УДК 535.3, 535.5

ISSN 1729-4428

Л.І. Никируй, В.В. Прокопів, М.В. Левкун, А.В. Лисак

Аналіз дефектної підсистеми ZnSe, легованого перехідними металами (Co, Ni)

Прикарпатський національний університет імені Василя Стефаника, вул. Шевченка, 57, м. Івано-Франківськ, 76018, Україна, E-mail: <u>freik@pu.if.ua</u>

Запропоновано кристалоквазіхімічні формули легованих кристалів n-ZnSe:Co (Ni) та p-ZnSe:Co (Ni). Визначено залежності концентрацій домінуючих точкових дефектів, концентрації вільних носіїв та холлівської концентрації носіїв струму від величини відхилення від стехіометричного складу (α , β) та концентрації домішки Co, Ni.

Ключові слова: цинк селенід, точкові дефекти, кристалоквазіхімічні формули, легування.

Стаття поступила до редакції 15.07.2015; прийнята до друку 15.09.2015.

Вступ

Завдяки унікальному поєднанню фізико-хімічних і технічних параметрів цинк селенід продовжує залишатись одним з перспективних матеріалів електроніки функціональної [1]. Він використовується для створення інжекційних світлодіодів, фоторезисторів, лазерів у синій області спектра, сцинтиляційних датчиків, лазерних екранів, джерел спонтанного і когерентного випромінювання [1, 2]. Особливий інтерес представляє дослідження кристалів цинк селеніду, легованих перехідними металами, оскільки вони характеризуються внутріцентровими переходами в незаповнених 3dоболонках – поглинанням і люмінесценцією, представленими в інфрачервоній області оптичного спектру та високим квантовим виходом [3].

Рис. 1. Спектри люмінесценції бездомішкового ZnSe (1), ZnSe:Co (2) і ZnSe:Ni (3) при 300 К [4, 5].

Характер легування перехідними металами (Co, Ni) визначається незаповненістю їх *d*-оболонок $(3d^74s^2 - Co; 3d^84s^2 - Ni)$. Враховуючи це, найбільш типовими ступенями окиснення є +2 та +3. При цьому, для Co обидві характерні ступені є стійкими в однаковій мірі. Із подальшим збільшенням числа електронів на 3d-орбіталях їх участь в хімічній взаємодії зменшується. Тому вже для Ni більш стабільною є ступінь +2 [6].

Кристалам цинк селеніду, вирощеним з розплаву стехіометричного складу під тиском інертного газу, притаманна слабка електронна провідність i фотолюмінесценція, яка представлена двома смугами блакитній та оранжевій областях видимого V діапазону оптичного спектра (рис. 1) [4]. Оранжева викликана рекомбінацією донорносмуга акцепторних пар (ДАП) комплексу $\left(V_{Zn}^{2-}V_{Se}^{+}\right)^{-}$, до складу яких входять двозарядні негативні вакансії цинку V_{2n}²⁻ і однозарядні позитивні вакансії селену V⁺ . Блакитне ж випромінювання зумовлене рекомбінацією вільних дірок з електронами, які зв'язані на мілких донорних рівнях, утворених вакансіями селену V_{se}^+ [4].

У ближній інфрачервоній області спектра леговані кобальтом кристали цинк селеніду мають три основні лінії поглинання (рис. 1, крива 2) [5]. Їх пов'язують з розщепленням основного стану Co^{2+} . Основний стан іонів Co^{2+} (⁴A₂(F)) розташований у забороненій зоні кристалів ZnSe:Со на відстані

провідності [1], а ширина забороненої зони ZnSe

0,24 еВ від стелі валентної зони [7]. Це слідує з того, що нижній рівень збудженого мультиплетного стану ${}^{2}T_{1}(H)$ знаходиться на відстані 200 меВ від дна зони

Рис. 2. Схеми оптичних переходів у межах іонів Co^{2+} (a) [7] та Ni²⁺ (б)[11] в кристалах ZnSe.

(2,80 еВ при 77К) і енергетичне положення L-лінії в спектрі поглинання (3,36 еВ). Лінії L, M, Nпоглинання пов'язані із переходами 1-3 електронів з основного стану ${}^{4}A_{2}(F)$ на розщеплені рівні збудженого ${}^{2}T_{1}(H)$ стану (рис. 2, а). Лінії поглинання у ближній IЧ-області пов'язані з переходами 4-6 з рівня основного стану на розщеплені рівні збудженого стану ${}^{4}T_{1}(P)$. Лінії поглинання на 0,75 і 0,83 еВ зумовлені переходами 7 і 8 із основногостану на розщеплений ${}^{4}T_{1}(F)$ збуджений стан. Лінія поглинання в найбільш віддаленій IЧ-області на 0,43 еВ зумовлена переходами 9 із основного у найближчий збуджений стан ${}^{4}T_{2}(F)$.

В області E = 1.8-2.6 eВ спектри поглинання кристалів ZnSe:Ni характеризуються серією ліній (рис. 1, крива 3). Поглинання світла в цій області збільшується з зростанням концентрації нікелю. На фрагменті спектра (рис. 1) виділяються шість ліній поглинання, п'ять з яких (A, B, C, D, E): 2,57; 2,34; 2,14; 2,02; 1,86 eB. Дослідження оптичного поглинання в температурному діапазоні Т = (77 – 300) К показали, що положення всіх п'яти ліній не змінюється з ростом температури. Таким чином, зазначені лінії поглинання зумовлені внутріцентровими переходами. На рис. 2, б наведена схема оптичних переходів у межах іона Ni²⁺. Ця схема побудована на основі аналізу спектрів оптичної щільності і розрахунків енергетичних станів іона Ni²⁺, виконаних у роботах [8-10]. Лінії

поглинання у видимій області спектра на 1.86, 2.02 ,2.14, 2.34, 2.57 еВ пов'язані їх переходами з нижнього стану ${}^{3}T_{1}$ (F) на збуджений стан ${}^{1}T_{2}$ (G), ${}^{1}T_{1}$ (D), ${}^{1}E$ (G), ${}^{1}T_{1}$ (G), ${}^{1}A$ (G) [11].

У роботі, на основі запропонованих кристалоквазіхімічних формул, розраховано концентрації домінуючих точкових дефектів та основних носіїв струму у кристалах ZnSe:Co(Ni).

I. Кристалоквазіхімічні формули

З погляду кристалоквазіхімічного підходу, який грунтується на понятті антиструктури, легуючий кластер у випадку легування перехідними металами (М \rightarrow Co, Ni) цинк селеніду може перебувати у двозарядному і тризарядному станах (M^{2+} , M^{3+}), крім того, у тризарядному стані може перебувати як в підгратці цинку, так і у міжвузлі. Легуючий кластер при цьому матиме вигляд:

$$V_{Zn}^{\prime\prime}V_{Se}^{\bullet} + M^{\times} \rightarrow \left(V_{z}^{\prime\prime}M_{1-z}^{\times}\right)_{Zn}V_{Se}^{\bullet}\left(M_{z}^{\bullet}\right)_{i} + (2+z)e^{\prime}$$
(1)

де $V_{Zn}^{''}V_{Se}^{\bullet}$ -антиструктураZnSe; $V_{Zn}^{''}, V_{Se}^{\bullet}$ - вакансії Zn і Se відповідно; e'- електрони;

"/", "•", "х" – негативний, позитивний та нейтральний заряди відповідно;

Накладання кластера (1) на кристалоквазіхімічну формулу n-ZnSe [13] дає наступний результат:

z – величина диспропорціонування зарядового стану домішки М. Відповідно до роботи [12]: z = 0,85 для Со і z = 0,55 для Ni.

$$\left(Zn_{((1-\alpha)+\alpha\gamma)(1-x)}^{\times} V_{zx}^{//} M_{(1-z)x}^{x} \right)_{Zn} \left(Se_{(1-\alpha)(1-x)}^{\times} V_{\alpha\gamma(1-x)}^{\bullet} V_{x}^{\bullet} \right)_{Se} \left(Zn_{\alpha(1-\gamma)(1-\delta)(1-x)}^{\bullet} Zn_{\alpha(1-\gamma)\delta(1-x)}^{\bullet} M_{zx}^{\bullet \bullet} \right)_{i} \left(V_{Zn}^{//} V_{Se}^{\bullet} \right)_{\alpha(1-\gamma)(1-x)}^{/} + \left(x \left(2+z \right) + \alpha \left(1-x \right) \left(1+\gamma+\delta-\gamma\delta \right) \right) e^{/} + \alpha \left(1-x \right) h^{\bullet}$$

$$(2)$$

де x – атомна частка домішки; α – відхилення від стехіометрії на боці Zn; δ – коефіцієнт диспропорціюванняміжвузлових атомів цинку; Аналогічно можна записати кристалоквазіхімічну формулу p-ZnSe:M з урахуванням кристалохімічноїформули [13]:

$$\left(Zn_{(1-\beta)(1-\varepsilon)(1-y)}^{\times} V_{((1-\beta)\varepsilon+\beta)(1-\mu)(1-y)+zy}^{//} V_{((1-\beta)\varepsilon+\beta)\mu(1-y)}^{/} M_{(1-z)y}^{x} \right)_{Zn} \left(Se_{1-y}^{\times} V_{y}^{\bullet} \right)_{Se} \left(Zn_{(1-\beta)\varepsilon(1-y)}^{\bullet} M_{zy}^{\bullet \bullet} \right)_{i} + 2\left(1-y\right) \left(\beta+\varepsilon-\beta\varepsilon \right) h^{\bullet} + \left(\left(1-y\right) \left(\varepsilon(2-2\beta+\mu-\mu\beta)+\mu\beta \right) + \left(2+z\right) y \right) e^{/} \right)_{i}$$

$$(3)$$

Де β - відхилення від стехіометрії на боці Se.

II. Розрахунок концентрації дефектів та носіїв струму

Запропонований механізм легування, а також кристалоквазіхімічні формули (2) і (3) дають знайти аналітичні залежності як можливість концентрації окремих точкових дефектів, так і носіїв струму від величини відхилення від стехіометричного складу в базовій сполуці (а, β) і вмісту домішки (х). Так, зокрема для n-ZnSe:М, згідно кристалоквазіхімічної формули (2), повне рівняння електронейтральності запишеться наступним чином: $\left[V_{z_{n}}^{_{2}}V_{s_{n}}^{_{2}} \right] + 2\left[V_{z_{n}}^{_{2}} \right] + n = \left[V_{s_{n}}^{_{2}} \right] + 2\left[V_{s_{n}}^{_{2}} \right] + 2\left[Zn_{i}^{^{2}} \right] + \left[Zn_{i}^{^{+}} \right] + 3\left[M_{i}^{^{3}} \right] + p$

$$\begin{bmatrix} V_{Zn}^{2-} \end{bmatrix} = Atx,$$

$$\begin{bmatrix} V_{Zn}^{2-} V_{Se}^{+} \end{bmatrix} = A(\alpha(1-\gamma)(1-x)),$$

$$\begin{bmatrix} V_{Se}^{2+} \end{bmatrix} = Ax,$$

$$\begin{bmatrix} V_{Se}^{+} \end{bmatrix} = A\alpha\gamma(1-x),$$

$$\begin{bmatrix} Zn_{i}^{+} \end{bmatrix} = A\alpha(1-\gamma)(1-\delta)(1-x),$$

$$\begin{bmatrix} Zn_{i}^{2+} \end{bmatrix} = A\alpha\delta(1-\gamma)(1-x),$$

$$\begin{bmatrix} M_{i}^{3+} \end{bmatrix} = Atx,$$

$$\begin{bmatrix} M_{Zn}^{x} \end{bmatrix} = A(1-t)x,$$

$$n = A(\alpha(1-x)(1+\gamma+\delta-\gamma\delta) + (2+t)x),$$

$$p = A\alpha(1-x),$$

$$a = \frac{2Z}{2}$$

 $A = \frac{2A}{a^3}$ (Z – число структурних одиниць в елементарній комірці; *a* – параметр гратки, *a* = 5,6687 нм).

Холлівська концентрація носіїв струму*п_H* буде визначатися як:

$$n_{H} = |n-p|$$
.

Аналогічно для p-ZnSe:M, згідно (3), рівняння електронейтральності буде наступне:

$$\begin{split} 2\big[V_{2n}^{2}\big] + \big[V_{2n}^{2}\big] + n &= 2\big[Zn_{i}^{2+}\big] + 2\big[V_{se}^{2+}\big] + 3\big[M_{i}^{3+}\big] + p \\ & \left[V_{Se}^{2+}\right] = Ay, \\ & \left[Zn_{i}^{2+}\right] = A(1-\beta)\epsilon(1-y), \\ & \left[M_{i}^{3+}\right] = Aty, \\ & \left[V_{2n}^{-}\right] = A(((1-\beta)\epsilon + \beta)\mu(1-y), \\ & \left[V_{2n}^{2-}\right] = A(((1-\beta)\epsilon + \beta)(1-\mu)(1-y) + ty), \\ & \left[M_{2n}^{X}\right] = A(1-t)y, \\ & n &= A\big((1-y)\big(\epsilon(2-2\beta + \mu - \mu\beta) + \mu\beta\big) + (2+t)y\big), \\ & p = 2A(1-y)\big(\beta + \epsilon - \beta\epsilon\big). \end{split}$$

та p-ZnSe:Co (б).

тризарядних станів йонів перехідних металів, має

місце зростання холлівської концентрації (рис. 3, а).

У випадку p-ZnSe:М зменшується концентрація

основних носіїв, відбувається конверсія провідності з

p- на *n*-тип та подальше зростання концентрації електронів (рис. 3, б). На рис. 4 зображено просторові

залежностіхоллівської концентрації n_H від відхилення від стехіометрії α (Zn) – a, β (Se) – б та вмісту легуючої домішки [Co] для кристалів n-ZnSe:Co (a)

Холлівська концентрація в цьому випадку: $n_{_{\rm H}} = |n-p|$.

Результати проведених розрахунків холлівської концентрації та концентрації точкових дефектів наведено на рис. 3-6.

III. Результати та обговорення

Проведені розрахунки (рис. 3) показують, що із збільшенням вмісту легуючої домішки для кристалів n-ZnSe:М, за умови реалізації двозарядних і lg[n_H, cm³]

Рис. 3. Залежність холлівської концентрації носіїв струму n_H в кристалах n-ZnSe:M (a) (α = 0,2·10⁻⁴ ат. частки) та p-ZnSe:M (б) (β = 0,5·10⁻⁵ ат. частки) від вмісту легуючої домішки M: 1 -Co, 2 -Ni.

Рис. 4. Просторова залежність холлівської концентрації n_H від відхилення від стехіометрії α (Zn) – a, β (Se) – б та вмісту легуючої домішки [Co] для кристалів n-ZnSe:Co (a) та p-ZnSe:Co (б).

Рис. 5. Залежність концентрації переважаючих точкових дефектів N: $1 - [V_{Zn}^{2-}V_{Se}^+]'$, $2 - [V_{Se}^+]$, $3 - [Zn_i^{2+}]$, $4 - [Zn_i^+]$, $5 - [V_{Se}^{2+}]$, $6 - [M_i^{3+}]$, $7 - [V_{Zn}^{2-}]$, $8 - [M_{Zn}^{x}]$ основних носіїв 9 - п, 10 - р та холлівської концентрації 11 - п_Н від концентрації легуючої домішки M, для n-ZnSe:Co (a) (z=0,85) та n-ZnSe:Ni (б) (z=0,55) ($\alpha = 0,2 \cdot 10^{-4}$ ат. частки, $\gamma = 0,99999$, $\delta = 0,1$).

Рис. 6. Залежність концентрації переважаючих точкових дефектів N: $1 - [V_{Se}^{2+}]$, $2 - [M_i^{3+}]$, $3 - [Zn_i^{2+}]$, $4 - [V_{Zn}^{-}]$, $5 - [V_{Zn}^{2-}]$, $6 - [M_{Zn}^{x}]$ основних носіїв 8 - р, 7 - п та холлівської концентрації 9 -n_H від концентрації легуючої домішки [M], для p-ZnSe:Co (a) (z=0,85) та p-ZnSe:Ni (6) (z=0,55) (β = 0,5 \cdot 10^{-5} ат. частки, μ = 0,1, ε = 0,1 10^{-4}).

У матеріалі n-ZnSe:М із збільшенням вмісту легуючої домішки концентрації двозарядних вакансій селену $\left[V_{s_e}^{2*}\right]$, концентрації домішкових дефектів $\left[Co_{i}^{3*}\right]$ та двозарядні вакансії цинку $\left[V_{Zn}^{2*}\right]$ (рис. 5-крива 5,6,7) – зростають. Концентрація комплексу

 $\begin{bmatrix} V_{2n}^2 V_{se}^* \end{bmatrix}$ (рис. 5 – крива 1) не змінюється. Таким чином, легування n-ZnSe домішками перехідних металів призводить до посилення електронного типу провідності матеріалу (рис. 5 – крива 9).

Як видно з рис. 6 переважаючими дефектами у р-ZnSe:М є одно- та двозарядні вакансії цинку $[V_{Zn}^{2-}]$, $[V_{7n}]$, двозарядні міжвузлові атоми цинку $[Zn_{i}^{2+}]$, двозарядні вакансії селену [V_{se}]. Крім того, при малих значеннях концентрації легуючої домішки М $(0 \sim 0.35 \ 10^{-5})$ стає значною концентрація дірок, тобто кристали отримують р-тип провідності. Iз збільшенням [M] відбувається зменшення концентрації дірок, конверсія провідності з р- на птип і подальше зростання концентрації електронів (рис. 6 – крива 9). Тоді матеріал володіє п-типом провідності. Для p-ZnSe:Со конверсія провідності з р- на n- тип наступає при концентрації кобальту [Co]=0,3 10⁻⁵ ат.частки, а для p-ZnSe:Ni конверсія провідності з р- на п- тип наступає при концентрації нікелю [Ni]=0,37 10⁻⁵ ат.частки.

Висновки

- 1. Проаналізовано вплив домішок перехідних металів, зокрема кобальту і нікелю, на фізикохімічні властивості кристалів цинк селеніду.
- Запропоновано кристалоквазіхімічні формули для легованих кобальтом і нікелем кристалів п-ZnSe:Co(Ni) та p-ZnSe:Co(Ni) і на їх основі розраховано залежності концентрації переважаючих точкових дефектів, вільних носіїв та холлівської концентрації від вмісту легуючої

домішки.

- Показано, що при малих вмістах легуючої домішки Со (0 0,3 10⁻⁵ ат.частки) чи Ni (0 0,37 10⁻⁵ ат.частки) у кристалах p-ZnSe значною є концентрація дірок. При збільшенні [Co] та [Ni] відбувається зменшення їх концентрації, конверсія провідності з р- на п- тип ([Co]=0,3 10⁻⁵ ат.частки, [Ni] = 0,37 10⁻⁵ ат.частки) і подальше зростання концентрації електронів.
- 4. Встановлено, що легування Со і Ni кристалів п-ZnSe зумовлює зростання концентрації основних носіїв.
- 5. Показано, що для кристалів p-ZnSe:Co(Ni) домінуючі є точкові дефекти: $[V_{Se}^{2+}]$, $[M_i^{3+}]$, $[Zn_i^{2+}]$, $[V_{Zn}^{-}]$, $[V_{Zn}^{2-}]$, $[M_{Zn}^x]$, a y n-ZnSe:Co(Ni) - $[V_{Zn}^{2-}V_{Se}^+]^{/}$, $[V_{Se}^+]$, $[Zn_i^{2+}]$, $[Zn_i^+]$, $[V_{Se}^{2+}]$, $[M_i^{3+}]$, $[V_{Zn}^{2-}]$, $[M_{Zn}^x]$.

Робота виконана за підтримки відділу публічної дипломатії НАТО програми «Наука заради миру» (NUKR, SEPP 984536).

Никируй Л.І. – кандидат фізико-математичних наук, доцент; Прокопів В.В. – кандидат фізико-математичних наук, професор; Левкун М.П. – аспірант; Лисак А.В. – кандидат фізико-математичних наук, доцент.

- [1] N.K. Morozova, V.A. Kuznecov, V.D. Ryzhikov i dr. Sedenidcinka. Poluchenie i opticheskie svojstva (Nauka, Moskva, 1992).
- [2] A.N. Georgobiani, M.B. Kotljarevskij. Izv. AN SSSR. Ser. fiz., 49(10), 1916 (1985).
- [3] Ju.F. Vaksman, V.V. Pavlov, Ju.A. Nicuk, Ju.N. Purtov, A.S. Nasibov, P.V. Shapkin. FTP 40(7), 815 (2006).
- [4] V.P. Mahnij, N.D. Rarans'kij, O.M. Sl'otov, I.V. Tkachenko. Fizikai himija tverdogo tila 4(3), 426 (2003).
- [5] V.V. Gorlej, O.V. Kinzers'ka, V.P. Mahnij. Visnik Nacional'nogo universitetu "L'vivs'ka politehnika". Elektronika, 681, 104 (2010).
- [6] Я.А. Угай. Общая и неорганическая химия (Высш. шк., Москва, 1997).
- [7] Ju.F. Vaksman, V.V. Pavlov, Ju.A. Nicuk, Ju.N. Purtov. Visnik Odes'kogo nac. u-tu. Fizika 11(7), 47 (2006).
- [8] С.А. Казанский, А.И. Рыскин, Г.И. Хилько. ФТТ, 10 (8), 2417 (1968).
- [9] О. Маделунг. Физика твердого тела. Локализованные состояния(М., Наука, 1985).
- [10] A. Zunger. Sol. St. Phys., 39, 276 (1986).
- [11] Ю.Ф. Ваксман¶, Ю.А. Ницук, В.В. Яцун, А.С. Насибов, П.В. Шапкин. Физика и техника полупроводников.44 (2) 149 (2010).
- [12] Л.В.Туровська. Вісник, 21 (2011).
- [13] D.M. Freik, G.Ya. Gurgula, and L.I. Mezhylovska. Inorganic Materials, 47(9), 934 (2011).

L.I. Nykyruy, V.V. Prokopiv, M.P. Levkun, A.V. Lysak

Analysis of Defect Subsystem ZnSe, Doped with Transition Metals (Co, Ni)

Vasyl Stefanyk Precarpathian National University

57, ShevchenkoStr., Ivano-Frankivsk, 76018, Ukraine, E-mail: freik@pu.if.ua

The crystal-quasichemical formulae of doping at the Crystals n-ZnSe:Co(Ni) and p-ZnSe:Co(Ni) are suggested. The dependence on point defects concentration, on free chargecarrier concentration and Hall concentration of the degree of nonstoichiometry (α , β) are calculated.