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The interband and intraband conductivities of doped graphene were theoretically investigated beyond the linear
response. The new dependences of induced currents on frequency and amplitude of externd electric field, the
graphene temperature and chemical potentia were determined for sufficiently strong electric fields in the resonant
approximation. Particularly, the saturation of induced currents and the non-linear increase of optical transparency
with wave intensity growth were obtained for arbitrary temperatures and doped Situation. As contrasted to increase
for the interband transitions at fixed intensity, the transmission coefficient of intraband mechanism decreases with

rise of the chemical potential and temperature.
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I ntr oduction

A number of theoretical works [1-3] revealed
universal behavior of low-temperature dynamic
conductivity and optical transparency of graphene
monolayer as a linear response of Dirac fermions to
aternating eectric fiedd and incident e ectromagnetic
wave. This behavior is mainly determined by universal
physical constants and fine structure constant, it was
experimentally confirmed in the infrared [4-6] and
visible [7] spectral region. In the letter [8] the nonlinear
and resonant response was related only with the
particular case of interband transitions in clean graphene
at zero absolute temperature and chemical potentia
g=m=0.

The present article contains different and more
general method of consideration for the interband and
inraband conductivity of doped graphene in post-linear
and resonant response at arbitrary temperature and
chemical potential. We apply the density matrix theory
for the quantum transitions in doped graphene. In our
work the approximate expression for the function of
distribution of stationary non-equilibrium state of Dirac
electrons a sufficiently strong eectric fidds was
derived, that it is useful for the other problems of
physical kinetics.

The obtained results of present work correspond to
the resonant approximation known in quantum optics as
the rotating wave approximation.

The new modified nonlinear effects of saturation of
both dissipative and non-dissipative parts of induced
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current were obtained under general conditions, as well
as relevant "nonuniversa" features from effects of
doping, finite temperature, interband and intraband
trangitions for the graphene transparency behavior at
sufficiently largeintensity of incident radiation.

. Mode

The Hamiltonian of system in the vicinity of Dirac
pointswithin pseudo-spin space of graphene sublattices:

D

- EA%- H,+V,
C g

where H,=uép, ¢ are Pauli matrices, u is Fermi

speed, typical for graphene, p=-ihN, e is dectron

charge, A(t) is vector potentia of uniform alternating

eectricfied.

The dectric fidd (with a frequency w)
E(t) = E,exp(- iwt) is directed aong the x-axis and
causes appearance of ac current of density j in the
graphene. The operator of current density | = eué . The

eigenvalues e = sup and eigenfunctions[9]:

|:| :U&g

1 o 06 1e&S0
'S) =—&XPe— Pr = X—=¢ ; + 2
Ip.s) =+ Pen P e (2)

correspond to operator HO; s=+1 for 1 gate (of the
electron within conduction band) and s=-1 for 2 state
(of the electron within valence band), p, =pcos ,
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p, = psinj ., j , isthe angle between two-dimensional
vector of electron momentum and electric field, L* is
the system area.

In the graphene conductivity the corrections of
electron-electron interaction are small [10] except for
the excitonic effects. We take into account the finite
lifetime 1/G, of carriers, which is assumed to be the
same for electrons and holes due to eectron-hole
symmetry. For the quasiparticle picture to be
meaningful, it isnecessary to have G =w in any case.

As a result of eectric field effect, e -energy is
shifted (De) during an €eectron lifetime in the
conduction band. According to the probability
multiplication theorem, the corresponding distribution
function r, (e, De) can be expressed as.

r.(e,De) = P(e,De) fy(e- m, €)
where P(e,De) is conditional distribution function,

f,(e- m =(expl(e- m/q]+1)" is Fermi-Dirac
function, m is chemical potentia of graphene in
equilibrium state. The conditional distribution function
can be defined, taking into account the time factor of

attenuating states exp(- Gt) ,

¥ . .
P(Dele) =G, Re(‘jexpg% Det - Gt 2t =
2]
0
4
ey 4)
(De)* +(hG,)*
and (De)? can be found from the amplitude of diagonal

matrix element V,; of intraband trangition:
2

=B e O 5)

B=
8 wp g
From (3)-(5) we obtain a formula for the function of
distribution of stationary non-equilibrium state of an

electron within conduction band r ,(e,De) ° r ;]

(De)* =V,

éL+2266px_u f.(e-m, (6)
8 Paog
where
Z :eu_EO (7)
hwG

p
is the typical dimensionless parameter of the task.
Similarly we have for the distribution function within
valence band:

éL+zzaEp*_u xf,(-e+m), ©)
& Pog
where  f,(-e+m) =(exp[(-e+m)/q]+1)". Apart

from G =w, (5) dsoresultsin limiting the upper value
z (or éectricfidd) z =w/G.

We have derived the following equation for
chemical potential of graphenein equilibrium state:
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2e|0 ()

N int
ot 2 Ee

(n, is concentration of eectrons and holes), where

m=1

m» huypn, at sufficiently low temperature g = m,

and m»p(hu)®n,/4qIn2 at high temperature g 2 m,

as consistent with [3]. The sum in the Eq.(9) coincides
exactly with the Eq.(74) of the paper [11] in case of zero
gap D=0 by using identities for dilogarithm function.

II. Theequation for the density matrix
and quantum transitionsin doped
graphene

The guantum equation of motion for the statistical
operator I (densty matrix)

in —Ar- A (10)
i

is written for the matrix €elements of the interband

transitions (r,, for the 2® 1 transition)

. ﬂ

I ﬂlZ = (Hll 22)r12 +(r 22 rll)H12’ (11)
where "1" is index of the €eectron state in the

conduction band, and the "2" in the valence band. For
the basic system functions we choose the e genfunctions
(2) of operator Ho in the absence of an external eectric

fidd. Interband trandtion is a vertica transition in
which the two-dimensional vector p is an integral of

motion. The change in the unperturbed energy of the
electron in the interband transition 2® 1 isequal

(Ho)n - (Ho)zz =2 ' (12)
and hw » 2e in conditions close to the exact resonance.
The operator V(t) for interaction of the electron with
the electric field, where the symbol Re is omitted before
the complex factor, has form:

(13)

Matrix elements of the operator (13) in the base
system functions are equd:

vV, (t)=H
foralb=12,and

Vi =01 e

for a=Db =12. The matrix elements r, and r,,

correspond to the intraband transitions. Then we find
the dationary solutions of equations (11) for the
interband transitions (2® 1 and 1® 2) in the resonant
interaction, when

|hw- 2e| = hw, 2e
and in the stationary regime 2e ? V,, -

V() =i s E exp(-int).
W

:(-1a%xp—g|§0e'im (14)

&P (15)

(16)
V,,| for t® ¥
we take into account only the linear time factor e ™
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omitting the terms, oscillating at twice the frequency:
t) » —— t
oo (0 o i Ve ©

The diagona elements ry, and r, (@thb)
formula (17) are not dependent on time and have a sense
of intraband distribution functions of the stationary non-
equilibrium state. Thus the post-linear response is

related to the determination of these functions,

@t b).(17)

in

ﬂri:
1t

=[2e(- 1" +V,, -

ih

i e
1t

abl ba -

where a ' b =12, w, =Gf, is the probability of
transition states b ® a in a unit of time, f, isthe
equilibrium distribution function of the charge carriers.
Using the well-known methods for finding stationary
solutions in the resonant approximation [12,13], from
the equation (18) with taking into account (19)
at (hw- 2e)” = (hG)? we get

RN LS

(De)* +(hG)
that is consistent with (3)-(8).

r bb Oa) ’ (20)

[11.Current densities

We use the above simple approximations for the

abea) + Ih( ab bb

r12j21 21]12_|(; Lp —( 2

depending on the amplitude of the eectric field. The
explicit form of the diagona elementsis unknown and it
can not be obtained only from the equation (11) without
the additiona information about the subsystem, for
example, from the master equation. The system of
guantum Kkinetic equations can be formulated in the m-

space [12] with a single reaxation time G* for
graphene:

-W I

ba " aa

) (18)

- ihG]r ,,

+ (r bb - [ aa )Vab , (19)

calculation of current densities.
Matrix elements of the interband current density in
the eigenfunctions (2) are equal
. . 8Up, 1
(ida =(- D ITXL_Z @'b=12). (21)
Matrices (14), (15), (17) and (21) are diagonal in
the momentum representation, so the definition of
statistical average of the interband current density is
determined by taking into account the spin and valley

degeneracy g, and g, (9, =9, =2):
()=, =8 & rawlide (22)
pabathb
where
. 4e
-rOEe™” . 23
"EE T - eyl =

Note that for finding the finite current (j,) we must dependent on the time and coordinates. After thisin the
sbtrat in (23) from  the  expression obtained expression we have to make the substitution
PR | o w® w+ih (h® +0), obliged to the adiabatic
4e{w[( W) __( eyl t esan_we expresson & w® 0. condition [11]: at t® -¥ the density matrix reduces to
Thisknown circumstance [2.3] isdueto _the fact t_hat the the equilibrium density matrix. As aresult, we have
current must vanish if vector-potentiad A is not
v el g P& h2(W+ih)2- (2¢)? °

The formula (24) looks only linear response, but the
difference rJ-r? does not apply the case of

equilibrium and it characterizes the non-equilibrium
stationary states, depending on amplitude of the external
electric field. Further calculations in (24) associated

[h?(w +ih)? - (2e)*]* = P[(hw)?

with the replacement § K® (L/2ph)’)<dp,dp, and
p

the use of formula

- (26)°T" - ipd[(hw)* - (2e)°], (25)
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where P is the symbol of the principal value of the
integral.
Taking into consideration (24), (25) and (6)-(8) for
dissipative part of interband current, we will obtain:
mler (t) 25 OG(WIq ) m)

J1+z2+1

s, =€/ 4h isthe conductance quantum,

E,coswt, (26)

So

inter

(hw+2m)* i

Gw,q,m) = m?z‘[;"Exgchg;E ch?‘W% 27)

shal be made in formula (7)
the

the change of z
G,® G°Gy,p,» Where

correspondsto frequency w .
The non-dissipative part of interband current:

momentum p

E, sinwt .

):-

Jnd

p(\/1+z2 +1)

The logarithmic singularity at hw =2m is cut by
temperature (or currier relaxation) with the replacement
(hw- 2m)* ® (hw- 2m)*+(2q9) in (28).

9n

e

Imra(t) =-0,9,

where v, =up,/p, r;

formulas (6)-(8).
The dissipative part of intraband current, which
determines Joule heat generation and graphene
transparency reduction,
16509(W1q1m)

and r) ae defined by

|ntra t) = E Wt , 30
(t) = e 5 C0S (30)
where
>(hG) aem O‘,J
Non-dissi pative part
mtra(t) - 16s OWg(W'q ! m) EO sinwt . (32)

(V1+z 2% +1)pG

If z <<1 (in weak dectric fields or at high frequency

and short rdlaxation time 1/ G ), the obtained formulas
(26)-(31) conform to the results [1-3] of the linear
response theory (first order of the perturbation theory).
If z >>1, i.e in case of strong dectric fields (or low

frequency), there occur saturation of amplitudes of al
induced currents (both j, and j,, interband and
intraband ones). As concerns the saturation amplitude of
dissipative part of interband current in doped graphene,
we have as follows:

_lewG

jumer = >G(w,q, m 33
d,max 2U ( q ) ( )

Formulas (26) and (33) differ from the ones (4)-(5)
in Ref. [8] (&t g =0 and m=0) by factor G(w,q,m)
(see (27)), where G(w,0,0)=1. If G <<w, the ratio

between saturation amplitudes of dissipative parts of
intraband current and the interband oneis

e€Ee™
(2ph)*(G -

(hw- 2m2H—°

(28)

The intraband current dendty can be determined
also from the Boltzmann kinetic equation for relaxation
timeapproacht © 1/G

ﬂ 0 0 2
M ro. 2
o O (157 190, (29)
chZ" %
o ) " g -
Jome P (w)? G(wq m
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In other words, it is essentially dependent of
temperature, field frequency, chemical potential of
graphene and scattering mechanism of free charge
carriers, which determines function G(w) in particular.

V. Optical transparency of doped
graphene

When applying the above-obtained formulas (26, 27)
and (30,31) to the dissipative currents i (t) i ji"(t),

we can define the optical transparency of suspended
graphene in vacuum (or air) according to the scheme of
paper [8], where the interband case was researched for
g =0 and m=0. The intraband conductivity is dominant

at low frequency of alternating electric field w<q/h (or
sufficiently high temperatures), but the interband
conductivity dominates if w>q /h. Let us consider these
two cases separately in order to get corresponding
transmission coefficients T™* and T™* for the incident
radiation, propagating normal to the plane graphene with
the linear polarization. We obtain the following algebraic

equations for the transmission coefficients T = EZ/E;
(E; and E, are éectric fields of transmitted and incident
wave):
gagwam _ 1
1+\/1+Tintrax| \/—I—intra ’
1+ paGw,g,m _ 1 , (30)
1+1+T™ 5 T
where a=e€*/hc is the fine structure constant,

1+

(35)
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Fig. 1 Dependences of the transmission coefficients
T™  (solid lines) and T™@ (dashed lines) of
suspended graphene on the effective intensity of the
incident  radiation | =(euE,/hwG)* a the
temperature 300 K. hG =0.010eV. The solid curves
(hw=0.3eV): 1-m=0.01eV (n,=5.3" 10°cm?;
2 m= 0.10 eV (n,=8.9" 10" cm?);
3 - m=015eV (n,=1.8" 10”cm?. The dashed

20

curves (hw=0.015eV): 1 - m=0.010eV
(n,=5.3" 10"%m?); 2 - m= 0.015 eV
(n,=8.1" 10" cm?); 3 - m= 0.020 eV

(n,=11" 10" cm?).

| =(euE,/hwG)* is the effective dimensionless
intensity of incident wave. The "nonuniversal” features
of doped graphene are shown in g(w,qm and
G(w,g,m (Egs(31), (27)) for the considered
trangitions. Figures 1, 2 demongtrate the dependences of
transmission coefficients on the magnitude of incident
wave at different values of chemical potential (with
relevant concentration of free charge carriers) and
temperature, cdculated from (35), (36).

Asin the case of the interband absorption relating to
intrinsic graphene [8], we have nonlinear increase T
with rise of effective intensity | of incident wave: first,

at low values of | — linearly [7], then — more dowly
T® 1, where
i 16a i Z2pa
T™ »1- —g(w,q,m), T™ »1- =—=G(w,q,m) .
ﬁg( q.m T (w,q,m)

If | isfixed, T"™® decreases with growth of m
and q , as contrasted to growth of T'™ (Figures 1, 2).
It is explained by corresponding behavior of g(w,q,m)
(31), ascompared with G(w,q,m) (27).

Conclusion
In the resonant interaction the obtained

dependences of interband and intraband currents of
doped graphene on dectric field, frequency, chem.
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10 20

I
Fig. 2 Dependences of T (1) (solid lines) and
T™a(]) (dashed lines) at the fixed m hw and hG =

0.010 eV for the different temperatures and
concentrations n, . The solid curves (m=0.10 eV,

hw=0.3eV): 1-100K, n,=7.5" 10" cm?;
2-200K, n,=8.1" 10" cm? 3-300K,

n, =89 10" cm? 4-400K, n,=1.0" 10 cm™
The dashed curves (m= 0.015 €V, hw =0.015 eV):
1-200K, n,=55" 10" cm? 2—-300K,

n, =81 10°cm? 3-400K, n,=11" 10" cm?;
4-500K, n,=1.3" 10" cm™

15

potential (of carrier concentration) and temperature
prove significant deviations from the linear response
theory in sufficiently strong eectric fields and at low
frequencies. The saturation was defined for all
amplitudes of induced currents, as well as for nonlinear
increase of appropriate transparency of suspended
graphene with intensity growth of incident radiation.
The intraband transmission coefficient decreases with
chem. potential and temperature rise, while the
interband transmission coefficient increases under the
same conditions.

The systematic and more detailed experimental
research of nonlinear effects of ac conductivity and
transparency is topical at high intensity and lower
frequencies of incident radiation in the doped and
undoped graphene.
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Mi>30HHa 1 BHYTPILIIHBO30HHA IPOBIZHOCTI A0MOBaHOro rpad)eHy Oynum TEOPETHHYHO IOCHIIIKEHI 3a MeXaMH
Teopii JiHiiHOrO Binryky. HoBI 3ajexHOCTi 1HZYKOBAaHOrO CTPyMy BiJl YacTOTHM 1 aMIUIITYJM 3OBHILIHBOIO
€JISKTPUYHOrO I0JIsA, TeMIlepaTypy rpadeHy i XimmoreHuiany Oyau BU3HA4€Hi JUIS JIOCUTh CHIIBHUX EIEKTPHYHUX
TOJIiB B PE30HAHCHOMY HaOJIIKeHHI. 30KpeMa, HACHYEHHS 1HAyKOBAaHOTO CTPYMY 1 HeliHiiiHe 30UIbIIEHHS ONTHYHOL
MPO30POCTi i3 POCTOM IHTEHCHBHOCTI BUIPOMIHIOBaHHs Oy/M OTpHUMaHi [UIsl JOBUIBHUX TEMIIEPATYp i JOMOBAHOTO
3pa3ka. Ha BigMiHy Bix 30UnbIIEHHS Ui MDK3OHHHX NEpEXOIMiB sl (hiKCOBaHOI IHTEHCHBHOCTI, Koe(ilieHT
TpaHcMicil BHYTPIIIHBO30HHOTO MEXaHi3MYy 3MEHILYETCS 13 3pOCTaHHAM XIMIYHOrO MOTEHIIialy 1 TeMIIepaTypu.
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