УДК 544:548.73/75+621.315.592

ISSN 1729-4428

B.M. Пилипів¹, O.3. Гарпуль¹, Б.К. Остафійчук¹, B.O. Коцюбинський¹, Artur Błachowski², Krzysztof Ruebenbauer², Jan Żukrowski³

Зміни магнітної мікроструктури приповерхневих шарів плівок залізо-ітрієвого гранату, ініційовані імплантацією іонів Si⁺

¹Прикарпатський національний університет імені Василя Стефаника,

²Moessbauer Spectroscopy Laboratory, Pedagogical University, PL-30-084 Kraków, ul. Podchorążych 2, Poland

³Solid State Physics Department, Faculty of Physics and Applied Computer Science,

AGH University of Science and Technology, PL-30-059 Kraków, Al. Mickiewicza 30, Poland

Представлено результати досліджень приповерхневих шарів епітаксійних монокристалічних плівок залізо-ітрієвого гранату, (ЗІҐ, Y₃Fe₅O₁₂), імплантованих іонами Si⁺ з енергією 90 кеВ та дозами 1·10¹³, 6·10¹³ та 2·10¹⁴ см⁻², методом месбауерівської спектроскопії конверсійних електронів. Проведено аналіз характерів дозових залежностей компонент месбауерівських спектрів та здійснено їх порівняння з попередньо отриманими результатами моделювання та рентгенівської дифрактометрії.

Ключові слова: залізо-ітрієвий гранат, іонна імплантація, конверсійна електронна месбауерівська спектроскопія.

Стаття поступила до редакції 01.02.2012; прийнята до друку15.06.2012.

Вступ

Епітаксійні монокристалічні плівки ЗІІ є одними з найбільш перспективних матеріалів для створення пристроїв розпізнавання, контролю та обробки сигналів в сантиметровому діапазоні [1]. Параметри таких пристроїв визначаються властивостями тонкого приповерхневого шару, по товщині якого штучно створено градієнт фізико-хімічних властивостей.

розробка методів Пошук i покращення властивостей приповерхневого шару епітаксійних плівок ферит-гранатів, в тому числі ЗІГ, займає суттєве місце в розвитку сучасної мікроелектроніки. Одним із перспективних методів впливу на приповерхневі шари з метою цілеспрямованого надання їм специфічних властивостей є іонна імплантація, унікальні можливості якої пов'язані, насамперед, із нерівноважністю самого процесу, що дає можливість контролю кількості введених атомів і керування розподілу зміщених іонів матриці та механічних напруг з глибиною порушеного шару, індукувати цілеспрямовані лозволяє зміни кристалічної та магнітної мікроструктури, а також подолати принципові обмеження методів хімікотермічної обробки. В імплантованих плівках ЗІГ з неоднорідністю магнітних параметрів по товщині виявлено ряд нових фізичних ефектів і особливостей,

які мають теоретичне і практичне значення.

Тому вивчення зміни магнітної мікроструктури приповерхневих шарів імплантованих плівок залізо ітрієвого гранату є актуальною науковою задачею.

I. Експеримент

Об'єктами дослідження були вихідний та імплантовані зразки монокристалічної плівки ЗІІ товщиною 5,33 нм, вирощеної в промислових умовах за стандартною технологією рідкофазної епітаксії (РФЕ) на діелектричній підкладці гадоліній-галієвого гранату (ІТІ, Gd₃Ga₅O₁₂, $a_s = 12,3820$ Å) з віссю росту [111] і товщиною 500 мкм в п'ятизонній печі для РФЕ Garnet-3 (НВП "Карат") при температурі переохолодження розчину-розплаву 10°С.

Імплантація плівок ЗІІ здійснювалася на прискорювачі MPB-2 фірми "Balzers" потоком іонів Si⁺ з енергією 90 кеВ та дозами $1 \cdot 10^{13}$, $6 \cdot 10^{13}$ і $2 \cdot 10^{14}$ см⁻² в умовах відсутності ефектів каналювання та самовідпалу.

Конверсійні електронні месбауерівські спектри (КЕМ) Fe^{57} отримувалися при кімнатній температурі в режимі постійних прискорень з використанням джерела γ -квантів Co^{57} в хромовій матриці з

вул. Шевченка, 57, Івано-Франківськ, 76025, Україна

Зміни магнітної мікроструктури приповерхневих шарів...

Таблиця 1

енергією 90 кеВ та дозами $1 \cdot 10^{13}$, $6 \cdot 10^{13}$ та $2 \cdot 10^{14}$ см ⁻²							
		Is, мм/с	Qs, мм/с	Н, кЭ	S*	<i>G</i> , мм/с	n _d / n _a
Вихідний	a_1	0,5741	0,0787	486,80	29,56	0,3769	1,48228
	a_2	0,6835	-0,3191	468,81	9,13	0,431	
	d_1	0,4106	-0,0474	387,38	42,18	0,5178	
	d_2	0,233	0,2719	403,83	17,94	0,3665	
	D	0,4767	2,3425		0,89	0,1848	
1,00E + 13	a_1	0,5446	0,0754	485,68	30,03	0,3778	1,396242
	a_2	0,7104	-0,3616	462,08	9,94	0,6254	
	d_1	0,3909	-0,0778	385,26	35,59	0,4912	
	d_2	0,2128	0,2458	401,66	22,55	0,3795	
	D	0,4441	2,2338		1,23	0,2181	
6,00E + 13	a_1	0,573	0,0761	476,60	28,19	0,3782	1,398849
	a_2	0,7624	-0,2944	449,87	11,43	0,6658	
	d_1	0,4145	-0,0617	378,22	36,69	0,5271	
	d_2	0,2466	0,2516	394,20	20,7	0,3693	
	D	0,465	2,1446		1,57	0,231	
2,00E + 14	a_1	0,5717	0,0638	487,74	13,46	0,3603	1,3652
	a_2	0,6944	-0,253	462,71	12,93	0,877	
	d_{I}	0,4044	-0,0306	384,21	55,8	0,9328	
	a_3	0,2623	0,2571	400,68	9,27	0,3804	
	D	0,4676	2,0738		8,53	0,6109	

Параметри парціальних компонент КЕМ спектрів плівок $Y_3 Fe_5 O_{12}$, імплантованих іонами Si⁺

активністю ~ 90 мКи. Реєстрація конверсійних електронів здійснювалась проточним лічильником (96 % He + 4 % CH_4), а калібровка спектрів виконувалась відносно *a*-*Fe*.

II. Результати експерименту та їх обговорення

Виходячи з кристалографічних передумов, експериментальний месбауерівський спектр плівки ЗІГ (рис. 1) повинен складатися із трьох зеєманівських секстетів, що відповідають ядрам Fe⁵⁷ в d-підгратці (полярний кут між напрямом ГЕП на ядрі та напрямком поширення *g* променів $q^d_{1,2,3}_{=54^{\circ}44'}$) та а-підгратці (кути $q^a_4=0$ $q_{5,6,7}^{a} = 70^{\circ}32'$). Відповідно до висновків авторів [2], очікувалися дві магнітонееквівалентні тетракоординовані позиції іонів Fe3+ з різними значеннями ефективних магнітних полів та інших параметрів (ізомерний зсув б, магнітне поле Неф, значення аксіальної компоненти ГЕП Vzz) (табл.). Причиною їх появи є порушення аніонної стехіометрії приповерхневого шару плівки ЗІҐ внаслідок нерівноважності процесу її росту та входження в ґранатову

структуру домішкових атомів з розчину-розплаву на завершальних етапах епітаксії. Наявність дублетної компоненти в спектрі неімплантованого зразка, зважаючи на величини квадрупольного розщеплення, пояснюється присутністю в приповерхневому шарі плівки іонів Fe2+ у парамагнітному стані, причому можна відмітити значний ріст енергії розщеплення енергетичних рівнів 3d-електронів кристалічним полем порівняно з енергією їх спарювання на одній орбіталі і перехід заліза у високоспіновий стан [3].

При іонній імплантації іони заліза у парамагнітному стані в приповерхневому шарі епітаксійних плівок ЗІІ з'являються в результаті послаблення та руйнування надобмінної взаємодії при генерації радіаційних дефектів. Враховуючи наявність в тетрапідгратці структури ЗІІ до імплантації 0,9 % іонів Fe в парамагнітному стані, розраховувалося відношення заселеностей а- та dвузлів катіонами заліза (рис. 2) з використанням

вузлів катіонами заліза (рис. 2) з використанням $n_d n_a = \begin{pmatrix} S_d \\ S_a \end{pmatrix} \begin{pmatrix} f_a \\ f_d \end{pmatrix}$, де S_a, S_d – інтегральні інтенсивності відповідних парціальних підспектрів, f_a, f_d – імовірність ефекту Месбауера для окта- і тетра- положень відповідно; відношення f - факторів не залежить від ступеня заміщення іонів заліза і при кімнатній температурі рівне

Рис. 1. Конверсійні електронні месбауерівські спектри для плівок ЗІІ після імплантації іонами Si⁺: a – вихідний, 6, e, c – спектри плівок після імплантації з дозами відповідно $1 \cdot 10^{13}$, $6 \cdot 10^{13}$, $2 \cdot 10^{14}$ см⁻².

Рис. 2. Зміна відносної заселеності іонами Fe *d*та *a*-підґраток кристалічної структури плівок ЗІІ зі збільшенням дози імплантації іонами Si⁺ з енергією 90 кеВ.

Рис. 3. Залежність ймовірності ефекту Месбауера f від дози імплантації іонами Si⁺ (E = 90 кеВ).

 $0,94 \pm 0,02$ [4]. Виявлено спадання відношення $\frac{n_d}{n_a}$

з набором дози, що передбачає відносно більшу ефективність процесу радіаційного дефектоутворення для тетрапідґратки і підтверджується якісними спостереженнями трансформації структури месбауерівських спектрів при збільшенні дози імплантації іонами Si+ (рис. 1).

Цей експериментальний факт пояснюється меншим числом аніонів в ближньому оточенні іонів Fe^{3+} в октапозиціях. Селективність руйнування катіонних підграток спостерігалася, зокрема, і авторами роботи [5].

Ймовірність ефекту Месбауера f чутлива до змін кристалічної мікроструктури і несе інформацію про фононний спектр кристалу, жорсткість міжатомних зв'язків, анізотропний характер коливань та зменшується з ростом розвпорядкування структури при іонній імплантації. Проте на експериментальній залежності f(D) (рис. 3) виявлено початкове зростанням ймовірності ефекту в порівнянні з не імплантованою плівкою (при дозі імплантації $1 \cdot 10^{13}$ см⁻²), яке виходить за межі похибки апроксимації, що пояснюється, ймовірно, пружним характером

Рис. 4. Експериментальні КДВ вихідного зразка та плівок ЗІҐ, підданих імплантації іонами Si⁺ з енергією 90 кеВ та дозами $1 \cdot 10^{13}$, $6 \cdot 10^{13}$ та $2 \cdot 10^{14}$ см⁻².

локальних змін міжплощинної відстані для цих доз опромінення (виникнення напруг розтягу в напрямку, перпендикулярному до площини плівки, і стиску в напрямку паралельному).

Експериментальні криві дифракційного відбивання (КДВ) вихідного зразка та плівок, підданих імплантації іонами Si⁺, представлено на рис. 4. Для зразка, імплантованого дозою $1 \cdot 10^{13}$ см⁻ ², виявлено збільшення інтенсивності дифрагованого рентгенівського випромінювання в кутовому інтервалі, що лежить між рефлексами плівки та підкладки, тобто спостерігається зростання величини міжплощинної відстані в порушеному шарі, що і призводить до змін ймовірності ефекту.

Зміни ближнього оточення в процесі набору дози імплантації зумовлюють зміни величин ефективних магнітних полів Неф на ядрах іонів заліза, що знаходяться в різних координаціях (рис. 5,а). В усіх випадках спостерігається спадання Неф до дози імплантації 6·10¹³ см⁻² з подальшим зростанням. Фіксується симбатний характер зміни величин Неф для ядер Fe⁵⁷ в обох магнітних підгратках. Додаткову інформацію несе поведінка величини $\Delta H_{e\phi}$ / $H_{e\phi}$, функції дози імплантації, оскільки вона як відображає деформаційно-індуковану зміну спінової густини на ядрах, тобто зміну електронної густини і поляризації електронних s-оболонок. Виявлено, що для тетракоординованих ядер ЦЯ величина змінюється з ростом концентрації радіаційних дефектів за ідентичним законом (рис. 5б). Близькими характером зміни є і в залежностях за $\Delta H_{e\phi}$ / $H_{e\phi}$ (D) для октакоординованих ядер Fe⁵⁷.

Спостережувані зміни пояснюються збільшенням відстані між атомними площинами перпендикулярно до площини плівки, що веде до росту відстаней $Fe_a - O$ та $Fe_d - O$ і фіксується як зменшення ефективного поля $H_{e\phi}$ на ядрах Fe^{57} та ймовірності ефекту f, причому чутливішими до наведених напруг є ядра Fe^{57} в *а*-позиціях. Зміни $H_{e\phi}$, очевидно, зумовлюються деформаційно індукованим

Рис. 5. Дозові залежності змін величин ефективних магнітних полів на ядрах Fe^{57} для *d*- та *a*-підграток структури плівок ЗІҐ, імплантованих іонами Si⁺ (*a*), та відносної зміни ефективних магнітних полів на ядрах $DH_{\hat{a}\hat{o}} / H_{\hat{a}\hat{o}}$ (б).

перерозподілом спінової густини електронів *s*оболонки атома Fe^{57} . Це припущення частково підтверджується зафіксованим зменшенням (в трьох випадках з чотирьох) ізомерних зсувів на початковому етапі імплантації, що зумовлюється ростом ступеня ковалентності хімічного зв'язку $Fe_a - O$ (рис. 6) [6].

Відомо [7], що існує лінійна залежність між величиною *x* відносного вмісту вкладу 4*s* -електронів (3d⁵4s^x) та величиною ізомерного зсуву. За даними [8] розраховано калібровочну залежність x = f(d)для випадку гама-резонансу на ядрах Fe^{57} в структурі ЗІІ: x = 0.204 - 0.276d.

Згідно отриманого калібрування ізомерних зсувів, значення параметра x, який визначає електронну конфігурацію іонів заліза, для d- та aпідграток структури неімплантованої плівки ЗІҐ в нашому експериментальному випадку становить 0,09 - 0,14 та 0,02 - 0,05 відповідно. Значення густин станів 4*s*-електронів на резонансному ядрі Fe^{57} як в тетра-, так і в октакоординації для неімплантованого зразка є вищими, порівняно з даними роботи [9], що пояснюється входженням у структуру приповерхневого шару плівки домішкових атомів та

Рис. 6. Залежності ізомерних зсувів ядер Fe^{57} (а) та параметра *x*, що визначає електронну конфігурацію $3d^54s^x$ іонів Fe^{3+} (б) для *d*- та *a*підграток структури плівок ЗІҐ, від дози імплантації іонами Si⁺.

його аніонною нестехіометрією [10]. Зумовлене цими факторами збільшення віддалі обмінної взаємодії в ланцюжку Fe_a -O- Fe_d , зміна її геометрії та спотворення симетрії локального оточення веде до зменшення перекриття електронних оболонок Fe^{3+} та O^{2-} , що зумовлює локалізацію хвильової функції 4*s*електронів на ядрі Fe^{57} . Перекриття хвильових функцій катіонів і аніонів може бути причиною зменшення магнітного моменту іона Fe^{3+} , появи нескомпенсованої спінової густини в просторі між катіонами і аніонами, виникнення відмінного від нуля магнітного моменту на аніоні [11].

Загалом, можна зазначити, що збільшення дози опромінення на початковому етапі веде до зростання величини параметра x, що передбачає ріст віддалі *Fe* - *O*, тобто переважання напруг розтягу в плівковій структурі. Водночас, зниження валентності при імплантації зумовлюється накопиченням дефектів в аніонній підгратці [5].

Як свідчить аналіз рентгеноструктурних даних, набір дози супроводжується збільшення кутової відстані між рефлексами плівки та підкладки (рис, 7,*a*). Водночас імплантація з дозою $2 \cdot 10^{14}$ см⁻² супроводжується аморфізацією приповерхневого шару та релаксацією наведених в епіструктурі напруг, оскільки для цього зразка спостерігається зменшення кутової відстані між рефлексами плівки та підкладки. Залежності від кутової відстані між рефлексами плівки і підкладки величин ефективних магнітних полів на ядрах для випадку пружно деформованої структури (дози $\leq 6 \cdot 10^{13}$ см⁻²) у всіх випадках є монотонно спадними (рис, 7, δ), що узгоджується з міркуваннями, викладеними вище.

Радіаційно розупорядковані області. які виникають внаслідок імплантації плівок ЗІГ, при кімнатних температурах являють собою парамагнітні включення в феримагнітній матриці. Концентрація аморфізованих кластерів с залежить від дози опромі $c(D) = A \cdot (1 - \exp[-bD])$, де нення D як: $\beta = N_0 \mathbf{S}_n V_0$, N₀ = 8,4·10²² см⁻³ – концентрація іонів мішені, оп – переріз пружного дефектоутворення, V₀ середній об'єм аморфного кластера, А нормуючий множник. Моделювання процесу імплантації в ЗІГ іонів Si+ методом Монте-Карло (програмний пакет SRIM-2008) показали, що при застосованих експериментальних умовах переважає пружний тип гальмування (електронні та ядерні енергетичні втрати складають відповідно 370 та 470 еВ/нм) і диференціальний переріз гальмування складає 6,2·10⁻¹⁹ см². Очевидно, що концентрація аморфізованих кластерів пропорційна відносному дублетної компоненти месбауерівського вмісту

Рис. 7. Дозова залежність кутової відстані між рентгенівськими рефлексами від непорушеного шару плівки та підкладки гетероструктури (*a*) та зміна величин ефективних магнітних полів від цієї кутової відстані (б).

Рис. 8. Залежність відносного вмісту дублетної компоненти месбауерівських спектрів плівок ЗІІ від дози імплантації іонами Si^+ (*E* = 90 кеВ).

спектру (рис. 8), проте діапазон значень застосованих доз імплантації не дозволяє отримати інформацію про характеристики перебігу процесу їх об'єднання в суцільний аморфний шар.

Причиною зміни валентності та виключення іонів Fe з надобмінної взаємодії є входження в структуру немагнітних іонів Pb^{2+} , Pb^{4+} та Pt^{4+} . Як вже згадувалося [5], іони свинцю Pb^{4+} та витіснені з додекаедричних порожнин іонами Pt^{4+} частинки Y^{3+} займають виключно октаедричні позиції, що визначатиме приналежність іонів Fe в парамагнітному тетрапідгратки структури стані до ЗIГ. Цe припущення підтверджується експериментальними спектрі значеннями вихідного зразка У співвідношення інтегральних інтенсивностей парціальних підспектрів, виділених для ядер Fe^{3+} в октата тетрапозиціях.

Висновки

Відношення заселеностей підграток n_d / n_a спадає з набором дози, що передбачає відносно більшу ефективність процесу радіаційного

дефектоутворення для тетрапідгратки; Спостерігається ріст ймовірності ефекту Месбауера на початковій стадії імплантації, що пояснюється пружними деформаціями гратки в приповерхневому шарі плівки ЗІГ (виникнення напруг розтягу в напрямку, перпендикулярному до площини плівки, і стиску в напрямку паралельному).

Зафіксовано спад $H_{e\phi}$ до дози імплантації 6 10¹³ см⁻² з подальшим зростанням та симбатний характер зміни величин $H_{e\phi}$ для ядер Fe^{57} в обох магнітних підгратках; зміни $H_{e\phi}$ пояснюються збільшенням відстані між атомними площинами перпендикулярно до площини плівки, що веде до росту відстаней $Fe_a - O$ та $Fe_d - O$ і фіксується як зменшення ефективного поля $H_{e\phi}$ на ядрах Fe^{57} та ймовірності ефекту f, причому чутливішим до наведених напруг є ядра Fe⁵⁷ в *а*-позиціях.

Збільшення дози опромінення на початковому етапі веде до зростання величини ступеня ковалентності хімічного зв'язку x, що передбачає ріст віддалі *Fe – O і* переважання напруг розтягу в плівковій структурі.

Пилипів В.М. – канд. фіз.-мат. наук, доцент, декан факультету математики та інформатики. Гарпуль О.З. – старший лаборант навчальнонаукового центру діагностики матеріалів. Остафійчук Б.К. – доктор фіз.-мат. наук, професор, член-кор. НАН України, завідувач кафедри матеріалознавства і новітніх технологій. Коцюбинський В.О. - канд. фіз.-мат. наук, доцент кафедри матеріалознавства і новітніх технологій. Artur Błachowski – Moessbauer Spectroscopy Laboratory, Pedagogical University. Krzysztof Ruebenbauer – Moessbauer Spectroscopy Laboratory, Pedagogical University. Jan Żukrowski - State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology.

[1]

- [2] G.Winkler, "Magnetic garnets," in Vieweg Tractsin Pureand Applied Physics. Braunschweig, Germany: Vieweg & Sohn, vol. 5 (1981).
- [3] Б.К. Остафійчук. Месбауерівські дослідження магнітних та електричних надтонких взаємодій в епітаксійних плівках Y₃Fe₅O₁₂ / Б. К. Остафійчук, В. Д. Федорів, В. О. Коцюбинський, В. В. Мокляк // Фізика і хімія твердого тіла. 6(1), сс. 60-64 (2005).
- [4] П.П. Серегин. Физика. Физические основы мессбауэровской спектроскопии: Учеб. пособие / Серегин П. П. СПб.: Изд-во СПбГПТУ, 168 с. (2002).
- [5] А.С. Камзин Исследование распределения катионов в приповерхностном слое и объеме пленок замещенных ферритов-гранатов / А. С. Камзин, Ю. Н. Мальцев // ФТТ. 39(7), сс. 1248-1252 (1997).
- [6] Б. К. Остафийчук. Кристаллическая и магнитная структура имплантированных слоев монокристаллических пленок железо- иттриевого граната / Остафийчук Б. К., Олейник В.А., Пылыпив В.М., Семен Б.Т., Смеркло Л.М., Яворский Б.И., Кравец В.И., Коваль И.В. – К. : Ин-т металлофизики, 70 с. – (Препр. / АН УССР, Ин-т металлофизики; 1–91) (1991).

- [7] Б. К. Остафійчук. Механізм формування ефективних магнітних полів та ізомерного зсуву на ядрах Fe⁵⁷ в ітрієвому ферит-гранаті при іонній імплантації кисню / Б. К. Остафійчук, О. М. Ткачук, В. М. Ткачук, В. Д. Федорів // Журнал фізичних досліджень. 3(1), сс. 113-116 (1999).
- [8] Г. Вертхейм. Эффект Мессбауэра / Г. Вертхейм М.: Мир, 172 с. (1966).
- [9] E. Kuzmann. Critical review of analytical applications of mossbauer spectroscopy illustrated by mineralogical and geological examples / E. Kuzmann, S. Nagy, A. Vertes // Pure Appl. Chem. 75(6), pp. 801-858 (2003).
- [10] Химические применения мессбауэровской спектроскопи / [пер. с англ. под ред. В.И. Гольданского]. М.: Мир, 502 с. (1970).
- [11] Б.К. Остафійчук. Вплив режиму епітаксії на магнітну мікроструктуру перехідних шарів плівок ЗІГ / Б. К. Остафійчук, В. М. Ткачук, В. М. Пилипів // ФХТТ. 1(2)., сс. 319-324 (2000).
- [12] Ю.Г. Чукалкин Эффекты ковалентности в дефектном *Y*₃*Fe*₅*O*₁₂ / Ю. Г. Чукалкин, В. Р. Штирц // ФТТ. **32**(11), сс. 3306-3313 (1990).

V.M. Pylypiv¹, O.Z. Garpul¹, B.K. Ostafiychuk¹, V.O. Kotsubynskii¹, Artur Błachowski², Krzysztof Ruebenbauer², Jan Żukrowski³

Changes in Magnetic Microstructure of Surface Layers Iron Garnet Films, Initiated by Implantation of Si⁺ Ions

¹Precarpathion national University named after Vasyl Stefanyk, 57 Shevchenko Str., Ivano-Frankivsk, 76025, Ukraine ²Moessbauer Spectroscopy Laboratory, Pedagogical University, PL-30-084 Kraków, ul. Podchorążych 2, Poland ³Solid State Physics Department, Faculty of Physics and Applied Computer Science, AGH University of Science and Technology PL-30-059 Kraków, Al. Mickiewicza 30, Poland, <u>ogorishna@ukr.net</u>

This paper presents the results of studies of near-surface layers of epitaxial monocrystalline films of iron-garnet (YIG, $Y_3Fe_5O_{12}$), implanted Si⁺ ions with energy 90 keV and doses of $1 \cdot 10^{13} \, 6 \cdot 10^{13}$ and $2 \cdot 10^{14} \, cm^{-2}$, using Mössbauer spectroscopy of conversion electrons. Analyzed characters of dose dependency component Mössbauer spectra and by comparing them with previously obtained results of simulation and X-ray diffractometry. **Key words:** yttrium-iron garnet, ion implantation, conversion electron Mossbauer spectroscopy.