УДК 021.315.592

ISSN 1729-4428

Я.П. Салій, Д.М. Фреїк, І.С. Биліна, І.М. Фреїк

Орієнтаційні аспекти та прості кристалографічні форми наноструктур у тонких плівках PbTe:Ві на ситалі

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, Івано-Франківськ, 76018, Україна, E-mail: <u>freik@pu.if.ua</u>

За допомогою атомо-силової мікроскопії виконано дослідження процесів орієнтаційного структуроутворення у парофазних конденсатах PbTe:Bi/ситал, отриманих відкритим випаровуванням у вакуумі при температурах осадження T_{Π} =(420-520) К і випаровування наважки T_{B} = (920-1020) К та часі осадження τ = (3-120) с. Показано, що на поверхні ситалу формуються окремі нанокристали з гранями із комбінацій площин {100} і {110} структури NaCl та представлено їхні гномостереографічні проекції. Встановлені особливості кристалічних форм нанокристалів PbTe:Bi пояснено електрично-нейтральним станом кристалографічних площин та природою поверхні підкладок із ситалу. Проаналізовано залежність азимутальних ϕ та полярних ρ кутів від різних технологічних факторів, а саме від часу осадження τ та температури випарника T_{B} .

Ключові слова: парофазні конденсати, плюмбум телурид, кристалічні форми, полярні та азимутальні кути.

Стаття поступила до редакції 12.03.2014; прийнята до друку 00.00.2014.

Вступ

плівки і низькорозмірні конденсати Тонкі плюмбум халькогенідів _ перспективні напівпровідникові структури для створення на їх основі активних елементів мікро- і наноелектроніки [1,2]. Робочі характеристики цих приладових визначаються морфологічними структур особливостями та топологією конденсатів [1-3]. Легування РbTe гетеровалентними домішками п'ятої групи (Sb, Bi) зумовлює модифікацію електронної і фононної підсистем кристала, що веде ЛО покращення термоелектричних властивостей [4].

Тонкоплівковий і нанорозмірний конденсат РbTe:Вi відкриває нові можливості його практичного використання, зумовленні особливостями формування окремих наноструктур.

Для отримання тонких плівок сполук IV-VI широко використовуються парофазні вакуумні технології [1,5]. При їх реалізації, як правило, мають місце морфологічні зміни поверхні нарощуваних шарів за рахунок механічних напружень, які зумовлені невідповідностями у сталих граток, коефіцієнтів лінійного розширення конденсатів та підкладок, на які вони наносяться.

Нами раніше реалізовані квантово-розмірні структури сполук IV-VI методом «гарячої стінки», і відкритого випаровування у вакуумі [6-9]. Отже, актуальними вважаємо питання, пов'язані із дослідженням деталей процесів орієнтаційного структуроутворення у парофазних конденсатах PbTe:Ві осаджених у відкритому вакуумі на підкладках із ситалу. Також представлено аналіз простих кристалічних форм окремих нанокристалів.

І. Методика експерименту

Тонкі плівки і наноструктури отримували з парової фази випаровуванням у відкритому вакуумі наперед синтезованої сполуки РbTe:Вi із 1 ат.% вісмуту. В якості підкладок використовували пластини ситалу, які піддавалися попередній хімічній очистці. Температура випарника складала T_B = (920-1020) К, а температуру конденсації змінювали в $T_{\Pi} = (420-520)$ К. Товщину конденсату межах задавали часом осадження пари $\tau = (3-120)$ с та вимірювали за допомогою мікроінтерферометра МИИ-4. Технологічні фактори вирощування розглянутих у даній роботі парофазних структур PbTe:Bi таблиці. наведено Морфологічні V особливості наноструктур конденсатах У досліджували методами атомно-силової мікроскопії (ACM) Nanoscope 3a Dimention 3000 (Digital Instruments USA) в Інституті фізики напівпровідників ім. В.Є. Лашкарьова НАНУ України (м. Київ).

Таблиця

Технологічні фактори осадження на підкладки із ситалу у відкритому вакуумі деяких парофазних конденсатів PbTe:Вi і азимутальні та полярні кути граней тригональних та тетрагональних пірамід, що утворилися на їх поверхні.

N⁰	N⁰	Т _в , К	Т _П , К	τ, c	Тригональні піраміди			
зразка	оазка об'єкта				φ _i , °	$\Delta \phi_i$, °	ρ _i , °	$\Delta \rho_i^{o}$
№6	6.1	970	420	120	146	±1	76	<u>+</u> 4
					5	±4	60	±6
					240	±10	65	±7
№20	20.1	970	520	60	156	±6	33	±5
					36	±5	24	<u>+</u> 4
					282	±6	36	±8
	20.2				191	±3	41	±б
					93	±6	44	<u>+</u> 4
					329	±6	46	±6
№ 23	23.1	1020	470	15	76	±6	65	±11
					333	±4	46	<u>+</u> 4
					239	±8	63	±4
N⁰	N⁰	тк	тк	το	Тетрагональні піраміди			
зразка	об'єкта	I_{B}, K	1 п, к	ι, τ	φ _{ij} , °	$\Delta \phi_{ij}$, °	ρ _i , °	$\Delta \rho_i^{o}$
№6	6.2	970	420	120	206	±10	73	±3
					111	±6	52	±5
					23	±7	69	±2
					274	±1	87	±1
	6.3				184	±3	88	±1
					122	±4	78	±3
					327	±7	46	±3
					273	±3	70	±10
<u>№</u> 14	14.1	970	470	60	170	±2	50	±2
					43	±3	50	±8
					334	±1	66	±10
					216	±5	61	±5
	14.2				129	<u>±4</u>	58	±2
					25	±3	61	±6
					327	±2	77	±2
					272	±3	86	±1

Вимірювання проведені у центральній частині зразків із використанням серійних кремнієвих зондів NSG-11 із номінальним радіусом заокруглення вістря до 10 нм (NTOMDT, Росія). Рельєф квадратного поля конденсату розміром 1 мкм² представлено масивом 512^2 точок. За результатами ACM-досліджень крім морфології поверхні конденсату у програмі Gwyddion знаходили полярні ρ та азимутальні ϕ кути для всіх точок поверхні, а також для граней окремих нанокристалів (рис.1), за якими розраховували кути між нормалями до площин цих граней.

II. Результати дослідження та їх аналіз

2.1. Прості кристалографічні форми. Як відомо, ситали містять велику кількість дрібних (< 1 мкм) кристалів, пов'язаних між собою скловидним міжкристалічним прошарком, тому епітаксійні об'єкти на їх поверхні можуть формуватися на площинах окремих кристалітів полікристалічної підкладки. В структурі ситалу відсутні пори, пустоти

Рис. 1. Полярний *р* і азимутальний *ф* кути граней тригональної піраміди.

Рис.2. АСМ-зображення окремих тригональних (I) та тетрагональних (II) пірамід структури PbTe:Bi/ситал, утворених гранями із комбінацій площин {100} і {110} та їх представлення гномостереографічними проекціями.

і інші об'ємні дефекти. Вони характеризуються термостійкістю, гарною що зумовлено температурним коефіцієнтом лінійного розширення порядку $\alpha = (5-10) \cdot 10^{-7}$ 1/К, а також досить високою теплопровідністю (2,1-5,5) Вт/(м-К). Зауважимо, що встановлено 12 поліморфних модифікацій кристалічного SiO_2 , 3 них основні α-кварц (тригональна сингонія, клас 32), β-кварц (гексагональна сингонія, клас 622), β2-тридиніт, β-Епітаксійні парофазні структури кристобаліт. РьТе:Ві на поверхні ситалу наслідують у певній мірі орієнтацію граней систем {0010} -гексагональної призми, $\{10\overline{1}\}$ – ромбоедра, $\{0001\}$ - моноедра окремих кристалітів підкладки. Кристали РbTe відносяться до речовин з переважаючим іон-іонним зв'язком зі структурою типу NaCl, а електричнонейтральними найбільшими шарами 3 ретикулярними густинами є атомні площини систем {100} і {110}. Саме шість площин систем {100} і дванадцять – системи {110} за певних умов будуть утворювати нанооб'єкти на поверхні конденсату. Що стосується кутів між нормалями до граней цих простих кристалічних форм, то вони можуть набувати наступних величин: 45°, 60°, 90°, 120° і 135°. У роботі [10] шляхом повного перебору можливих

комбінацій трьох площин із згаданих двох систем показано, що можливі 15 різних варіантів тригранних пірамід.

На АСМ-зображеннях РьТе:Ві на ситалі при малих часах осадження на поверхні конденсату невиявлено об'єктів кристалічного габітусу. При тривалості напилення з'являються збільшенні утворення з плоскими гранями. При подальшому збільшенні часу осадження на поверхні плівок РЬТе:Ві кількість огранених утворень зростає. Розглянемо кристалографічні форми на зразках, що осаджувалися більше 10 секунд. В таблиці наведені значення азимутальних ф та полярних р кутів кожної *i*-ої грані об'єкта, за якими знаходилися кути між нормалями до граней, а за отриманими значеннями кутів між нормалями вже визначалися комбінацій площин {100} і {110}. На рис.2 представлено тригональні (рис.2; I) та тетрагональні (рис.2; II) піраміди, сформовані гранями систем {1 1 0} та {110}. Аналізуючи одну із пірамід, отриманих за умов вирощування №6.1 (табл.; рис. 2; I,) зроблено висновок, що вона сформована трьома гранями (1 1 0), (1 1 0), (0 1 1) системи {110}. Об'єкт №20.1 сформований гранями (**1** 1 0), (1 1 0), (**0** 1 1), а інший (№20.2) – (**1** 1 0), (**0** 1 1), (**1** 0 1) (рис.2; I). Ще одним представником тригранних об'єктів, які ми розглядали

Рис.3. 2D АСМ-зображення (а) та розподіл полярних ρ (в) і азимутальних φ (б,г; б – колові діаграми) кутів поверхонь нанокристалів у парофазних структурах PbTe:Bi/ситал отриманих за різної температури випаровування, К: $T_B = 920 - I$ (№1), $T_B = 970 - II$ (№13). Час осадження $\tau = 15$ с, температура осадження $T_{\Pi} = 470$ К (табл.1).

Рис.4. 2D АСМ-зображення (а) та розподіл полярних ρ (в) і азимутальних φ (б,г; б – колові діаграми) кутів поверхонь нанокристалів у парофазних структурах PbTe:Bi/ситал отриманих за різних часів осадження: $\tau = 15$ с – I (№19), $\tau = 120$ с – II (№21). Температура випаровування $T_B = 970$ К, температура осадження $T_{\Pi} = 520$ К (табл.1).

є піраміда № 23.1 (табл.; рис 2; І). Її форма характеризується гранями (1 1 0), (1 1 0), (1 0 1) системи {1 1 0}. Що стосується чотиригранних пірамід, то вони представлені на (рис.2; II). Було проаналізовано ряд об'єктів. Так, зокрема, представлений об'єкт №14.1, утворений площинами (**1** 1 0), (1 1 0), (1 0 1), (**1** 0 1), a №14.2 –(**1** 1 0), (1 1 0), (01 1), (1 0 1) відповідно. Ще один об'єкт характеризується гранями (0 1 0), (1 1 0), (0 1 1), (1 0 1) системи {1 1 0} та {1 0 0} - №6.3, а піраміда №6.2 складається з площин (0 1 0), (1 0 0), (0 1 1), (1 0 1) відповідно (табл., рис.2; II). Також представлено гномостереографічні проекції відповідних об'єктів. Аналізуючи їх, ми бачимо, що сусідні форми різняться розташуванням однієї площини. Це вказує на їх ідентичність походження.

2.2. Процеси формування. На рис. 3-4 представлено орієнтаційні особливості наноструктур в залежності від температури випарника Т_в та часу осадження т. Зокрема при підвищенні температури випарника з T_B = 920 К до T_B = 970 К при часі осадження τ = 15 с та температури осадження $T_{\Pi} = 470$ К спостерігається збільшення як нормальних, так і латеральних розмірів об'єктів (рис.3; І,ІІ-а). Що стосується залежності від тривалості напиилення, то тут ми бачимо аналогічну залежність. При збільшенні часу осадження від 15 с до 120 с висоти нанооб'єктів збільшуються від 42 нм до 133 нм відповідно (рис.4; I,II-а). Температура випаровування при цьому $T_B = 970$ К, а температура осадження $T_{\Pi} = 520$ К. Також тут спостерігається і тенденція до збільшення латеральних розмірів, а в зразку, напиленому при часі 120 с ми бачимо вже об'єкти пірамідальної форми.

Аналізуючи розподіл полярного кута р (рис.1) поверхонь нанокристалів (рис.3-4; І-ІІ, в) ми бачимо, що як при збільшенні температури випарника, так і при збільшенні часу осадження відбувається зміщення максимуму розподілу кута р в бік більших значень. Тобто об'єкти робляться більш стрімкими. Так, зокрема, при підвищенні температури випарника з $T_B = 920$ К до $T_B = 970$ К при часі осадження $\tau = 15$ та температури осадження $T_{\Pi} = 470 \text{ K}$ с спостерігається зміщення максимуму розподілу кута р від 8° (рис.3; І-в) до 18° (рис.3; ІІ-в). При збільшення тривалості напилення максимуми кута р збільшуються від 12° (рис.4; І-в) до 17° (рис.4; ІІ-в),

але при часі 120 с вже проявляються навіть розподіли, що рівні кутам $\rho = 70-80^{\circ}$.

Для аналізу азимутального кута ф використано колові діаграми (рис.3-4; І,ІІ-б), а також зображення розподілу кута ф (рис.3-4; І,ІІ-г). Видно, що при температурах випарника $T_B = 920 \text{ K}$ i $T_B = 970 \text{ K}$ характерним є кут $\phi \approx 90^{\circ}$ (рис.3; І,ІІ-б, г). Таким чином при цих температурах формуються нанокристали з тетрагональною симетрією у перерізі, паралельному до підкладки, що є можливим для об'єктів кубічної сингонії. При зміні часу осадження не спостерігається такої закономірності. Зокрема для часу осадження $\tau = 15$ с (рис.4; І-б, г) спостерігається характерний кут $\phi \approx 180^{\circ}$ а при часі $\tau = 120$ с (рис.4; II-б, г) розподіл азимутального кута ϕ є розмитим, із періодом 60°.

Висновки

- Представлено результати АСМ-дослідження топологічних особливостей наноструктур PbTe:Bi/ситал, отриманих відкритим випаровуванням наважки синтезованої сполуки у відкритому вакуумі за різних технологічних факторів.
- Розглянуто окремі огранені об'єкти та побудовано їхні гномостереографічні проекції. Встановлено, що їхні площини належать до систем {100} і {110}.
- Проаналізовано залежність азимутальних φ та полярних ρ кутів від різних технологічних факторів, а саме від часу τ осадження та температури Т_в випарника. Виявлено що як при збільшенні тривалості напилення, так і при збільшенні температури випарника максимум розподілу кута ρ зміщується в область більших значень, тобто об'єкти робляться стрімкішими.

Робота виконана згідно наукових проектів відділу публічної дипломатії НАТО програми «Наука заради миру» (NUKR, SEPP 984536), та МОН України (Державний реєстраційний номер 0113U000185).

- [1] D.M. Freik, M.A. Galushhak, L.I. Mezhilovskaja. Fizika i tehnologija poluprovodnikovyh plenok (Vishha shkola, L'viv, 1988).
- [2] S.P. Zimin, E.S. Gorlachev. Nanostrukturirovanye hal'kogenidy svinca: monografija (JarGU, Jaroslavl', 2011).
- [3] G. Springholz, V. Holy, M. Pinczolits, G. Bauer. Science 282, 734 (1998).
- [4] N.H. Abrikosov, L.E Shelimova. Poluprovodnikovye materialy na osnove soedinenij A4V6 (Nauka, Moskva, 1975).
- [5] Ju.Z. Bubnov, M.S. Lur'ε, F.G. Staros, G.A. Filaretov. Vakuumnoe nanesenie plenok v kvazizamknutom ob#eme (Jenergija, L.,1975).
- [6] D.M. Freïk, I.M. Lishhins'kij, P.M. Litvin, V.V. Bachuk. FHTT. 9(4), 529 (2008).
- [7] D.M. Freik, P.M. Litvin, I.I. Chav'jak, I.M. Lishhins'kij, V.V. Bachuk. FHTT. 10(4), 789 (2009).

- [8] V.V. Bachuk. FHTT. 13(1), 88 (2012).
- [9] D.M. Freïk, Ja. P. Salij, I.M. Lishhins'kij, V.V. Bachuk, N.Ja. Stefaniv. Journal of Nano- and Electronic Physics 4(2), 02012-1 (2012).
- [10] Ja.P. Salij, D.M. Freik, L.J. Mezhilovs'ka, I.S. Bilina, I.M. Freik. FHTT. 14(4), 766-774 (2013).

Y.P. Saliy, D.M. Freik, I.S. Bylina, I.M. Freik

Orientation Aspects and Simple Crystallographic Form Nanostructures in Thin Films of PbTe:Bi on Ceramics

Vasyl Stefanyk Precarpathian National University, 57, Shevchenko Str., Ivano-Frankivsk, 76000, Ukraine, E-mail: <u>freik@pu.if.ua</u>

Using atomic force microscopy shows the results of the research orientation of structure formation processes in vapor-phase condensates PbTe:Bi/Sital received open evaporation under vacuum at deposition temperature $T_S = (420-520)$ K, the sample temperature evaporation $T_V = (920-1020)$ K and deposition time $\tau = (3-120)$ s. It is shown that the surface of ceramics formed single nanocrystals with combinations of faces {100} and {110} NaCl structure and presented their hnomostereohrafichni projection. The peculiarities of crystalline forms nanocrystals PbTe: Bi explained electrically neutral state crystallographic planes of the substrate surface and the nature of ceramics. The dependence of azimuthal ϕ and polar angles ρ of various technological factors, namely the deposition time τ and the temperature of the evaporator T_V .

Keywords: vapor-phase condensates of lead telluride, crystalline form, the polar and azimuthal angles.