УДК537.311.322

ISSN 1729-4428

Л.П. Ромака¹, В.В.Ромака², Ю.В. Стадник¹, В.Я. Крайовський², Д. Качаровський³, А.М. Горинь¹

Дослідження структурних, енергетичних та кінетичних характеристик напівпровідників RNiSb (R = Gd, Lu)

¹Львівський національний університет ім. І.Франка, вул. Кирила і Мефодія, 6, Львів, 79005, Україна, e-mail: <u>romakal@franko.lviv.ua;</u>

²Національний університет "Львівська політехніка", вул. С. Бандери, 12, Львів, 79013, Україна; ³Інститут низьких температур і структурних досліджень Польської Академії наук, n/c 1410, 50-950, Вроцлав, Польща, e-mail: <u>D.Kaczorowski@int.pan.wroc.pl</u>

Досліджено особливості структурних, енергетичних та кінетичних характеристик напівпровідників *p*-GdNiSb та *p*-LuNiSb у діапазоні температур T = 4,2 - 400 К. На прикладі *p*-LuNiSb показано механізм генерування структурних дефектів акцепторної природи як результат появи у позиції 4*c* атомів Ni $(3d^84s^2)$ до 6 % вакансій та часткового, до 1,35 %, витіснення атомів Ni(4*c*) атомами Lu $(5d^16s^2)$.

Ключові слова: кристалічна та електронна структури, електропровідність, коефіцієнт термо-ерс.

Стаття поступила до редакції 12.10.2015; прийнята до друку 15.12.2015.

Вступ

Дана робота продовжує системне дослідження термоелектричних напівпровідникових матеріалів на основі сполук структурного типу (СТ) MgAgAs, що дозволить сформулювати підходи для встановлення залежностей фізичних властивостей матеріалів від їх структурних особливостей і прогнозувати нові матеріали з покращеними характеристиками.

Дослідження фазових рівноваг у системах Gd-Ni-Sb та Lu-Ni-Sb [1] при температурі 873 К підтвердили існування сполук GdNiSb та LuNiSb [2, 3], які при даній температурі кристалізуються у СТ MgAgAs (пр. група F-43m) і є напівпровідниками [4, 5], а додатні значення коефіцієнта термо-ерс показують, що дірки є основними носіями струму. Дослідження фазового та хімічного складів зразків сполуки GdNiSb засвідчили, що однофазні зразки отримано лише за умови відхилення їхнього складу від еквіатомного у бік меншого вмісту атомів Ni (Gd_{34.75}Ni_{30.79}Sb_{34.46}). Згідно даних фазового та рентгеноспектрального аналізів синтезованих зразків сполуки LuNiSb однофазні зразки отримано як при еквіатомному складі, так і при складі за дещо меншого вмісту атомів Ni (Lu_{34.68}Ni_{30.57}Sb_{34.75}) [1]. Зазначимо, що відхилення складу зразків від еквіатомного може свідчити про наявність у

структурі дефектів різної природи.

3 іншого боку, саме розуміння особливостей кристалічної структури p-GdNiSb та p-LuNiSb, формування зокрема. механізмів структурних дефектів. які власне і визначають провідність напівпровідника, є основою для прогнозування характеристик матеріалу, що забезпечить максимальні значення термоелектричної добротності Z [6]. Метою роботи є дослідження структурних, енергетичних та кінетичних характеристик p-GdNiSb тар-LuNiSb, що дозволить встановити механізми електропровідності і дослідити умови отримання матеріалу з високою ефективність перетворення теплової енергії в електричну [6, 7].

I. Методики дослідження

Досліджувалася кристалічна структура, розподіл густини електронних станів (DOS), електрокінетичні та енергетичні характеристики сполук RNiSb (R = Gd, Lu). Зразки синтезовано у лабораторії Інституту фізичної хімії Віденського університету, а склади шихти готували у відповідності до [1]. Методом рентгеноструктурного аналізу отримані масиви даних (дифрактометр Guinier-Huber imageplatesystem, CuK α_1), а за допомогою програми Fullprof [8] розраховано структурні характеристики. Дослідження фазового та хімічного складів зразків використанням скануючого проведено 3 електронного мікроскопа 38 допомогою мікрозондовогоаналіза на основі рентгенівської спектроскопії (CarlZeiss DSM 962 та ZeissSupra 55VP, пакет програм INCA (OxfordInstruments)). Стандартні відхилення не перевищували 1 ат.%. Розрахунки електронної структури проводились методами Корінги-Кона-Ростокера (KKR) У наближенні когерентного потенціалу (СРА) і локальної густини (LDA) [9] з використанням обмінно-кореляційного потенціалу Moruzzi-Janak-Williams [10]. Ширина енергетичного вікна, що охоплена контуром, складає 16 eB. Число значень енергії для розрахунку DOS становило 1000. Точність розрахунку положення рівня Фермі є_F становить ± 8 меВ. Вимірювалися температурні залежності питомого опору (ρ) та коефіцієнта термо-ерс (а) відносно міді зразків GdNiSb та LuNiSb у діапазоні $T = 80 \div 400$ К.

II. Структурні дослідження GdNiSb та LuNiSb

Рентгенівські фазовий та структурний аналізи показали, що дифрактограми синтезованих зразків сполук GdNiSb та LuNiSb індексуються у структурному типі MgAgAs [11] і не містять слідів інших фаз. Мікрозондовий аналіз концентрації атомів на поверхні зразків показав їх відповідність вихідним складам шихти, які становили: для GdNiSb – Gd₃₇Ni₃₁Sb₃₂, а для LuNiSb зразок № 1 – Lu₃₅Ni₃₂Sb₃₃ і № 2 – Lu₃₅Ni₃₀Sb₃₅. Той факт, що зразки сполуки LuNiSb при складах Lu₃₅Ni₃₂Sb₃₃ і Lu₃₅Ni₃₀Sb₃₅ не містять слідів інших фаз може свідчити про наявність незначної області гомогенності.

Уточнення кристалічної структури досліджених зразків методом порошку з одночасним уточненням ізотропних параметрів атомного заміщення та зайнятості кристалографічних позицій не виявило відхилень від упорядкованого варіанту розташування атомів у відповідності до СТ MgAgAs [11]. Не дивлячись на те, що у GdNiSb та LuNiSb склад відхиляється від еквіатомного, ми не ідентифікували структурні дефекти, оскільки це лежить за межами точності ренгенівських методів [12]. Отриманий результат слугував підставою для використання упорядкованого варіанта структури *p*-GdNiSb та*p*-LuNiSb при побудові комірки Вігнера-Зейтца для розрахунну їхньої електронної структури.

Ш. Розрахунок електронної структури

Для прогнозування поведінки рівня Фермі $\varepsilon_{\rm F}$, ширини забороненої зони $\varepsilon_{\rm g}$ та кінетичних характеристик *p*-GdNiSb та*p*-LuNiSb проведено розрахунок густини електронних станів (DOS) для упорядкованого варіанту структури. Результати розрахунку DOS показали, що в енергетичному спектрі сполук LuNiSb та GdNiSb виникає заборонена зона $\varepsilon_{\rm g}$, що робить їх напівпровідниками. Енергетична щілина $\varepsilon_{\rm g}$ між зоною провідності та

Fig. 1. The calculation of the electron density of states DOS for the orderly structure of the LuNiSb compound.

валентною зоною утворюється у результаті сильної гібридизації *d*-станів рідкісноземельних металів R та Ni. Електронна густина зони провідності визначається головним чином *d*-станами R, у той час як валентна зона – *d*-станами Ni, які перекриваються з *d*-станами R та *p*-станами Sb.

На рис. 1, як приклад, наведено результати розрахунку для випадку сполуки LuNiSb. Отриманий результат узгоджується з результатами експериментальних досліджень [4, 5] у тій частині, що сполука LuNiSb є напівпровідником, однак суперечить результатам експерименту стосовно типу основних носіїв струму. Так, розрахунки фіксують рівень Фермі $\varepsilon_{\rm F}$ поблизу зони провідності $\varepsilon_{\rm C}$ (рис. 1), вказуючи на електрони як основні носії електрики, а результати [4, 5] вказують про протилежне – дірки є основними носіями струму, а тому рівень Фермі $\varepsilon_{\rm F}$ мав би розташоватися біля краю валентної зони $\varepsilon_{\rm V}$.

Отримана суперечливість може мати низку причин, від коректності експериментальних досліджень [4, 5]до повноти урах ування особливостей кристалічної структури LuNiSb, зокрема, наявності структурних дефектів різної природи (у томі числі вакансій) і, як наслідок, вигляду комірки Візнера-Зейтца. Оскільки комірка Вігнера-Зейтца є оберненою до елементарної комірки, то логічно напрошується питання стосовно повноти структурних досліджень. У даному випадку саме наявність у кристалі неідентифікованих дефектів структурного походження, які генерують у напівпровіднику домішкові енергетичні рівні, визначає механізми електропровідності [13]. Для встановлення природи суперечності між результатами експерименту [4, 5] та розрахунку електронної структури досліджено електрофізичні властивості p-GdNiSb таp-LuNiSb.

IV. Дослідження електрокінетичних характеристик *p*-GdNiSb та*p*-LuNiSb

Температурні залежності $\ln\rho(1/T)$ та $\alpha(1/T)$ для

Fig. 2. Temperature dependence of electrical resistivity $\ln \rho$ (1) and coefficient of thermal epca (2) for two samples compound LuNiSb.

Fig. 3. Temperature dependence of the electrical resistivity ρ (1) and coefficient of thermal eps α (2) of GdNiSb compounds.

зразків *p*-LuNiSb та *p*-GdNiSb наведено на (рис. 2, 3) і вони є типовими для легованих та компенсованих напівпровідників з високо- та низькотемпературними активаційними ділянками [7], а додатні значення коефіцієнта термо-ерс α засвідчують дірковий тип провідності, що узгоджується з висновками [4, 5].

Відхилення складу зразків від еквіатомного і, як результат, наявність у *p*-LuNiSb і *p*-GdNiSb значного числа заряджених структурних дефектів призводить до електростатичної взаємодії між ними, що суттєво впливає на зонну структуру напівпровідників і супроводжується флуктуацією потенціального рельєфу та модуляцією зон неперервних енергій [6, 12]. З активаційних ділянок залежностей $\alpha(1/T)$ обчислено значення енергій активації e_1^a та e_3^a , що дають, відповідно, значення амплітуди модуляції зон неперервних енергій та дрібномасштабної флуктуації легованого та компенсованого напівпровідника, а з ділянок $\ln\rho(1/T)$ – значення енергій активації дірок з рівня Фермі ε_F на рівень протікання валентної зони e_1^r та стрибкової провідності e_3^r по станах домішкової акцепторної зони з енергіями, близькими до рівня Фермі [6].

Аналіз температурних залежностей $\ln\rho(1/T)$ та α(1/T) зразків p-LuNiSb (рис. 2) дозволив виявити наступне. Так, у зразку № 1 рівень Фермі $\varepsilon_{\rm F}$ розташовується на відстані $e_1^{\Gamma} = 23.9$ меВ від стелі валентної зони ε_{v} , а у випадку зразка № 2 – e_{1}^{r} = 10.2 меВ. Оскільки положення рівня Фермі визначається співвідношенням концентрацій іонізованих акцепторів і донорів, то виглядає, що зразок № 2 містить набагато більше число дефектів акцепторної природи, ніж у випадку зразка № 1. висновок Даний підтверджують результати обчислення значень амплітуди модуляції зон неперервних енергій e_1^a з високотемпературних ділянок $\alpha(1/T)$ *p*-LuNiSb, які виявилися практично $e_1^a(N_21) = 35,7$ меВ однаковими: та e_1^a (№2) = 35,3 меВ. У гіпотетичному випадку однакових компенсації (близькість значень e_1^a) та концентрації дефектів донорної природи в обох зразках, глибина залягання рівня Фермі була би однаковою. Однак у зразку №1 рівень Фермі

вмісті акцепторів у зразку № 2. Спільним для обох зразків *p*-LuNiSb є відсутність стрибкового механізму переносу заряда при низьких температурах: у діапазоні температур *T* = 80 ÷ 100 К на залежностях ln*p*(1/*T*) відсутні активаційні ділянки, а провідність носить металічний характер по домішковій акцепторній зоні. Таке є можливим за умови перекриття хвильових функцій дірок у домішковій акцепторній зоні *p*-LuNiSb у силу їхньої високої концентрації [13].

набагато ближче до краю валентної зони, ніж у

випадку зразка № 2, що можливе при більшому

Натомість, у зразку *p*-GdNiSb у діапазоні температур $T = 80 \div 100$ К на залежності $\ln\rho(1/T)$ має місце стрибковий механізм переносу заряда з енергією активації $e_3^r = 3,1$ меВ. При підвищенні температури (T > 100 К) має місце активація дірок з рівня Фермі ε_F у валентну зону ε_V , а рівень Фермі ε_F розташовується на відстані $e_1^r = 78,4$ меВ від стелі валентної зони ε_V , що трохи нижче середини забороненої зони напівпровідника, про що свідчать додатні значення коефіцієнта термо-ерс. Таке розташування рівня Фермі ε_F , а також наявність

Fig. 4. The calculation of the electron density of states (DOS) for different variants of compounds that fill of crystallographic positions LuNiSb.

максимума на залежності $\alpha(1/T)$ у районі $T \approx 280$ К свідчать, що досліджуваний зразок *p*-GdNiSb є сильно компенсованим - концентрація іонізованих акцепторів незначно переважає концентрацію донорів повністю компенсованому (y напівпровіднику при $N_{\rm A} = N_{\rm D}$ рівень Фермі $\varepsilon_{\rm F}$ розташується на 1/2 ε_g[13]). При Т> 270 К швидкість генерування донорів переважає таку для акцепторів, однак дірки все ще залишаються основними носіями струму. Можна припустити, що при вищих температурах знак коефіцієнта термо-ерс зміниться, а отже зміниться тип основних носіїв струму. Доказом сильної компенсації зразка № 1 p-GdNiSb є високі значення амплітуди модуляції зон неперервних енергій $e_1^a = 80,4$ меВ, адже чим вищою є ступінь компенсації, тим більшою є амплітуда модуляції [7, 13].

Таким чином, дослідження кінетичних характеристик *p*-LuNiSb та *p*-GdNiSb дозволили встановити дірковий тип їхньої провідності, що є можливим за умови генерування у кристалі структурних дефектів акцепторної природи. Однак, відкритим залишається механізм утворення таких дефектів. З іншого боку, отримані результати показали, що кристалічну структуру сполук не можна розглядати як упорядковану зі 100 % зайняттям атомами кристалографічних позицій у відповідності до *CT*MgAgAs і вона містить низку структурних дефектів акцепторної та донорної природи, які і визначають фізичні властивості.

До слова, у випадку напівпровідників *n*-ZrNiSn, *n*-HfNiSn та *n*-TiNiSn (структурний тип MgAgAs) було встановлено механізм генерування донорів («апріорне легування») як результат структурної невпорядкованості сполук MNiSn (M – Zr, Hf, Ti) [7]. Суть невпорядкованості MNiSn полягає у частковому, до ~ 1 %, зайнятті атомами Ni ($3d^84s^2$) кристалографічної позиції 4a атомів M, наприклад, Hf ($5d^26s^2$) (атом Hf містить менше *d*-електронів), що і є джерелом структурних дефектів донорної природи.

V. Уточнення кристалічної структури на прикладі LuNiSb

Оскільки концентрація утворених структурних дефектів, зокрема, шляхом зайняття тим чи іншим атомом не властивих йому кристалографічних позицій, а також наявність вакансії лежить за межами точності рентгенівських методів аналізу, нами для уточнення структури застосовано метод оптимізації моделі кристалічної структури на основі результатів розрахунку електронної структури та фізичних властивостей напівпровідників [7]. Суть методу полягає у тому, що шукається таке просторове розташування атомів у вузлах кристалічної ґратки напівпровідника, при якому отримується адекватність результатів розрахунку розподілу електронної структури з результатами, отриманими з експериментальних досліджень, зокрема, зміни положення рівня Фермі $\varepsilon_{\rm F}$.

Використовуючи прив'язку до числових значень енергії активації e_1^r з рівня Фермі ε_F на край валентної зони зразка № 1 *p*-LuNiSb, визначену з високотемпературної ділянки залежності lnp(1/T) ступінь (рис. 2, *a*), шукали компенсації, яка забезпечить у розрахунках DOS саме таке розташування рівня Фермі. Виявилося, що найбільш прийнятним і оптимальним є варіант розташування атомів, який передбачає наступне заповнення кристалографічних позицій сполуки LuNiSb: Ni(4c) = 92,65 % Ni + 1,35 % Lu + 6 % Vac; Lu(4a) = 100 % Lu; Sb(4b) = 100 % Sb (рис. 4). Для інших варіантів заповнення кристалографічних позицій LuNiSb, частина з яких наведена на рис. 4, заборонена зона зникає, що передбачає металічну провідність і не узгоджується з результатами кінетичних досліджень.

По-перше, розрахунки показали, що при оптимальному варіанті заповнення кристалографічних позицій сполуки LuNiSb з'являється заборонена зона між енергетичними рівнями валентної зони та зони провідності (див. вставка на рис. 4), а рівень Фермі $\varepsilon_{\rm F}$ розташовується біля краю валентної зони, чому в експерименті відповідають додатні значення коефіцієнта термоерс. Цей результат повністю узгоджується з результатами експериментальних досліджень.

По-друге, при оптимальному варіанті заповнення

кристалографічних позицій LuNiSb розрахунки дають глибину залягання рівня Фермі відносно краю валентної зони $\varepsilon_F = 28,4$ меВ, а дослідження кінетичних характеристик давали значення $\varepsilon_F = 23,9$ меВ. Зазначимо, що точність розрахунків становить ± 7 меВ (ширина енергетичного контура (еВ) до кількості точок в енергетичному контурі). Отже і цей результат узгоджується з експериментом.

Таким чином, запровадження комплексного підходу, який передбачає дослідження кристалічної та електронної структур сполук LuNiSb та GdNiSb, а також електрофізичні дослідження, дозволяє уточнити кристалічну структуру та ідентифікувати низку структурних дефектів, які прямими методами не можуть бути визначені.

Роботу присвячуємо світлій пам'яті професора **Дмитра Фреїка** – який у найважчі для країни часи розвинув українську школу напівпровідникового матеріалознавства до світового рівня!

Ромака Л.П.-к.х.н., доцент, провідний науковий співробітник кафедри неорганічної хімії; Ромака В.В.-к.х.н., докторант кафедри прикладного матеріалознавства та обробки матеріалів; Стадник *Ю.В.*-к.х.н., провідний науковий співробітник кафедри неорганічної хімії; Д. Качаровський (KaczorowskiDarius) -доктор фізики, професор, директор Інституту низьких температур та структурних досліджень ПАН; **В.Я.-**К.Т.Н., доцент Крайовський кафедри інформаційно-вимірювальних технологій, проректор Національного університету "Львівська політехніка"; Горинь А.М.-к.х.н., старший науковий співробітник кафедри неорганічної хімії.

- D. Kaczorowski, V.V Romaka, L.P.Romaka, A.M. Horyn, T. Kovbasyuk, Yu.V. Stadnyk, Coll. Abs. XV Int. Conf. "Physicsandtechnologyofthinfilmsandnanosystems". May 11-16, 2015. (Ivano-Frankivsk, Ukraine). P. 360.
- [2] V.K. Pecharsky, J.V. Pankevich, O.I. Bodak, Sov. Phys. Crystallogr. 28, 97 (1983).
- [3] K. Harties, W. Jeitschko, J. AlloysCompd. 226, 81 (1995).
- [4] I. Karla, J. Pierre, R.V. Skolozdra, J. AlloysCompd. 265, 42 (1998).
- [5] R.V. Skolozdra, A. Guzik, A.M. Goryn, J. Pierre, ActaPhys. Polonica A 92(2), 343 (1997).
- [6] L.I. Anatychuk. Termojelementy i termojelektricheskie ustrojstva (Naukova dumka, Kiev, 1979).
- [7] V.A. Romaka, V.V. Romaka, Yu.V. Stadnyk, Intermetalichni napivprovidnyky; vlastyvosti ta zastosuvannya (L'vivs'ka politekhnika, L'viv, 2011).
- [8] T. Roisnel, J. Rodriguez-Carvajal, Mater. Sci. Forum, Proc. EPDIC7 378-381, 118 (2001).
- [9] M. Schruter, H. Ebert, H. Akai, P. Entel, E.Hoffmann, G. Reddy, Phys. Rev. 52, 188 (1995).
- [10] V.L. Moruzzi, J.F. Janak, A.R. Williams. Calculatedelectronic properties of metals (Pergamon Press, NY, 1978).
- [11] R. Ferroand A. Saccone, IntermetallicChemistry (Elsevier, Amsterdam, 2008).
- [12] V.K. Pecharskyand P.Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials (Springer, NY, 2005).
- [13] B.I. Shklovskij, A.L. Jefros, Jelektronnye svojstva legirovannyh poluprovodnikov (Nauka, Moskva, 1979).

L.P. Romaka¹, V.V. Romaka² Yu.V. Stadnyk¹, V.Ya. Krayovskyy², D. Kaczorowski³, A.M. Horyn¹

Investigation of structural, energy state and kinetic characteristics of RNiSb semiconductor (R = Gd, Lu)

¹Ivan Franko National University of Lviv, Kyryla and Mefodiya Str., 6, Lviv, 79005, Ukraine; ²National University "Lvivska Politechnika", Bandera str., 12, Lviv, 79013, Ukraine; ³Institute of Low Temperature and Structure Research Polish Academy of Sciences, P.O. Box 1410, 50-950, Wroclaw, Poland

The features of structural, energy state and kinetic characteristics of the *p*-GdNiSb and *p*-LuNiSb semiconductors were investigated in the temperature range T = 4.2-400 K. As example, in *p*-LuNiSb, the generating of structural acceptor defects as a result of the emergence of vacancies upto 6 % in the 4c positions of Ni (3d⁸4s²) atoms and partial, up to 1.35 %, substitution of Ni (4c) atoms by Lu (5d¹6s²) ones was shown. **Keywords:** crystal structure, electronic structure, electrical conductivity, thermopower.