверхности ЛТСМ подобных им логнормально распределенных по размерам частиц с медианным аэродинамическим диаметром около 3,0 мкм». Обобщая результаты этих исследований, в публикации [8] сказано, что «за период 2009 – 2011 гг. максимум радиоактивности в распределении альфа-активных аэрозолей по аэродинамическим диаметрам сместился с интервала 2,0 – 10 мкм до 0,6 – 2 мкм».

К сожалению, в публикациях [4, 6 – 8] не приведены содержания основных альфа-, бета- и гамма-излучающих нуклидов (²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴¹Am, ⁹⁰Sr, ¹³⁷Cs, ¹⁵⁴Eu, ¹⁵⁵Eu) в отобранных аэрозолях и образцах ЛТСМ. Поэтому нельзя сопоставить соотношения радионуклидов и связать генерацию аэрозолей с разрушением ЛТСМ.

Помимо отборов аэрозолей в объекте «Укрытие» несколько исследований с фрагментами ЛТСМ были проведены в лабораторных условиях. Так, в работе [2] образцы ЛТСМ помещали в контейнер, торцы которого закрывали фильтрами. Продували воздух и анализировали радиоактивные частицы, поступившие на выходной фильтр. В работе [9] пылегенерирующую способность фрагментов ЛТСМ оценивали двумя способами: либо с них смывали пыль этанолом, либо их помещали в стеклянный контейнер и длительное время выдерживали при нормальных климатических условиях, а затем измеряли радиоактивность стенок контейнера. Вторая методика получила развитие в исследовании [10]: в контейнере создавали высокий вакуум и генерируемые с поверхности ЛТСМ частицы оседали на коллекторы. В публикации [11] сделана оценка пылегенерирующей способности всех видов ЛТСМ и отмечено, что она растет с увеличением содержания в них топлива. Кроме того, с поверхности ЛТСМ происходит выделение во внешнюю среду частиц размером 0.03 - 0.2 мкм, а полное разрушение ЛТСМ, вероятно, произойдет в ближайшие 10 – 50 лет. Именно под влиянием такого прогноза авторы публикаций [4, 6 – 8] сконцентрировали свое внимание на поиске в объекте «Укрытие» аэрозолей субмикронных размеров. Однако в 2011 г. А. В. Жидков, базируясь на своих новых исследованиях, в публикации [12] сообщил, что по сравнению с 1997 г. пылегенерирующая способность ЛТСМ снизилась в 250 – 400 раз, а размер образующихся аэрозолей находится в диапазоне 0,65 - 0,8 мкм.

Из вышеизложенного следует, что имеющиеся сведения о пылегенерирующей способности ЛТСМ скудные и противоречивые. Исследования проводились либо эпизодически, либо на некотором удалении от ЛТСМ, либо с образцами ЛТСМ, находящимися в лаборатории. Требовался систематический контроль воздушной среды, в частности радиоактивных аэрозолей, непосредственно в местах размещения ЛТСМ в объекте «Укрытие» при фактических температурных, влажностных, воздухообменных, радиационных и других условиях. Этому посвящена предлагая ниже работа.

Описание помещения 012/7 и находящегося в нем скопления ЛТСМ

Для наблюдений было выбрано скопление ЛТСМ в помещении 012/7. Оно расположено на высотной отметке 0 м в системе бассейна-барботера 4-го блока ЧАЭС. В соответствии с [13] скопление имеет в плане форму эллипса с меридиональной осью длиной ~ 3 м и широтной ~ 2 м. Его наибольшая высота в куполе ~ 0,8 м. Нижняя часть скопления (~ 0,3 м) залита бетоном, поступавшим сюда в 1986 г. при возведении каскадной стены объекта «Укрытие». По оценке на сентябрь 2010 г. [14] в этом скоплении, получившем название «Куча», содержится 1,0 ± 0,5 т урана. В середине ноября 2010 г. у южного конца скопления мощность экспозиционной дозы гамма-излучения составляла около 70 Р/ч, за бетонной стеной в смежном помещении 012/8 – 3 Р/ч и в середине этого помещения 0,3 Р/ч.

При экспериментах по пылеподавлению и локализации ЛТСМ в марте 2000 г. южная половина скопления была покрыта слоем кремнийорганического компаунда «ЭКОР-25ММ» толщиной 1 – 3 см [15]. Эта белая пленка видна на рис. 1. Согласно ТУ компаунд сохраняет свои прочностные характеристики при температуре до 600 °С, альфа- и бета-излучениях до 10⁹ рад и гамма-излучении до 10¹⁰ рад. Предполагается, что срок его службы составит около 100 лет [15].

Доступ к скоплению ЛТСМ при умеренных дозовых нагрузках был организован из коридора 006/2 через помещения 009/4 и 012/8. Для прохода через помещение 009/2, которое с 2009 г. заполнено слоем воды глубиной около 30 см, были установлены слани. Помещения 012/7 и 012/8 оставались сухими.

Методы отбора проб

Аэрозоли отбирали воздуходувкой H-810 RADēCO со скоростью около 100 л/мин. Использовали пакеты фильтров Петрянова площадью 20 см², состоящие из слоев: ФПА-70-0,13, ФПА-70-0,21,

Рис. 1. Скопление ЛТСМ, частично укрытое «ЭКОР-25ММ» (белая пленка), в помещении 012/7.

Рис. 2. Пробоотборный комплекс в помещении 012/7 объекта «Укрытие».

АФА РСП-20 и АФА РМА-20. Воздух прокачивали около 2 ч. Затем фильтры демонтировали, осматривали и в бумажных конвертах отправляли на анализ.

Концентрации радона и торона измеряли сейсмической радоновой станцией СРС-05 «Торон-1» [16, 17]. Работа прибора основана на измерении активности дочерних продуктов радона и торона (²¹⁸Ро и ²¹⁶Ро), оседающих под воздействием электрического поля на полупроводниковый детектор в камере объемом 0,25 л. В режиме «Радон» станция может производить за сутки до 60 циклов измерений, а в режиме «Торон» – до 144. Воздух поступает в прибор через фильтр АФА РСП-20 со скоростью около 0,8 л/мин. Его температура и относительная влажность измеряются на выходе. Там же помещен датчик атмосферного давления. Воздуходувку и прибор СРС-05 размещали на шасси от детской коляски (рис. 2).

Чтобы отбор аэрозолей и измерение концентраций радона и торона происходили из одного объема воздуха, заборное отверстие прибора СРС-05 вставляли в воронку, через которую происходил выход потока из воздуходувки Н810. Для снижения дозовых затрат приборы монтировали на шасси за бетонной стеной в помещении 012/8, а затем вкатывали в помещение 012/7 к южному концу скопления ЛТСМ. Примерно через 2 ч экспозицию фильтров заканчивали, шасси вытягивали в помещение 012/8, фильтры демонтировали, а прибор СРС-05 вновь вкатывали в помещение 012/7. На следующие сутки все операции повторяли с новым пакетом фильтров. Таким образом, радиоактивные аэрозоли контролировали раз в сутки, а динамику концентраций радона и торона – непрерывно в течение 4 – 5 сут.

Для сопоставления радионуклидного со-

става и концентрации аэрозолей в помещении 012/7 и в выбросе из объекта «Укрытие» синхронно отбирали пробы в системе «Байпас», через которую воздушные потоки из развала 4-го блока по вентиляционной трубе ВТ-2 поступают в свободную атмосферу. Для пробоотбора использовали такие же, как в помещении 012/7, пакеты фильтров Петрянова и воздуходувку Н810 (результаты представлены в [18]).

Анализ радиоактивных веществ

Через 10 – 15 мин после окончания прокачки воздуха фильтры поступали в помещение Г328 объекта «Укрытие» для радиометрии. Пакеты разделяли на три слоя согласно их исходной окраске: голубой (ФПА-70-0,13), розовый (ФПА-70-0,21) и белый (АФА РСП-20 и АФА РМА-20). Композицию из двух фильтров в белом слое использовали для обеспечения практически полного улавливания субмикронных аэрозолей. Фильтр АФА РСП-20 осматривали и оценивали изменение его окраски (оттенки серого цвета), что примерно характеризовало количество поступившей на него пыли.

Измерение бета-активности фильтров выполняли на приборе КРК-1. Слои поочередно измеряли по 100 с. При активности свыше 100 имп/с экспозиция продолжалась 10 с. Общее время анализов составляло 60 – 90 мин. По кривым распада рассчитывали количество дочерних продуктов (ДПР) радона (²²²Rn) и торона (²²⁰Rn) на момент окончания прокачки воздуха. Через 4 – 5 сут, когда полностью распадались не только ДПР радона, но и торона, измерения повторяли. При этом каждый слой

экспонировали, как правило, 1000 с. В результате определяли суммарное содержание ($\Sigma\beta$) аэрозолейносителей ⁹⁰Sr + ⁹⁰Y и ¹³⁷Cs, а также ²¹²Pb – одного из ДПР торона с периодом полураспада 10,6 ч.

Последующие измерения радиоактивных веществ выполняли на гамма-спектрометрическом комплексе, состоящем из полупроводникового детектора GL2020R из сверхчистого германия с бериллиевым окном толщиной 500 мкм и 8192-канального амплитудного анализатора импульсов. Измерительный диапазон охватывает энергии от 10 до 1400 кэВ. Детектор имеет разрешение 0,57 и 1,2 кэВ для энергий гамма-квантов 122 кэВ (гамма-линия ⁵⁷Co) и 661,6 кэВ (гамма-линия ¹³⁷Cs) соответственно. По результатам измерений рассчитывали содержание в фильтрах ¹³⁷Cs, ¹⁵⁴Eu и ²⁴¹Am.

Две пробы (от 16 октября и 19 ноября 2011 г.) были еще проанализированы радиохимическими методами. После озоления фильтров и растворения зольных остатков активность ⁹⁰Sr определяли бета-радиометрическими измерениями, а ²³⁸Pu, ²³⁹⁺²⁴⁰Pu и ²⁴¹Am – с помощью альфа-спектрометрии.

Контроль воздушной среды

Температуру, относительную влажность воздуха и его давление в помещении 012/7 контролировали по показаниям датчиков прибора СРС-05. Они фиксировались автоматически при каждом цикле прокачки воздуха, т.е. через каждые 10 мин при режиме «Торон» и через 22 мин при режиме «Радон». Кроме того, скорости и направления воздушных потоков периодически измеряли в дверных проемах из коридора 006/2 в помещение 009/2, из него – в помещение 012/8 и отсюда – в помещение 012/7. Использовали термоанемометр с автономным питанием ТАМ-1, обеспечивавший измерения в диапазоне 0,1 – 2 м/с. Скорости и направления воздушных потоков в объекте «Укрытие» зависят от разности температур в его внутренних помещениях и снаружи, а также положения «открыто» - «закрыто» многочисленных дверей, проемов и люков.

Метеопараметры во внешней среде контролировали по показаниям (обновление через 5 мин) автоматического метеопункта, размещенного в 500 м южнее объекта «Укрытие» на площадке ОРУ-750, а также метеостанции «Чернобыль», находящейся в 18 км на юго-восток от ЧАЭС. Замеры на станции проводят каждые 3 ч. Иногда эти данные дополняли собственными наблюдениями (туман, высота нижней кромки облачности, осадки и т.д.).

Результаты и обсуждение Состояние воздушной среды

На рис. 3 видно, что относительная влажность воздуха в помещении 012/7 варьировала от 30 до 85 %. В течение суток она иногда изменялась на 5 – 10 %. Вероятнее всего, влажность определялась метеоусловиями во внешней среде. Наиболее низкие значения (30 – 40 %) наблюдали в декабре 2010 г. и феврале 2011 г. при отрицательных температурах (ниже -10 °C). Высокая влажность (около 85 %) зафиксирована в мае и сентябре 2011 г., когда температура в атмосфере достигала 20 – 25 °C.

В отличие от влажности температура воздуха в помещении 012/7 была очень стабильная. В холодный период года она находилась на уровне 12 - 13 °C, а в теплый - колебалась около 9 °C. Суточных изменений не наблюдалось. Такой режим обеспечивался огромной массой бетонных и металлических сооружений объекта «Укрытие» и расположением помещения 012/7 на высотной отметке 0 м, т.е. в подвале, где воздухообмен был незначительный. В это же время температура воздуха во внешней среде колебалась существенно (см. рис. 3). Как зимой, так и летом в середине дня, когда, как правило, отбирали пробы в помещении 012/7, различие температур снаружи и внутри достигало 20 – 25 °C. Даже при многосуточных морозах в ноябре – декабре 2010 г. и январе – феврале 2011 г. температура в помещении 012/7 за 4 мес снизилась только на 4 °C (с 13 до 9 °C). Такая же инерционность температуры наблюдалась в летние месяцы, когда после зимы шел прогрев объекта «Укрытие». При этом с мая по сентябрь 2011 г. температура воздуха в помещении 012/7 сс 9 до 12 °C).

Воздухообмен в районе расположения ЛТСМ в помещении 012/7 был слабый. Об этом свидетельствуют измерения скоростей и направлений потоков в дверных проемах между коридором 006/2 и помещением 009/4 (площадь проема ~ 2 м²), помещениями 009/4 и 012/8 (~ 1,5 м²) и помещениями 012/8 и 012/7 (~ 1 м²). При четырех сеансах отборов аэрозолей, выполненных с 30 марта по 12 апреля, максимальные скорости воздушных потоков в первом проеме не превышали 0,8 м/с, во втором – 0,4 м/с и в третьем – 0,2 м/с. Такие же наблюдения, проведенные с 17 по27 мая, показали что движе-

Рис. 3. Относительная влажность (●) и температура воздуха (Δ) в помещении 012/7, температура воздуха на метеостанции «Чернобыль» (◊) в 2010 – 2011 гг.

. ...

ния воздуха в проемах практически не было.

Осмотры слоев фильтров после окончания пробоотборов показали, что накопление осадка приводило к изменению их цвета, особенно третьего слоя, где использовался АФА РСП-20. Иногда этот слой становился чуть-чуть серым, иногда - интенсивно серым, а в некоторых случаях даже черным. Такое почернение фильтров было зафиксировано 7 и 8 апреля, 14 и 15 сентября. В эти дни наблюдались сильные ветры с порывами 8 – 10 м/с, и можно было бы связать почернение фильтров с поступлением запыленного воздуха с промплощадки ЧАЭС. Однако значительное потемнение фильтра наблюдалось и 17 февраля во время практически полного безветрия. Следует отметить, что появление интенсивного пылевого осадка в апреле и сентябре не сопровождалось значительным увеличением содержания в нем радионуклидов-продуктов Чернобыльской аварии. Это в какой-то мере свидетельствует в пользу того, что пыль была принесена с промплощадки ЧАЭС или из других менее радиоактивно загрязненных помещений объекта «Укрытие».

Концентрация аэрозолей-носителей продуктов аварии

Результаты радиометрических и гамма-спектрометрических измерений отобранных аэрозолей приведены в табл. 1 и на рис. 4. Всего за 2010 – 2011 гг. обработана 71 проба.

Таблица 1. Характеристики радиоактивных аэрозолей в помещении 012/7 объекта «Укрытие»
в 2010 – 2011 гг.

Пото		Кс	нцентр	рация, Б	к/м ³		$\sum \beta$		ДПР		Vалория	Ветер		
дата отбора	Σβ	¹³⁷ Cs	²⁴¹ Am	¹⁵⁴ Eu	ДПР	²¹² Pb	АМАД, мкм	σ	АМАД, мкм	σ	у словия отбора	средний, м/с	порывы, м/с	направ., град
	2010 Γ.												I , j	
13.4	21	1,1	0,12	0,030	63	14	>8	1,6	0,06	-	штиль	1,0	3,0	30
16.11	8,5	2,7	0,12	0,036	250	4,7	6,6	2,1	0,18	3,4	туман, штиль	0	2,5	0
17.11	71	7,0	0,59	0,12	265	8,4	5,2	1,9	0,10	3,7	туман, штиль	1,5	4,5	50
19.11	26	3,5	0,28	0,057	211	6,1	7,8	1,8	0,23	2,1	низкая обл.	2,5	6,5	150
22.11	18	2,6	0,16	0,036	155	7,2	7,8	1,8	0,09	-	штиль	1,0	3,0	145
23.11	23	2,9	0,20	0,032	119	3,4	4,9	1,3	0,11	-	ветрено	4,0	11	135
25.11	36	4,9	0,36	0,060	68	2,8	5,4	2,2	0,15	5,9	-	2,5	6,5	200
29.11	32	3,6	0,35	0,063	258	5,0	5,4	2,2	0,15	5,8	метель	2,5	9,0	70
1.12	49	6,3	0,37	0,081	46	2,2	4,4	1,4	0,27	1,8	штиль	0,5	2,5	30
2.12	52	6,6	0,49	0,086	22	1,4	5,8	2,0	0,23	3,5	-	2,0	6,0	70
8.12	24	3,2	0,24	0,042	58	6,2	>8	-	0,23	1,2	штиль, низкая обл.	0,5	3,5	280
9.12	35	4,6	0,40	0,070	76	9,0	5,6	1,7	0,22	1,3	туман	2,0	5,0	160

												Пр	одолжени	е табл. І
	1	10			, 3		20	11 г.						
Лата		Ко	нцентр	рация, Б	к/м ³		Σβ	1	ДПР	r —	Условия		Ветер	
отбора	Σβ	¹³⁷ Cs	²⁴¹ Am	¹⁵⁴ Eu	ДПР	²¹² Pb	АМАД, мкм	σ	АМАД, мкм	σ	отбора	средний, м/с	порывы, м/с	направ., град
18.1	11	1,5	0,089	0,022	83	7,9	>8	2,4	0,070	8,4	низкая обл.	2,0	5,0	280
19.1	4,2	0,61	0,036	0,0087	59	12	4,6	2,1	0,070	8,5	туман	2	4	155
9.2	15	2,9	0,15	0,037	20	4,9	4,3	1,8	0,64	12	ветрено	4,5	13,5	300
10.2	13	2,3	0,11	0,021	11	1,9	3,5	2,1	0,36	7,2	ветрено	3,5	10	310
11.2	12	2,3	0,13	0,026	25	1,1	3,2	1,7	0,29	4,9	-	1,5	4,5	230
15.2	11	2,4	0,12	0,027	5,6	4,2	6,7	3,8	-	-	ясно	2,0	5,0	330
16.2	17	2,9	0,15	0,029	6,8	1,0	2,4	2,0	-	-	штиль	0,5	2,5	315
17.2	40	5,0	0,39	0,073	5,8	0,51	7,1	1,8	0,31	1,3	штиль	1,5	3,5	100
15.3	5,3	0,73	0,046	0,009	67	14	5,0	2,2	0,15	2,4	-	2,0	6,0	300
16.3	18	2,4	0,14	0,029	68	5,5	3,5	1,8	0,25	3,1	-	2,0	5,5	15
17.3	10	1,4	0,11	0,022	60	4,4	>8	2,8	0,15	5	штиль	1,0	5,0	65
18.3	12	1,6	0,10	0,022	36	1,4	3,9	2,1	0,16	2,7	ясно	2,0	5,0	115
21.3	23	3,2	0,22	0,047	36	5,6	1,9	1,1	0,11	5,3	-	2,0	6,0	290
22.3	16	1,7	0,099	0,020	39	3,2	3,0	2,1	0,14	3,3	-	2,5	5,5	245
23.3	33	4,1	0,30	0,049	85	4,0	1,6	1,4	0,16	1,6	ветрено	2,5	7,5	300
24.3	26	4,6	0,32	0,065	23	1,8	4,2	1,9	0,10	-	ветрено	4,5	11	285
25.3	8,9	1,5	0,067	0,011	29	0,52	2,4	2,5	0,13	-	-	2,0	6,0	290
28.3	11	2,0	0,083	0,016	67	6,3	2,4	3,3	0,17	2,0	ветрено	4,0	11	185
29.3	26	3,5	0,24	0,045	43	3,8	3,7	1,4	0,23	1,4	-	2,0	5,0	220
30.3	104	12	0,93	0,18	63	10	4,0	2,0	0,19	1,2	ветрено	3,0	10	300
31.3	23	3,1	0,20	0,039	62	8,8	4,6	2,1	0,20	1,5	штиль	2,0	4,5	75
4.4	16	2,3	0,17	0,034	140	13	5,6	2,0	0,13	3,4	-	2,0	7,0	100
7.4	18	2,8	0,16	0,040	53	4,1	3,5	2,0	0,30	-	ветрено	4,0	12	325
8.4	19	3,0	0,18	0,037	18	0,28	4,9	1,9	0,24	4,2	ветрено	5,0	12	265
12.4	57	7,0	0,63	0,12	70	9,3	6,2	2,1	0,17	2,2	штиль	1,0	3,5	35
13.4	88	9,4	0,78	0,15	95	23	5,8	1,6	0,050	-	-	2,5	6,5	190
14.4	14	2,2	0,13	0,017	96	20	4,0	1,6	0,040	-	штиль	1,5	4,5	335
15.4	32	4,2	0,32	0,067	73	3,7	3,4	2,0	0,17	3,9	-	2,0	7,5	15
17.5	18	2,0	0,14	0,027	132	20	4,6	2,2	0,11	3,5	штиль	1,0	5,0	310
18.5	4,8	0,62	0,048	0,010	123	16	3,1	1,6	0,080	5,4	-	2,0	5,5	240
19.5	12	1,5	0,11	0,024	118	23	>8	1,5	0,040	-	штиль	1,0	3,0	55
23.5	15	2,2	0,067	0,014	112	18	5,4	2,3	0,070	-	штиль	0,5	4,0	0
24.5	18	2,0	0,14	0,031	153	16	1,6	2,2	0,12	3,6	штиль	1,0	5,5	10
25.5	7,1	1,0	0,052	0,012	132	25	3,3	1,8	0,21	2,1	ливень	2,0	6,0	335
27.5	18	2,1	0,14	0,029	138	21	5,7	2,1	0,10	4,4	-	2,0	6,5	190
14.9	7,3	0,88	0,065	0,016	115	24	3,9	2,1	0,14	1,3	-	2,0	8,0	240
15.9	13	1,6	0,11	0,023	104	12	5,7	1,8	0,08	5,4	-	2,0	5,0	270
16.9	16	1,8	0,18	0,035	48	6,6	>8	-	0,18	2,5	-	2,0	6,0	260
19.9	17	2,4	0,20	0,042	125	11	4,4	1,7	0,11	4,1	ветрено	3,0	10	130
20.9	9,0	1,2	0,086	0,017	162	6,6	>8	-	0,23	1,6	штиль	1,5	4,5	110
21.9	12	1,7	0,14	0,031	110	8,8	>8	-	0,14	3,8	штиль	0,5	3,0	32
22.9	19	2,0	0,14	0,031	159	4,2	>8	-	0,19	3,6	штиль	1,0	3,0	110
23.9	46	5,0	0,46	0,093	138	5,6	3,9	1,5	0,25	1,4	-	1,0	4,5	260
3.10	13	1,6	0,12	0,023	80	3,1	5,0	1,6	0,17	1,6	-	1,5	5,5	270
4.10	32	3,5	0,32	0,070	74	3,7	6,3	1,5	0,09	8	-	2,0	5,0	270
6.10	18	2,2	0,19	0,032	107	3,7	1,6	3,1	0,11	3,3	-	1,5	5,0	270
7.10	11	1,4	0,11	0,019	136	12	5,8	1,6	0,15	2,3	-	1,5	4,0	200
10.10	25	3,0	0,22	0,042	117	6,0	4,5	1,5	0,12	4,2	-	2,0	7,0	290
11.10	19	2,3	0,18	0,033	87	4,0	2,3	1,6	0,11	3,7	-	3,0	7,5	225
14.10	61	6,6	0,60	-	86	2,3	3,2	1,6	0,18	2,7	-	2,0	5,0	300
17.10	593	63	6,0	1,1	104	4,0	3,1	1,5	0,10	3,2	штиль	0,5	4,0	310
19.10	95	11	0,95	0,18	94	4,5	3,2	1,8	0,09	-	-	2,0	7,0	170
20.10	38	4,2	0,36	0,067	110	3,2	5,3	1,8	0,18	2,1	-	1,5	3,5	165

												Пр	одолжени	г табл. 1
Пото		Кс	нцентр	рация, Б	к/м ³		$\sum \beta$	$\Sigma \beta$ $Д\Pi P$			Ветер			
дата	Σß	137Cs	$^{241}\Lambda m$	¹⁵⁴ Eu	лпр	²¹² Ph	АМАД,	G	АМАД,	6	у словия отбора	средний,	порывы,	направ.,
0100pa	∠Р	Co	АШ	Ľu	дш	10	МКМ	0	МКМ	0	0100pa	м/с	м/с	град
5.11	16	2,1	0,15	0,027	18	0,86	3,7	1,2	0,50	9,1	штиль	2	6,5	270
16.11	78	8,3	0,73	0,14	-	-	3,8	1,7	0,38	1,5	-	1,5	4,5	350
18 11	54	65	0.52	0.12	13	0.96	5 5	17	0.26	12	туман,	2.0	45	275
10.11	54	0,5	0,52	0,12	15	0,70	5,5	1,7	0,20	1,2	штиль	2,0	ч,5	215
21.11	39	5,0	0,34	0,074	39	2,0	4,4	2,0	0,31	1,6	туман	1,0	3,5	130
24.11	100	10	0,92	0,18	49	1,4	-	-	0,20	4,0		1,0	3,5	120
25.11	62	7,4	0,56	0,11	23	1,4	2,9	4,0	0,19	4,9	штиль	2,0	4,0	215

Как видно из представленных данных, наиболее низкие концентрации аэрозолей зарегистрированы 19 января, а наиболее высокие – 17 октября 2011 г. За весь период величины $\Sigma\beta$ варьировали в диапазоне 4,2 – 593 Бк/м³, ¹³⁷Cs – 0,61 – 63 Бк/м³, ²⁴¹Am – 0,036 – 6 Бк/м³ и ¹⁵⁴Eu – 0,0087 – 1,1 Бк/м³. Таким образом, минимальные и максимальные значения различались на два порядка величины. Однако на рис. 4 хорошо видно, что большинство результатов находилось в узких диапазонах значений: $\Sigma\beta$ – 20 – 50, ¹³⁷Cs – 3 – 6, ²⁴¹Am – 0,1 – 0,4 и ¹⁵⁴Eu – 0,02 – 0,06 Бк/м³. Из этого следует, что в помещении 012/7 почти полтора года сохранялось устойчивое содержание радиоактивных аэрозолей-продуктов Чернобыльской аварии.

Достаточно стабильными были и соотношения радионуклидов. Из табл. 1 и рис. 5 следует, что среднее значение отношения концентраций $^{137}Cs/\Sigma\beta = 0,13$ (при минимальном значении 0,053 и максимальном 0,32), $^{137}Cs/^{241}Am = 15$ (минимум 9,2, максимум 29) и $^{137}Cs/^{154}Eu = 75$ (минимум 37, максимум 139). Из полученной средней величины $^{137}Cs/\Sigma\beta$ следует, что вклад ^{137}Cs в сумму бета-излучающих нуклидов-продуктов Чернобыльской аварии составлял лишь 13 %.

Две пробы, отобранные 19 октября и 16 ноября 2011 г., были проанализированы радиохимическим методом. Полученные результаты с неопределенностью измерения ± 10 % приведены в табл. 2.

Таблица 2. Содержание (Бк) ⁹⁰Sr и трансурановых элементов в пробах аэрозолей из помещения 012/7

Дата отбора	Объем, м ³	⁹⁰ Sr	²⁴¹ Am	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴⁴ Cm
19 октября	11,6	298	9,3	2,3	4,7	0,21
16 ноября	12,3	242	8,7	1,7	3,5	0,17

Из данных табл. 2 следует, что концентрация ²⁴¹Am при пробоотборе 19 октября была 0,8 Бк/м³ и 16 октября – 0,71 Бк/м³. С учетом точности измерения это совпадает с результатами гамма-спектрометрии фильтров, приведенными в табл. 1.

Для сопоставления радионуклидных составов аэрозолей и скопления ЛТСМ были проанализированы несколько гранул лавовой коры из южного края скопления в 30 см от точки отбора аэрозолей. Результаты их гамма-спектрометрии и радиохимического анализа приведены на 21 июля 2011 г. в табл. 3.

⁹⁰ Sr	^{137}Cs	¹⁵⁴ Eu	¹⁵⁵ Eu	²⁴¹ Am	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu
37 ± 11	$21 \pm 2,9$	$0,38 \pm 0,053$	$0,069 \pm 0,0016$	$1,8 \pm 0,25$	$0,\!47 \pm 0,\!094$	$0,98 \pm 0,02$

Таблица 3. Содержание радионуклидов (МБк/г) в гранулах ЛТСМ из помещения 012/7

По данным, приведенным в табл. 1 и 3, были рассчитаны соотношения радионуклидов в аэрозолях, гранулах и коричневой керамике (табл. 4).

Тиолици 4. Сооп	пошения радионукли	tob no pesysibiatam ram	тма-спектрометрии
Объект	$^{137}Cs^{/241}Am$	$^{137}Cs^{/154}Fu$	$^{241}Am/^{154}Fu$

Г

Таблица 4.	Соотношения	радионуклидов і	по результатам	гамма-спектрометрии

OUBERI	C3/ All	CS/ Lu	Alli/ Lu
Аэрозоли	15	75	5
Гранулы	$12 \pm 2,3$	55 ± 11	$4,7 \pm 0,9$
Керамика	19	100	5,2

По результатам радиохимических анализов также были получены соотношения количеств изотопов в аэрозольных пробах и гранулах (табл. 5).

Объект	Дата отбора	²⁴¹ Am/ ²³⁸ Pu	²⁴¹ Am/ ²³⁹⁺²⁴⁰ Pu	90 Sr/ 241 Am
A	19 октября	4,03	1,97	32
Аэрозоли	16 ноября	5,06	2,5	26,7
Гранулы	17 мая	3,83	1,84	20,6

Таблица 5. Соотношения радионуклидов по результатам радиохимических анализов

Из табл. 4 и 5 следует, что соотношения радионуклидов в пробах аэрозолей и в грану-лах из скопления ЛТСМ имеют близкие значения. Расхождения результатов связаны как с неопределенностью измерения, так и неоднородностью состава ЛТСМ. На последний фактор было обращено внимание еще в публикациях [2, 5]. Об этом же свидетельствуют наши измерения 20 января 2010 г. фрагментов коричневой керамики, составляющей основную массу ЛТСМ в помещении 012/7 (см. табл. 4).

Данные табл. 4 и 5 показывают, что наблюдаемые в помещении 012/7 радиоактивные аэрозоли возникают вследствие эрозии поверхности ЛТСМ. Этот механизм подтверждается результатами определения дисперсности аэрозольных частиц, приведенными ниже.

Концентрации аэрозолей ДПР

Интерес к ДПР обусловлен тем, что среди них имеются альфа-излучающие изотопы, которые вносят дополнительный вклад во внутреннее облучение персонала объекта «Укрытие». Кроме того, их носителями служат присутствующие в воздухе ядра конденсации, преимущественный размер которых 0,1 – 0,3 мкм. Таким образом, ДПР являются своеобразной меткой субмикронных аэрозолей и могут использоваться для оценки переноса воздушных потоков и эффективности работы различных систем, например очистных фильтров и респираторов.

Из результатов, представленных в табл. 1 и на рис. 6, следует, что минимальные концентрации ДПР около 6 Бк/м³ наблюдались в середине февраля 2011 г. Максимальные концентрации 250 – 265 Бк/м³ были зарегистрированы тремя месяцами ранее (во второй половине ноября 2010 г). Однако в большинстве проб объемные активности ДПР находились в диапазоне 60 – 120 Бк/м³. Поскольку на промплощадке объекта «Укрытие» концентрации ДПР на порядок величины ниже [19], то их высокое содержание в помещении 012/7 обусловлено эминированием радона и торона из строительных конструкций и грунта, в который заглублен фундамент сооружения. Кроме того, частично торон может эманировать из ЛТСМ, в котором находится ²³²U, накопленный в топливе реактора 4-го блока за время кампании, предшествующей аварии 1986 г. [20].

Измерения ²¹²Pb, образующегося в цепочке радиоактивного распада торона, показали, что его концентрации находились в диапазоне 0,3 – 25 Бк/м³. Однако наиболее часто объемная активность

²¹²Pb составляла 1 – 10 Бк/м³. Если учесть, что при распаде ²¹²Pb образуется бета-активный ²¹²Bi, то из общей объемной активности ДПР на долю производных торона приходится примерно 20 – 30 %, а остальное – на продукты распада радона.

Исходя из физико-химических характеристик радона и торона, ожидалась хорошая корреляция между концентрациями их дочерних продуктов. Однако, как следует из рис. 7, это предположение оправдалось лишь частично. Очевидно, ДПР поступают в помещение 012/7 из нескольких источников. Помимо бетонных стен и перекрытий самого помещения 012/7, это может быть грунт в фундаменте объекта «Укрытие», а также перенос воздуха из других помещений. Как видно на рис. 8, между концентрациями $\Sigma\beta$ и ²¹²Pb корреляции совершенно нет. Это свидетельствует о различии источников и механизмов их генерации.

Рис. 7. Корреляция концентраций ДПР и ²¹²Pb.

Рис. 8. Корреляция концентраций $\Sigma\beta$ и ²¹²Pb.

Дисперсность радиоактивных аэрозолей

Применение многослойных фильтров Петрянова позволило одновременно исследовать не только радионуклидный состав и объемные активности аэрозолей, но и их распределение по размерам (дисперсность). Методика определения размеров аэрозолей изложена в [21]. Исходя из априорной информации об их логарифмически нормальном распределении, были рассчитаны активностный медианный аэродинамический диаметр (АМАД) и стандартное геометрическое отклонение σ . Полученные результаты приведены в табл. 1 и на рис. 9. Как видно на рис. 9, наиболее часто носителями $\Sigma\beta$ были частицы с АМАД 2 – 8 мкм. Среди 70 измеренных проб лишь четыре имели АМАД менее 2 мкм и девять – свыше 8 мкм. Такое распределение свидетельствовало, что основным механизмом их возникновения был диспергационный. Вероятно, они образовывались вследствие деструкции поверхности ЛТСМ.

Существенно иную дисперсность имели аэрозоли-носители ДПР. На рис. 9 хорошо видно, что их АМАД находились в диапазоне 0,04 – 0,6 мкм. Однако наиболее часто ДПР были связаны с части-

цами 0,1 – 0,3 мкм. Это обусловлено тем, что основным механизмом их образования был конденсационный, т.е. осаждение атомов свинца и висмута, возникающих при радиоактивном распаде радона и торона, на атмосферных ядрах конденсации.

Представленные здесь результаты характерны для объекта «Укрытие» и уже обсуждались в публикациях [18, 22, 23].

Рис. 9. АМАД аэрозолей-носителей ∑β (○) (● – пробы с АМАД больше 8 мкм) и ДПР (▲) в помещении 012/7 в 2010 – 2011 гг.

Перенос аэрозолей из помещения 012/7 (по наблюдениям в системе «Байпас»)

Характерной особенностью проведенных исследований был одновременный отбор проб аэрозолей в помещении 012/7 и системе «Байпас», через которую выбросы из объекта «Укрытие» поступают в свободную атмосферу. Общая схема воздушных потоков в объекте «Укрытие» представлена в [23]. Поскольку вентилирование внутренних помещений происходит только за счет естественной тяги, то воздушные потоки с нижних высотных отметок поступают преимущественно на верхние и выходят наружу через люки и щели легкой кровли объекта «Укрытие» (на высотной отметке около +70 м) и срез высотной трубы BT-2 на +150 м.

Методики отбора и анализа проб из помещения 012/7 и системы «Байпас» были идентичные. Из сопоставления результатов, представленных в табл. 1 и [18, 22], следует, что концентрации аэрозолей Σβ, выбрасываемых в BT-2,

были на порядок величины ниже, чем в помещении 012/7. В то же время более высокими были соотношения $^{137}Cs/\Sigma\beta$ (около 0,35) и $^{137}Cs/^{241}Am$ (около 50 – 70). Следовательно, воздух, выходивший из помещения 012/7, разбавлялся более «чистыми» потоками, но содержавшими аэрозоли, обогащенные конденсационным ^{137}Cs [5].

Подобно $\Sigma\beta$ более низкими (на порядок величины) оказались объемные активности ДПР. Однако средняя концентрация ²¹²Pb в системе «Байпас» была ниже лишь в 2 – 3 раза. Это подтверждает высказанное выше предположение, что ДПР радона и торона эманируют из бетонных конструкций объекта «Укрытие» и поступают в вентиляционный поток на всех высотных отметках.

Выводы

1. На протяжении 2010 – 2011 гг. в помещении 012/7 объекта «Укрытие» с помощью специального комплекса отобраны и проанализированы около 70 проб радиоактивных аэрозолейпродуктов Чернобыльской аварии и ДПР. Все пробы были взяты из одной точки на расстоянии около 20 см от южного края подножья скопления ЛТСМ.

2. Относительная влажность воздуха в помещении 012/7 в зависимости от сезона года варьировала от 30 до 85 %. В течение суток она иногда изменялась на 5 – 10 %. В отличие от влажности температура воздуха в помещении 012/7 была очень стабильная. В холодный период года она находилась на уровне 12 – 13 °C, а в теплый колебалась около 9 °C. Суточных изменений не наблюдалось.

3. На протяжении почти полутора лет в помещении 012/7 сохранялось устойчивое содержание радиоактивных аэрозолей-продуктов Чернобыльской аварии. Объемные активности, как правило, находились в узких диапазонах значений: $\Sigma\beta - 20 - 50$, $^{137}Cs - 3 - 6$, $^{241}Am - 0,1 - 0,4$ и $^{154}Eu - 0,02 - 0,06$ Бк/м³. В пробах, взятых 19 октября и 16 ноября 2011 г., с помощью радиохимического метода были определены содержания ^{90}Sr и изотопов трансурановых элементов ^{241}Am , ^{238}Pu , $^{239+240}Pu$ и ^{244}Cm .

4. Сохранялись достаточно стабильные соотношения концентраций радионуклидов: 137 Cs/ 241 Am = 15 (при минимальном значении 9,2 и максимальном 29), 137 Cs/ 154 Eu = 75 (минимум 37, максимум 139) и 137 Cs/ $\Sigma\beta$ = 0,13 (минимум 0,053, максимум 0,32). Из последней величины следует, что вклад 137 Cs в сумму всех бета-излучающих нуклидов-продуктов Чернобыльской аварии составлял лишь 13 %. Это характерно для всех ЛТСМ в объекте «Укрытие».

5. Гамма-спектрометрические и радиохимические измерения гранул лавовой коры и коричневой керамики из скопления ЛТСМ выявили идентичность их радионуклидного состава с аэрозолями, отобранными в помещении 012/7, что свидетельствует о разрушении ЛТСМ и генерации аэрозолей с их поверхности.

6. Использование многослойных фильтров Петрянова позволило определить дисперсность аэрозолей. Наиболее часто носителями продуктов аварии были частицы с АМАД 2 – 8 мкм. Это показало, что основным механизмом их возникновения был диспергационный, в частности вследствие деструкции поверхности ЛТСМ.

7. В большинстве проб объемные активности дочерних продуктов радона находились в диапазоне 60 – 120 Бк/м³ и ²¹²Pb – 1 – 10 Бк/м³. Величина АМАД их носителей составляла 0,1 – 0,3 мкм, что характерно для конденсационного механизма образования аэрозолей.

8. Одновременный отбор аэрозолей в помещении 012/7 и системе «Байпас» показал, что концентрации аэрозолей $\Sigma\beta$, выбрасываемых в свободную атмосферу, были на порядок величины ниже, чем в помещении 012/7. В то же время более высокими были соотношения 137Сs/ $\Sigma\beta$ (около 0,35) и 137Сs/241Am (около 50 – 70). Следовательно, воздух, выходивший, из помещений на нижних отметках объекта «Укрытие», в частности из помещения 012/7, разбавлялся по мере подъема вверх более «чистыми» потоками, но содержавшими аэрозоли, обогащенные ¹³⁷Cs. Средняя концентрация ²¹²Pb в системе «Байпас» оказалась ниже лишь в 2 – 3 раза, что подтверждает эманирование радона и торона из бетонных конструкций объекта «Укрытие» на всех высотных отметках.

Авторы благодарят А. Э. Меленевского за просмотр рукописи и обсуждение результатов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Богатов С. А., Боровой А. А., Евстратенко А.С., Херувимов А.Н. Динамика поведения топливных масс в объекте «Укрытие». К.: 1992. 20 с. (Препр. / АН УССР. Ин-т кибернетики им. В. М. Глушкова; 92-29).
- 2. Богатов С. А., Боровой А.А., Киселев А. Н. и др. Оценка скорости эрозии топливосодержащих масс внутри «Саркофага» и характеристики образующихся частиц. Москва, 1991. 21 с. (Препр. / Ин-т атомной энергии им. И. В. Курчатова; 5434/3).
- 3. *Кузьмина И. Е.*, *Токаревский В.В.* Частицы дисперсной фазы аэрозолей объекта «Укрытие» // Проблеми Чорнобильської зони відчуження. 1996. Вип. 4. С. 141 150.
- 4. Бадовский В.П., Ключников А.А., Кравчук Т. А. и др. Мониторинг аэрозольной обстановки в некоторых подреакторных помещениях объекта «Укрытие». Чернобыль, 2008. 16 с. (Препр. / НАН Украины. Ин-т проблем безопасности АЭС; 08-1).
- 5. *Пазухин Э.М.* Лавообразные топливосодержащие массы 4-го блока Чернобыльской АЭС: топография, физико-химические свойства, сценарий образования // Радиохимия. 1994. Т. 36. № 2. С. 97 142.
- Бадовский В.П., Ключников А.А., Кравчук Т.А. и др. Исследование характеристик аэрозолей в содержащих топливо помещениях объекта «Укрытие» // Проблеми безпеки атомних електростанцій і Чорнобиля. – 2009. – Вип. 12. – С. 103 – 112.
- Бадовский В.П., Ключников А.А., Меленевский А.Э. и др. Оценка состояния поверхности ЛТСМ в реальных условиях объекта «Укрытие» // Междунар. конф. "Двадцать пять лет Чернобыльской катастрофы. Безопасность будущего". 20 – 22 апреля 2011 г., Киев, Украина: Сб. докл. Выводы и рекомендации. – Ч. 2. - К., 2011. – С. 46 – 50.
- 8. Меленевский А.Э., Ушаков И.А., Бадовский В.П. Дослідження пилогенеруючої здатності ПВМ об'єкта «Укриття» // Проблеми безпеки атомних електростанцій і Чорнобиля. 2012. Вип. 18. С. 119 120.
- Барьяхтар В.Г., Гончар В.В., Жидков А.В., Ключников А.А. О пылегенерирующей способности аварийного облученного топлива и лавообразных топливосодержащих материалов объекта «Укрытие». – Чернобыль, 1997. – 20 с. – (Препр. / МНТЦ «Укрытие» НАН Украины; 97-10).
- Жидков О.В., Гончар В.В., Веклич О.Л. та ін. Експериментальне визначення морфології та генезису пилових часток, що генеруються поверхнею опроміненого палива та лавоподібних паливовмісних матеріалів об'єкта «Укриття» // Проблеми Чорнобиля. 2004. Вип. 14. С. 59 64.
- 11. Жидков А.В. Топливосодержащие материалы объекта «Укрытие» сегодня: актуальные физические свойства и возможности прогнозирования их состояния // Там же. 2001. Вип. 7. С. 23 40.
- 12. Жидков О.В. Вивчення фізичних механізмів дії внутрішніх і структурних чинників, відповідальних за процеси деградації ПВМ об'єкта «Укриття» в період його переведення в екологічно безпечну систему // Проблеми безпеки атомних електростанцій і Чорнобиля. – 2012 – Вип. 18. – С. 118 – 119.
- 13. Арутюнян Р.Э., Большов Л.А., Боровой А.А. и др. Ядерное топливо в объекте «Укрытие». М.: МАИК «Наука/Интерпериодика», 2011.
- 14. Объект «Укрытие»: 1986 2011. На пути к преобразованию: монография / А. А. Ключников, В. А. Краснов, В. М. Рудько, В. Н. Щербин. Чернобыль: Ин-т проблем безопасности АЭС, 2011. 288 с.
- 15. Объект «Укрытие»: 1986 2006 / А. А. Ключников, В. А. Краснов, В. М. Рудько, В. Н. Щербин. Чернобыль: Ин-т проблем безопасности АЭС, 2006. 168 с.

- 16. Сейсмическая радоновая станция СРС-05. Руководство по эксплуатации. М.: Приборостроительная компания «НТМ-Защита», 2009. – 20 с.
- 17. *Афонин А.А., Котляров А.А., Максимов А.Ю.* Установка для изучения характеристик переноса ²¹⁸Ро в воздухе // Приборы и техника эксперимента. 2010. № 1. С. 139 143.
- Хан В.Е., Огородников Б.И. Калиновский А.К., Краснов В.А. Контроль выбросов радиоактивных аэрозолей из объекта «Укрытие» в 2011 г. // Проблеми безпеки атомних електростанцій і Чорнобиля. – 2012. – Вип. 19. – С. 94 - 103.
- 19. Огородников Б.И., Хан В.Е., Пазухин Э.М., Крапснов В.А. Радон и его дочерние продукты в объекте «Укрытие» в 2003 2010 гг. // Там же. 2011. Вип. 16. С. 130 136.
- 20. *Огородников Б.И., Будыка А.К., Хан В.Е. и др.* Дополнительный фактор радиационной опасности в объекте «Укрытие ²²⁰Rn // Радиохимия. 2009. Т. 51. № 4. С. 344 352.
- 21. Budyka A K., Ogorodnikov B I., Skitovich V.I. Filter pack technique for determination of aerosol particle sizes // J. of Aerosol Sci. 1993. Vol. 24. Suppl. 1. P. S205 S206.
- 22. Хан В.Е., Огородников Б.И. Калиновский А.К., Краснов В.А. Контроль выбросов радиоактивных аэрозолей из объекта «Укрытие» в 2010 г. // Проблеми безпеки атомних електростанцій і Чорнобиля. 2011. Вип. 17. С. 98 105.
- 23. *Огородников Б.И., Пазухин Э.М., Ключников А.А.* Радиоактивные аэрозоли объекта «Укрытие»: 1986 2006 гг. Монография. Чернобыль: ИПБ АЭС НАН Украины, 2008. 456 с.

Б. І. Огородников^{1,2}, В. Є. Хан¹, В. П. Ковальчук¹

¹ Інститут проблем безпеки АЕС НАН України, вул. Кірова, 36а, Чорнобиль, 07270, Україна ² Фізико-хімічний інститут ім. Л. Я. Карпова, пров. Обуха, д. 3-1/12, буд. 6, Москва, 105064, Росія

АЕРОЗОЛІ - СВІДКИ РУЙНУВАННЯ ЛАВОПОДІБНИХ ПАЛИВОВМІСНИХ МАТЕРІАЛІВ В ОБ'ЄКТІ «УКРИТТЯ»

Представлено радіонуклідний склад, дисперсність і концентрації аерозолів у 2010 – 2011 рр. в приміщенні 012/7 об'єкта «Укриття». Проби відбирали на тришарові фільтри Петрянова в 15 – 20 см від південного краю лавоподібних паливовмісних матеріалів (ЛПВМ). Одночасно за допомогою радонової сейсмічної станції визначали вміст у повітрі радону і торону. Установлено, що сумарна концентрація аерозолів-носіїв ⁹⁰Sr + ⁹⁰Y та ¹³⁷Cs коливалася в діапазоні 5 – 100 Бк/м³. При цьому частка ¹³⁷Cs становила 10 – 20 %. Співвідношення концентрацій ¹³⁷Cs/²⁴¹Am було близьке до 15. Носіями радіонуклідів були аерозолі більше 1 мкм. Максимальний вміст радону досягав 100 – 300 Бк/м³. Концентрації ²¹²Pb - дочірнього продукту торону - коливалися від 0,3 до 30 Бк/м³, а його носіями були переважно частинки діаметром 0,1 - 0,3 мкм. Гамма-спектрометричне вимірювання та радіохімічні аналізи показали, що склад і співвідношення радіонуклідів-продуктів аварії 4-го блока ЧАЕС в аерозольних пробах і зразках ЛПВМ практично ідентичні. Це свідчить, що відбувається деструкція ЛПВМ і частковий перехід матеріалів в аерозольний стан.

Ключові слова: об'єкт «Укриття», лавоподібні паливовмісні матеріали, тришарові фільтри, радіоактивні аерозолі, концентрація, дисперсність, співвідношення радіонуклідів, радон, торон.

B. I. Ogorodnikov^{1,2}, V. Y. Khan¹, V. P. Kovalchuk¹

¹Institute for Safety Problems of Nuclear Power Plants NAS of Ukraine, 36a, Kirova str., Chornobyl, 07270, Ukraine ²Karpov Institute of Physical Chemistry, 3-1/12, build 6, Obuha pereulok, Moscow, 105064, Russia

AEROSOLS AS EVIDENCES OF DESTRUCTION OF LAVA-LIKE FUEL CONTAINING MATERIALS IN THE "UKRYTTYA" OBJECT

Radionuclide content, dispersity and concentrations of aerosols are presented in 2010 - 2011 years in Ukryttya object room 012/7. The samples were taken on Petryanov three-layer filters within 15 - 20 cm from LFCM southern side. Simultaneously, with using radon seismic station, radon and thoron content in the air was defined. It was stated that concentration of beta-radiating aerosol-carriers (90 Sr + 90 Y and 137 Cs) was fluctuating with the range of 5 – 100 Bq/m³. Besides, 137 Cs share made 10 – 20 %. Ratio of 137 Cs/ 241 Am concentrations was close to 15. Radionuclide carriers were aerosols of size more than1 µm. Maximum radon composition reached 100 – 300 Bq/m³. 212 Pb concentrations – thoron daughter product were fluctuating within the range of 0,3 before 30 Bq/m³, and its carriers were the particles of diameter, prevailing, 0,1 – 0,3 µm. Gamma-spectrometric measurements and radiochemical analyses have demonstrated that content and ratio of radionuclides-products ChNPP Unit 4 accident in aerosol samples and LFCM specimens were, practically, identical. It testifies that LFCM destruction and particular transfer of materials in aerosol state occurs.

Keywords: "Ukryttya" object, lava-like fuel-containing materials, three-layer filters, radioactive aerosols, concentration, dispersity, radionuclide ratios, radon, thoron.

REFERENCES

- 1. Bogatov S. A., Borovoi A. A., Evstratenko A.S., Kheruvimov A. N. Dynamic behavior of the fuel mass of "Shelter" encasement. Kyiv: 1992. 20. (Prepr. / AS of Ukraine. V. M. Glushkov Institute of Cybernetics, 92-29). (Rus)
- Bogatov S. A., Borovoy A. A., KiselevA. N. etc. Estimates of the rate of erosion of fuel mass inside the "Sarcophagus" and characteristics of the particles. - Moscow, 1991. - 21 p. - (Prepr. / I. V. Kurchatov Institute of Atomic Energy, 5434/3). (Rus)
- Kuzmina, I. E., Tokarevskiy V. V. Aerosol particles dispersed phase "Shelter" // Problems of Chornobyl exclusion zone. - 1996. - Vyp. 4. - P. 141 - 150. (Rus)
- 4. *Badovsky V. P., Kliuchnykov A. A., Kravchuk T. A. et al.* Aerosol situation monitoring in some under-reactor premises at object "Ukryttya". - Chornobyl, 2008. - 16 p. - (Prepr. / National Academy of Sciences of Ukraine. Institute of Problems of NPP safety, 08-1). (Rus)
- 5. *Pazukhin E. M.* Lava fuel containing materials of the Chernobyl NPP unit 4: topography, physical-chemical properties, scenario of formation // Radiohimiya (Radiochemistry). 1994. Vol. 36, № 2. P. 97 142. (Rus.)
- 6. *Badovsky V. P., Kliuchnykov A. A., Kravchuk T. A. et al.* Aerosol characteristic researching in basic fuel-containing at object "Ukryttya" // Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobuyl). 2009. Iss. 12. P. 103 11. (Rus)
- Badovsky V. P., Kliuchykov A. A., Melenevsky A. E. et al. Estimating of surface LFCM in real conditions at object "Ukryttya" // Intern. Conf. "Twenty-five years after Chernobyl Accident. Safer for the Future." April 20 - 22, 2011, Kyiv, Ukraine: Reports proceeding. Conclusions and recommendations. - Part 2. - Kyiv, 2011. - P. 46 - 50. (Rus)
- Melenevsky A. E., Ushakov I. A., Badovsky V. P. Research FCM dust generating ability of object "Ukryttya" // Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobyl). -2012. - Iss. 18. - P. 119 – 120. (Ukr)
- 9. Bar'yakhtar V. G., Gonchar V. V., Zhidkov A. V., Kliuchnykov A. A. About dust generating ability emergency power irradiated fuel and lava-like fuel materials of object "Ukryttya" Chornobyl, 1997. 20 p. (Prepr. / National Academy of Sciences of Ukraine. Interdisciplinary Scientific and Technical Centre "Shelter"; 97-10). (Rus)
- Zhidkov O. V., Gonchar V. V., Veklich A. L. et al. Experimental determination of morphology and genesis of dust particles generated by surface of irradiated nuclear fuel and lava-like fuel-containing materials of the "Shelter" object // Problemy Chornobyly (Problems of Chornobyl). - 2004. - Iss. 14. - P. 59 – 64. (Ukr)
- 11. *Zhidkov O. V.* Fuel-containing materials of "Shelter" object today: actual physical properties and facilities for their state prognosis creation // Problemy Chornobylya (Problems of Chornobyl). 2001. Iss. 7. P. 23 40. (Rus)
- 12. Zhidkov O. V Study of the physical mechanisms of effects of internal and structural factors responsible for FCM degradation processes of the "Ukryttya" object during its conversation into an ecologically safe system / / Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobyl). 2012. Iss. 18. P. 118 119. (Ukr)
- 13. Arutyunyan R. E., Bolshov L. A., Borovoi A. A. et al. Nuclear fuel in the "Shelter" object. Moskva: MAIK "Nauka / Interperiodica", 2011. (Rus)
- 14. "Ukryttya" object: 1986 2011. On the way to conversation: monograph / A. A. Kliuchnykov, V. A. Krasnov, V. M. Rudko, V. N. Scherbin. Chornobyl: Institute of Problems of NPP safety 2011. 288. (Rus)
- 15. *Radon* seismic station CPC-05. Operating manual. Moskva: Instrument company "NTM-zaschita", 2009. 20. (Rus)
- 16. *Afonin A. A., Kotlyarov A. A., Maksimov A. Y.* Research unit of the properties of the air transport ²¹⁸Po // Pribori i tekhnika eksperimenta (Instruments and Experimental Techniques). 2010. № 1. P. 139 143.
- Khan V. E., Ogorodnikov B. I., Kalinovskiy A. K., Krasnov V. A. Control of releases of radioactive aerosols from "Ukryttya" object in 2011 // Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobuyl). - 2012. - Iss. 19. - P. 94 – 103. (Rus)
- Ogorodnikov B. I., Khan V. E., Pazukhin E. M., Krasnov V. A. Radon and its daughter products in "Ukryttya" object in 2003 2010 // Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobuyl). 2012. Iss. 16. P. 130 136. (Rus)
- 19. Ogorodnikov B. I., Budyka A K., Khan V. E. et al. ²²⁰Rn as an additional factor of radiation hazard in the Shelter // Radiohimiya (Radiochemistry). 2009. Vol. 51, № 4. P. 344 352. (Rus.)
- 20. Budyka A K., Ogorodnikov B I., Skitovich V.I. Filter pack technique for determination of aerosol particle sizes // J. of Aerosol Sci. 1993. Vol. 24. Suppl. 1. P. S205 S206.
- 21. Khan V. E., Ogorodnikov B. I., Kalinovskiy A. K., Krasnov V. A. Control of releases of radioactive aerosols from "Ukryttya" object in 2010 // Problemy bezpeky atomnyh electrostantsiy i Chornobyly (Problems of nuclear power plants and of Chornobuyl). - 2011. - Iss. 17. - P. 98 – 105. (Rus)
- Ogorodnikov B. I., Pazukhin E. M., Kliuchnykov A. A. Radioactive aerosols of the Shelter: 1986 2006 years. Monograph. – Chornobyl: National Academy of Sciences of Ukraine. Institute of Problems of NPP safety, 2008. -456. (Rus)

Надійшла 19.04.2012 Received 19.04.2012