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The magnetic response of irreversible type-II superconductor slabs subjected to in-plane rotating magnetic 
field is investigated by applying the circular, elliptic, extended-elliptic, and rectangular flux-line-cutting critical-
state models. Specifically, the models have been applied to explain experiments on a PbBi rotating disk in a 
fixed magnetic field Ha, parallel to the flat surfaces. Here, we have exploited the equivalency of the experimen-
tal situation with that of a fixed disk under the action of a parallel magnetic field, rotating in the opposite sense. 
The effect of both the magnitude Ha of the applied magnetic field and its angle of rotation αs upon the magneti-
zation of the superconductor sample is analyzed. When Ha is smaller than the penetration field HP, the magneti-
zation components, parallel and perpendicular to Ha, oscillate with increasing the rotation angle. On the other 
hand, if the magnitude of the applied field, Ha, is larger than HP, both magnetization components become con-
stant functions of αs at large rotation angles. The evolution of the magnetic induction profiles inside the super-
conductor is also studied. 

PACS: 74.25.Ha Magnetic properties including vortex structures and related phenomena; 
74.25.Op Mixed states, critical fields, and surface sheaths; 
74.25.Wx Vortex pinning (includes mechanisms and flux creep). 

Keywords: flux cutting, flux transport, vortex pinning, critical state, hard superconductor. 
 

1. Introduction 

The discovery of the phenomenon known as quasisym-
metrical collapse of magnetization [1], which is observed 
in superconductors subjected to crossed magnetic fields 
and well interpreted within the simple Bean’s critical-state 
model [2,3], has been a turning point in the understanding 
of the magnetic behavior of hard (irreversible type-II) su-
perconductors. Until then, the generalized double critical-
state model (GDCSM) [4–8], which is based on fundamen-
tal physical concepts such as flux transport and flux-line-
cutting [9,10], was successfully employed to explain a va-
riety of experiments where flux cutting occurs [11–16]. An 
important feature of the GDCSM is the assumption that 
flux cutting and flux depinning do not affect each other. 
Besides, the GDCSM is inherently anisotropic because the 
thresholds for these two effects are given by two indepen-
dent parameters, namely the critical current densities paral-

lel cJ  and perpendicular cJ ⊥  to the local magnetic induc-
tion .B  However, since the GDCSM cannot reproduce the 
features of magnetic moment collapse [17,18], whereas 
isotropic Bean’s model does it, the main assumption of the 
GDCSM has been questioned, motivating the development 
of new critical-state models in the past few years. 

In Ref. 19, the so-called elliptic flux-line-cutting criti-
cal-state model was proposed. This model introduces the 
anisotropy, induced by flux-line-cutting effects, by using a 
procedure similar to that for structurally anisotropic super-
conductors [20,21], i.e. the magnitude of the critical cur-
rent density cJ , being the only parameter used within the 
isotropic Bean’s model, is substituted by a symmetrical 
tensor ( )c ikJ  with principal values cJ  and ,cJ ⊥  corres-
ponding to the directions along and across the local mag-
netic induction .B  In good agreement with the experiment 
on Yba2Cu3O7–δ samples [1,17], the elliptic critical-state 
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model predicts the quasisymmetrical suppression of the 
average magnetization < >,zM  for paramagnetic and di-
amagnetic initial states, by sweeping a transverse field yH  
of magnitude much smaller than dc-bias magnetic field 

zH  [19,22]. When the magnitudes of the crossed fields 
yH  and zH  are comparable, the value of the magnetiza-

tion < >zM  after many cycles of the transverse field yH  
turns out to be positive for both diamagnetic and paramag-
netic initial states if > .c cJ J ⊥  To our knowledge, the ob-
servation of such a paramagnetism of hard superconductors 
was first reported in Refs. 23, 24. The elliptic model also 
describes the behavior of < > ( )y yM H  and < > ( )z yM H  
in crossed fields yH  and zH  [19,25], which was observed 
in the experiments on a VTi ribbon with nonmagnetic initial 
state [14,26]. Here, the good agreement with the experiment 
was achieved by using a relatively large anisotropy para-
meter / = 6.c cJ J ⊥  It should be noticed that the Bean’s 
critical state model predicts neither the phenomenon of the 
paramagnetism of hard superconductors nor the behavior of 
the components of the average magnetization found in 
Refs. 14, 26. Furthermore, as it is shown in [19,27], the el-
liptic critical-state model successfully describes the magnet-
ic response of superconducting disks undergoing oscillations 
in a magnetic field of fixed magnitude for nonmagnetic, 
paramagnetic, and diamagnetic initial states [11]. 

Despite the great success of the elliptic model [19], it 
turns out that there exist phenomena, associated with flux 
cutting, which are not completely described within such a 
model. So, in a very recent work [28], the elliptic critical-
state model and other four theoretical approaches for de-
scribing the critical state of type-II superconductors 
(GDCSM, extended GDCSM [29,30], extended elliptic 
critical-state model [28,31], and an elliptic critical-state 
model based on the variational principle [32]) were tested. 
There, the angular dependencies of the critical current den-
sity cJ  and the electric field E  (for J  just above )cJ  
were measured, using an epitaxially grown YBCO thin 
film, and compared with the predictions of the five theo-
ries. The measurements of angular dependence of the criti-
cal-current density cJ  demonstrated a behavior rather sim-
ilar to that assumed by the elliptic critical-state models. 
Besides, the smooth angular dependence of the ratio of the 
transverse to the longitudinal components of the electric 
field /y zE E  for J  just above ,cJ  predicted by the three 
elliptic models, was verified in the experiment [28]. How-
ever, the original critical-state model [19] leads to small 
values of the ratio /y zE E  in comparison with the experi-
mental data and the results obtained from the other two 
elliptic models. On the basis of this detailed comparison 
between experiment and the five theories, it was concluded 
in Ref. 28 that the experiment favors only one of the mod-
els, namely the extended elliptic critical-state model. 

The aim of the present work is to investigate the beha-
vior of a hard superconductor in a parallel rotating magnet-
ic field (or equivalently, the response of a rotating super-

conductor in a fixed magnetic field) and to compare the 
predictions of four critical-state models with experiment. 
Concretely, we shall consider the Bean's critical-state 
model [2,3], the original elliptic critical-state model 
[19,22], the recently-proposed extended elliptic model 
[28,31], as well as the GDCSM [4–8], whose main charac-
teristics and assumptions will be revisited in Sec. 2. We 
shall numerically solve Maxwell equations with the ma-
terial equation postulated by each of the considered criti-
cal-state models to calculate magnetization curves for a 
superconductor disk rotating in a fixed magnetic field as in 
the experiment [33] (Sec. 3). Here, we shall analyze the 
effect of the magnitude aH  of the applied magnetic field 
upon the dependencies of the magnetization components, 
parallel and perpendicular to ,aH  on the rotation angle of 
the superconductor disk. The evolution of magnetic induc-
tion profiles will also be studied to explain the magnetic 
response of the rotating hard-superconductor sample. 

2. Theoretical formalism 

Let us consider a superconducting slab of thickness ,d  
which occupies the space 0 < <x d  and is subjected to a 
magnetic field aH  parallel to its surfaces: 

 ˆ ˆ ˆ= = [ sin( ) cos( )],a a s a s sH H α + αH a y z  (1) 

where sα  is the angle of the applied magnetic field aH  
with respect to the z-axis. Hence, the magnetic induction 

( , )x tB  inside the superconducting slab can be expressed as 

 ˆ ˆ= ( , )[ sin( ( , )) cos( ( , ))],B x t x t x tα + αB y z  (2) 

where B  and α  are respectively the magnitude and the 
tilt angle of the magnetic induction. It is convenient to 
write the electric field ( , )x tE  and the electrical current 
density ( , )x tJ  in terms of their components parallel and 
perpendicular to the local magnetic induction ( , ):x tB  

 ˆˆ( , ) = ( , ) ( , ) ( , ) ( , ),x t E x t x t E x t x t⊥+E a b  (3) 

 ˆˆ( , ) = ( , ) ( , ) ( , ) ( , ),x t J x t x t J x t x t⊥+J a b  (4) 

where ˆ ˆˆ( , ) = ( , ).x t x t×b x a  Inside the superconductor sam-
ple, we shall assume that the magnetic induction and the 
magnetic field satisfy the relation 0( , ) = ( , ),x t x tμB H  
which is good enough for applied magnetic fields much 
larger than the first critical field 1( ).a cH H  Moreover, 
any surface barrier against the flux entry (or exit) will be 
neglected. According to the planar geometry of the prob-
lem, we can rewrite Ampere and Lorentz laws, 

 0( , ) = ( , ),x t x t∇× μB J  (5) 

 ( , ) = ,x t
t

∂
∇× −

∂
BE  (6) 

as follow  
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 0= ,B J
x ⊥

∂
−μ

∂
 (7) 

 0= ,B J
x

∂α
−μ

∂
 (8) 

 = ,
E BE
x x t
⊥∂ ∂α ∂
+ −

∂ ∂ ∂
 (9) 

 = .
E

E B
x x t⊥

∂∂α ∂α
− −

∂ ∂ ∂
 (10) 

To solve the resulting system of differential equations for 
,E  B  and ,J  one should add the material equation. Be-

low, we shall use the material equations corresponding to 
the circular, elliptic, extended-elliptic, and rectangular 
flux-line-cutting critical-state models. 

2.1. Circular model 

The first model for describing the magnetic behavior of 
superconductors in multicomponent situations was proposed 
by Bean [2,3]. According to it, the critical current density J  
points always along the local electric field .E  Hence, 

 = .cJ
E
EJ  (11) 

The magnitude of the critical current density = cJ J  is the 
unique phenomenological parameter used and may depend 
on the magnitude of the magnetic induction B . In the pla-
nar geometry (see Eqs. (1)–(4)), the assumption = cJ J  
corresponds to a circle in the J J⊥ −  plane. 

In numerically solving the system of Eqs. (7)–(10) for 
the electromagnetic fields, it is necessary to rewrite 
Eq. (11) as 

 = ( ) ,E J
J
JE  (12) 

 
0, ( )

( ) =
( ( )), ( )

c

c c

J J B
E J

J J B J J B
≤⎧

⎨ρ − ≥⎩
 (13) 

where ρ  is an effective resistivity. It should be mentioned 
that for slow variations of the surface boundary conditions, 
producing a small magnitude of the induced electric field 
( ),cE Jρ  the magnetic induction profiles are practically 
relaxed and independent of the parameter ρ  [34]. 

2.2. Elliptic model 

The elliptic flux-line cutting critical-state model 
[19,22,25] postulates:  

 = ( ) ,k
i c ik

E
J J

E
 (14) 

where  

 ,( ) = ( ) , , = , .c ik c i ijJ J B i kδ ⊥  (15) 

Here ikδ  is the Kronecker delta symbol. Within the elliptic 
critical-state model (14), the magnitude of the critical cur-
rent density cJ  draws an ellipse on the J J⊥ −  plane. 
This model makes use of two phenomenological parame-
ters, namely the extreme values cJ ⊥  and cJ  for the ra-
dius of the ellipse drawn by the magnitude of the critical 
current density. In the numerical calculations for solving 
the system of Eqs. (7)–(10), the relation (14) is rewritten in 
the form 

 1= ( )( ) ,i c ik kE E J J J−  (16) 

 
0, ( , )

( ) = ,
( ( , )), ( , )

c

c c

J J B
E J

J J B J J B
≤ φ⎧

⎨ρ − φ ≥ φ⎩
 (17) 

where 1( )c ikJ −  is the inverse of the matrix ( )c ikJ  in (14). 
The magnitude of the critical current density, ( , ),cJ B φ  is 
given by the expression 

 

1/2
2 2

2 2
( ) ( )cos sin( , ) = .

( ) ( )
c

c c
J B

J B J B

−

⊥

⎡ ⎤φ φ⎢ ⎥φ +
⎢ ⎥⎣ ⎦

 (18) 

Here, φ  denotes the angle of the critical current density J  
with respect to the direction of the flux density .B  If 

= ,c cJ J⊥  the elliptic critical-state model (16) goes over 
into the Bean’s (circular) critical-state model (12). Besides, 
the calculations of electromagnetic fields with J  close 
to cJ  are also independent of the auxiliary parameter ρ  
in Eq. (17). 

2.3. Extended elliptic model 

The elliptic critical-state model, described in previous 
subsection, has recently been extended in Refs. 28, 31 by 
introducing the general relations  

 = ,E J⊥ ⊥ ⊥ρ  (19) 

 = ,E Jρ  (20) 

where ⊥ρ  and ρ  are nonlinear effective resistivities, hav-
ing a ratio = /r ⊥ρ ρ  independent of J  just above cJ  as 
it was experimentally found [28]. A model for the effective 
resistivities is given by [31]  

0, 0 | |
= ,

(| | ) sign( ), | |
cd

d cd cd

J J
E

J J J J J
⊥

⊥
⊥ ⊥ ⊥

≤ ≤⎧
⎨ρ − ≥⎩

 (21) 

0, 0 | |
= .

(| | ) sign( ), | |
cc

c cc cc

J J
E

J J J J J

≤ ≤⎧⎪
⎨ρ − ≥⎪⎩

 (22) 

Here, the subscripts “d” and “c” respectively refer to de-
pinning and cutting. Besides, = ( , ) | sin( ) |cd cJ J B φ φ  and 

= ( , ) | cos( ) |,cc cJ J B φ φ  where ( , )cJ B φ  is defined ac-
cording to the elliptic critical-state model as in Eq. (18). If 
| | / 1,c cJ J J−  the extended elliptic critical-state model 
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reduces to the original one (Eqs. (16) and (17)) by replac-
ing dρ  and cρ  in Eqs. (21) and (22) with /c cJ J ⊥ρ  and 

/c cJ Jρ , correspondingly. Hence, in the case of the orig-
inal elliptic model, the ratio = /r ⊥ρ ρ  at > cJ J  is equal 
to /c cJ J⊥ . On the other hand, the extended elliptic criti-
cal-state model is capable to modify the relation between 
the components of the electric field E  and the current den-
sity J  with the aid of the additional parameter .r  

2.4. Rectangular model 

The generalized double critical-state model [4–8] uses 
two phenomenological parameters, namely the critical val-
ues, cJ  and cJ ⊥ , of the electrical current density along 
and perpendicular to the local magnetic induction. Within 
this model, each component of the electrical current densi-
ty is determined by its own electric field as  

 = sign( ),cJ J E⊥ ⊥ ⊥  (23) 

 = sign( ).cJ J E  (24) 

Evidently, the magnitude of the critical current density trac-
es a rectangle in the J J⊥ −  plane. The parameter cJ ⊥  
determines the threshold for depinning of vortices, whereas 

cJ  indicates the onset of flux-line cutting in the vortex ar-
ray. In calculating the electromagnetic fields within the 
GDCSM, the material equation (23) is written in the form 

0, 0 | |
= ,

(| | ) sign( ), | |
c

c c

J J
E

J J J J J
⊥ ⊥

⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

≤ ≤⎧
⎨ρ − ≥⎩

 (25) 

 
0, 0 | |

= .
(| | )sign( ), | |

c

c c

J J
E

J J J J J

≤ ≤⎧⎪
⎨ρ − ≥⎪⎩

 (26) 

The quantities ⊥ρ  and ρ  are effective flux-flow and flux-
line-cutting resistivities of the material. However, unlike 
the above-commented critical-state models, the GDCSM 
allows the existence of zones in the J J⊥ −  plane where 
either flux cutting or flux transport exclusively occur. The 
latter is possible due to the assumption of the GDCSM that 
the threshold for flux depinning, cJ ⊥  (flux cutting, cJ ) is 
independent of the component J  ( )J⊥  (compare 
Eqs. (25) and (26) with Eqs. (21) and (22) where cdJ  and 

ccJ  depend on the angle = arctan( / )J J⊥φ ). 

3. Numerical results and comparison with experiment 

In the present section we will apply the flux-line-cutting 
critical-state models, commented above, to explain expe-
rimental magnetization curves [33] of a PbBi supercon-
ducting disk, rotating in the presence of an external mag-
netic field ,aH  which is oriented parallel to the disk plane 
(along the z-axis) and perpendicular to the axis of rotation. 

3.1. Experimental results 

Figure 1,a exhibits a standard magnetization curve, 
which was measured in Ref. 33, for a PbBi disk of thick-
ness = 0.8d mm. The hysteresis in Fig. 1,a clearly corres-
ponds to the magnetization curve of a type-II irreversible 
superconductor since its return crosses over and remains in 
the paramagnetic region as a result of the strong flux pin-
ning. In the experiment, the isotropy of the PbBi disk was 
also verified by comparing standard magnetization curves 
with aH  directed along different diameters of the disk. 

Panels (a)–(c) in Fig. 2 show graphs of the magnetiza-
tion components, 0< > = < > /y yM B μ  and < > =zM−  

0= < > / ,a zH B− μ versus the angle θ  of rotation, meas-
ured in the work [33] for the PbBi disk, rotating in the 
magnetic field .aH  The measurements started in the non-
magnetic initial state which is reached after cooling the 
superconductor at the fields / =a PH H  0.5 (panel a), 1.0 
(panel b), and 2.0 (panel c), where PH  ( 0 = 0.1015PHμ T 
[33]) is the penetration field. The initial state is supposed 
to be nonmagnetic because no Meissner effect (flux expul-
sion) was observed after field cooling, within the accuracy 
( < > 1MΔ ≤  Gauss) of the experiment. 

Fig. 1. Standard magnetization curves (a) for a PbBi disk, taken 
from Ref. 33. Theoretical magnetization curves (b) obtained with 
a critical current density ( )cJ B⊥  as in Eq. (31). 

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
–0.06

–0.03

0

0.03

0.06

0.09
Experiment

a

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14
–0.06

–0.03

0

0.03

0.06

0.09

b

Model

�0Hz, T

�
0
<

>
,
T

M
z

�0Hz, T

�
0
<

>
,
T

M
z



R. Cortés-Maldonado, J.E. Espinosa-Rosales, A.F. Carballo-Sánchez, and F. Pérez-Rodríguez 

1194 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, No. 11 

As it is seen in Fig. 2, for the smallest value of aH  
(= 0.5 ,PH  panel a), both magnetization components have 
a nonmonotonic behavior as functions of .θ  Such a beha-
vior of magnetization has also been observed in Ref. 11 
during the initial rotation of a Nb disk undergoing slow 
oscillations in a parallel field. The dependence of the mag-
netization on θ  radically changes at larger values of .aH  
So (see Fig. 2,b), at =a PH H  the functions < > ( )yM θ  
and < > ( )zM− θ  initially grow with θ  and later (at 

> 150 )θ  they practically become constants with close 
values (< > < >).y zM M≈ −  Also note that < >yM  has 
a maximum at 75 .θ ≈  For aH  larger than the penetration 
field PH  (panel c), the function < > ( )zM− θ  takes val-
ues smaller than those for < > ( ).yM θ  Both of them are 

almost constant functions, except at small rotation angles 
because of their fast initial growth. Thus, the maximum of 
< >yM  is shifted to a smaller value of θ  ( 40 ).≈  

3.2. Theoretical predictions 

The models described in the previous section can be 
applied to explain the experimental results (Fig. 2) if we 
fix the sample and rotate the external magnetic field aH  
(1) by an angle =sα −θ  instead of fixing the magnetic 
field and rotating the superconducting sample. Then, the 
experimental values < >yM  and < >zM−  should re-
spectively correspond to the quantities:  

 
0 0

1< >= ( ),
d

y yM dxB x
d

′
μ ∫  (27) 

 
0 0

1< >= ( ),
d

z a zM H dxB x
d

′− −
μ ∫  (28) 

where  
 ˆ ˆ= = ( )sin[ ( ) ],y s sB B x x′ × ⋅ α −αa x B  (29) 

 ˆ= = ( )cos[ ( ) ].z s sB B x x′ ⋅ α −αa B  (30) 

The calculations of magnetization components < >yM  
and < >zM−  with the critical-state models, discussed in 
Sec. 2, require the employment of the parameters ( )cJ B⊥  
and ( ),cJ B  depending on the magnetic induction. The 
former, ( ),cJ B⊥  is determined from the experimental 
curves of magnetization versus the applied field, varying 
along one direction only as in Fig. 1 (In this case, flux cut-
ting does not occur and, consequently, the depinning ef-
fects are completely responsible for the magnetic response 
of the superconductor.) The standard magnetization curves 
are well reproduced by any one of the critical-state models 
(see above) with 

 0

(0)
( ) = ,

(1 / )
c

c n
P

J
J B

B H
⊥

⊥
⊥+ μ  (31) 

7(0) = 47.11 10cJ ⊥ ⋅  A/m2, and = 2n⊥  (compare panels 
(a) and (b) of Fig. 1). Other parameters of the critical state 
models are found by adjusting theoretical magnetization 
curves to the experimental ones (Fig. 2). 

3.2.1. Circular model. Within the Bean,s circular criti-
cal-state model (11), there is only one phenomenological 
parameter, i.e. ( ) = ( ) = ( ).c c cJ B J B J B⊥  Then, ( )cJ B  
has the form (31) with the same values for the parameters 

(0),cJ ⊥  and .n⊥  
Figure 3 shows our numerical results for < >yM  and 

< >,zM−  obtained with the Bean critical-state model. At 
first glance, it seems that the circular model qualitatively 
reproduces the experimental magnetization curves (Fig. 2). 
However, there are important differences between its pre-
dictions and the experiment. Thus, for example, the “oscil-
lations” of the magnetization components (Fig. 3,a) have 
small amplitudes compared with the experimental ones. 

Fig. 2. PbBi rotational curves measured in Ref. 33. 
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Besides, at = 0.8a PH H  the functions < > ( )yM θ  and 
< > ( )zM− θ  approximate each other but at relatively 

large rotation angles > 300 .θ  Finally, when the applied 
field has an amplitude larger than pH  (see panel c), the 
magnetization components are rather small in magnitude 
and their initial growth, before the saturation, occurs in a 
very small interval of θ  (< 20 ).  

3.2.2. Elliptic model. The calculations of magnetization 
components < >yM  and < >zM−  within the elliptic 
flux-line-cutting critical-state model (14) are shown in 
Fig. 4. Here, we used the same ( )cJ B⊥  as in Eq. (31) and 

( )cJ B  of the form  

 
0

(0)
( ) =

(1 / )

c
c n

P

J
J B

B H+ μ
 (32) 

with (0) = 1.5 (0)c cJ J ⊥  and = 1n . This choice provides 
a good agreement between experimental (Fig. 2) and theo-
retical (Fig. 4) curves. Thanks to the use of a second para-
meter ( cJ ), the elliptic model is able to generate the “os-
cillations” of the magnetization components (Fig. 4,a) with 
amplitude close to that observed in the experiment (panel 
(a) in Fig. 2). Notice that < >yM  and < >zM−  ap-
proach each other at > 150θ  with 0 = 1.05 PH H  in good 
concordance with the measurements (see Fig. 2,b, corres-
ponding to 0 = ).PH H  In addition, when 0 = 2.0 pH H  
(panel (c) in Fig. 4), the difference between < >yM  and 

< >zM−  at > 45θ  is as large as in the experiment 
(Fig. 2,c). 

Fig. 3. Curves of the average magnetization components versus
the rotation angle, calculated with Bean’s critical-state model. 
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Fig. 4. Curves of the average magnetization components versus 
the rotation angle, calculated with the original elliptic critical-
state model. 
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3.2.3. Extended elliptic model. As was commented in 
Sec. 2, both elliptic and circular critical-state models are 
particular cases of the extended elliptic one. Therefore, the 
results presented in Fig. 3, predicted by the circular model, 
can also be calculated by using the new model (Eqs. (21) 
and (22)) with =c cJ J⊥  as in Eq. (31) and 

= / = /c dr ⊥ρ ρ ρ ρ  being equal to one ( =1r ) at > .cJ J  
The condition =1r  guarantees that the electric field E  and 
current density J  be parallel as it is postulated by Bean’s 
critical-state model (11). In addition, graphs in Fig. 4 (origi-
nal elliptic model predictions), which quantitatively repro-
duce experimental measurements (Fig. 2), are also ob-
tained with the extended elliptic critical-state model 

(Eqs. (21) and (22)) if = /c cr J J⊥  (i.e. / =c dρ ρ
= /c cJ J⊥ ). According to the parameters ( )cJ B⊥  (31) 
and ( )cJ B  (32), used for calculating magnetization 
curves in Fig. 4, the ratio r  is here smaller than 1 ( <1r ). 

It is interesting to study the effect of the parameter r , 
controlling the relation between the electric field E  and 
the current density J  at > .cJ J  For this reason, we have 
calculated magnetization curves (Fig. 5) by applying the 
extended elliptic model with the same parameters ( )cJ B⊥  
and ( )cJ B  as those employed in Fig. 4, but with the pa-
rameter = / = 1.c dr ρ ρ  In other words, the magnetization 
curves in Fig. 5 correspond to an anisotropic critical-state 
model with / < 1,c cJ J⊥  but the parameter = 1,r  indi-

Fig. 5. Curves of the average magnetization components versus
the rotation angle, calculated with the extended elliptic critical-
state model using a ratio =1r . 
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Fig. 6. Curves of the average magnetization components versus 
the rotation angle, calculated with the generalized double critical-
state model. 
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cating that E  and J  are parallel when > .cJ J  From the 
comparison of Fig. 5 with 4, we note that magnetization 
curves significantly depend upon the parameter r  when 
the applied magnetic field is large enough ( >a PH H  as in 
panels (b) and (c)). So, in order the magnetization compo-
nents, < >yM  and < >,zM−  to have the same value at 
large angles of rotation, the applied magnetic field aH  for 

=1r  (Fig. 5,b) should be larger than the field used in 
Fig. 4,b. Besides, the value of < >yM  and < >zM−  
( 0.4 ),PH≈  at sufficiently large angles ,θ  turns out to be 
smaller than that ( 0.5 )PH≈  predicted by the original el-
liptic model (Fig. 4,b). At = 2.0 ,a PH H  there is also a 
noticeable difference between magnetization y-components 
(compare panels (c) of Figs. 4 and 5). 

3.2.4. Rectangular model. For completeness of our study, 
we have employed the GDCSM (rectangular model), which 
also uses two critical current densities, namely ( )cJ B⊥  and 

( ).cJ B  The former is determined from the curves of mag-
netization versus the applied field, varying along one direc-
tion only (Fig. 1). In our case, the magnetic dependence of 

cJ ⊥  is the same as in Eq. (31). To reproduce the main fea-
tures of the experiment (Fig. 2), the other parameter is cho-
sen as in Eq. (32), but (0) = 1.32 (0)c cJ J ⊥  and = 1.06n  
(compare Figs. 2 and 6). Although these values are different 
from those used within the elliptic critical-state model, the 
parallel critical current density cJ  remains being larger 

than the perpendicular one .cJ ⊥  It should be noted that the 
GDCSM predicts the equality of < >yM  and < >zM−  
( 0.5 )PH≈  with an external field = 1.29 >a P PH H H  at 
relatively large rotation angles > 270θ  (see Fig. 6,b), in 
contrast to the experiment where such a behavior occurs 
from 150 .θ ≈  Besides, the numerical calculations for 

= 0.5a PH H  (panel (a) in Fig. 6) had to be stopped at 
338θ ≈  because the solution further diverged. 

3.3. Magnetic induction profiles 

The fact that the elliptic critical-state model is able to 
quantitatively reproduce the experiment, with the use of a 
parallel critical current density ( )cJ B  larger than the per-
pendicular one ( )cJ B⊥ , illustrates how flux-line cutting 
influences on the magnetic behavior of a rotating super-
conductor. To explain the features observed in both expe-
rimental (Fig. 2) and theoretical (Fig. 4) magnetization 
curves, we shall analyze the evolution of the profiles for 
the magnitude of the magnetic induction ( ),B x  the tilt an-
gle ( )xα , and the components ( )yB x′  (29) and ( )zB x′
(30), calculated within the original elliptic flux-line-cutting 
critical-state model (Figs. 7–9). 

The calculated profiles of the magnetic induction in the 
case when the external magnetic field aH  has a magnitude 
smaller than the penetration field pH  ( = 0.5 )a pH H  are 
shown in Fig. 7. As the angle of rotation is increased, two 

Fig. 7. Profiles of the angle α  (panel a), magnitude B  (panel b) and components yB ′  (Eq. (29), panel c) and zB ′  (Eq. (30), panel d)
of the magnetic induction, calculated with the original elliptic critical-state model at = 0.5 .a PH H  
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U-shaped minima in the ( )B x  profile (panel b) appear 
because of the flux consumption (decrement of B) which 
results from flux-line cutting [4]. The absolute value of the 
tilt angle α  increases with θ  in the near-surface intervals 

10 < mx x≤  and 2 < .mx x d≤  However, in the intervals 
1 1< <mx x x  and 2 2< < ,mx x x  where there is flux con-

sumption, the angle α  is slightly modified. In the central 
interval, 1 2< < ,x x x  neither B  or α  is altered. When 

360 ,θ ≈  the minimum values of B  inside the supercon-
ducting disk tend to zero and, as follows from Eq. (8), the 
magnitude of the derivative / x∂α ∂  considerably increases 
at points corresponding to such minima. Besides, at 1= mx x  
and 2= mx x  with 1 2( ) = ( ) 0,m mB x B x ≈  the accuracy of 
our calculations is low and, therefore, the values 1( )mx−α  
and 2( )mx−α  turned out to be apparently higher than they 
should be (see curve 8 for = 360θ  in Fig. 7,a). The com-
ponent zB′  of the magnetic induction, parallel to the ap-
plied magnetic field, decreases near sample surfaces be-
cause of the flux consumption (Fig. 7,d). Nevertheless, the 
most important change occurs in the central part of the 
sample (in 1 2< < )x x x  because of the sample rotation. 
So, at = 180θ  (curve 4) the component zB′  varies from 

0=z aB H′ μ  at the surfaces = 0x  and =x d  to the oppo-
site value 0=z aB H′ −μ  in the central region of the sample. 
When an entire cycle is finished, zB′  again takes the value 

0=z aB H′ μ  in the middle of the disk (curve 8). This cyclic 
behavior of zB′  is responsible for the “oscillations” of 
the magnetization component < > ( )zM θ  (panels (a) in 
Figs. 2 and 4), being negative for any value of the angle of 

rotation > 0θ  because 0<z aB H′ μ  near surfaces, i.e. in the 
intervals 10 < <x x  and 2 < < .x x d  The component yB′  
also oscillates in the middle of the sample as θ  is increased 
(Fig. 7,c). Such a behavior of yB′  makes the magnetization 
y-component < >yM  oscillate with θ  (Figs. 2,a and 4,a). 
As it is seen in Fig. 7,c, there is an increment of yB′  in the 
near-surface regions, producing a small positive value for 
< >yM  (27) after a complete cycle, i.e. at = 360θ  (see 
Figs. 2,a and 4,a). 

Figure 8 exhibits profiles calculated within the elliptic 
critical-state model for = 1.05 .a pH H  Due to the decrease 
of the critical current densities cJ ⊥  (31) and cJ  (32) with 
the magnitude B  of the magnetic induction, the slopes of 
the critical profiles for ( )B x  and ( )xα  near surfaces are 
smaller than the slopes observed in the corresponding pro-
files of Fig. 7. Therefore, the central region with unaltered 
B  and α  (see curves 1 in panels (a) and (b) of Fig. 8) 
rapidly disappears as the rotation angle θ  is increased (see 
curves 2 therein). Also, the U -shaped minima of ( )B x  
coalesce forming a unique minimum at the center of the 
disk. The resulting critical profile ( )B x  does not further 
change despite the fact that the disk continues rotating (see 
curves 5–8 in panel (b)). In this case, ( )zB x′  initially de-
creases (curves 1–2 in Fig. 8,d) inside the sample as θ  
varies until it reaches the critical profile (curves 3–8). 
Hence, the dependence < > ( )zM θ  has a monotonic beha-
vior at > 120θ  (see panels (b) in Figs. 2 and 4). On the 
other hand, ( )yB x′  increases so that a huge maximum in 
the dependence < > ( )yM θ  (Figs. 2,b and 4,b) appears at 

Fig. 8. Profiles of the angle α  (panel a), magnitude B  (panel b) and components yB ′  (Eq. (29), panel c) and zB ′  (Eq. (30), panel d) of 
the magnetic induction, calculated with the original elliptic critical-state model at = 1.05 .a PH H  
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70 .θ ≈  At large rotation angles ( > 180θ ), the profile 
( )yB x′  becomes stationary and < > ( )yM θ  is, practically, 

a constant function, having a value close to < > .zM−  
So, the magnitude of the magnetization, |< >|M , is inde-
pendent of θ  when the rotation angle is sufficiently large. 

The profiles for the case when the external magnetic field 
is large enough, in comparison with the penetration field 

PH  (as in Fig. 9), have an evolution similar to that pre-
sented in Fig. 8. However, the central regions of unaltered 
magnetic induction rapidly disappear as θ  is increased 
(compare Figs. 8 and 9). This fact is due to noticeable reduc-
tion of the critical current densities cJ ⊥  and cJ  with .B  

4. Conclusion 

We have applied the circular, elliptic, extended-elliptic, 
and rectangular critical-state models to study the magnetic 
behavior of irreversible type-II superconductors in a paral-
lel rotating magnetic field. The numerical method em-
ployed here is based on the substitution of the vertical law, 
relating the electric field E  and the current density ,J  for 
a nonlinear material equation having effective flux-cutting 
and flux-flow resistivities in the dissipative region. The 
substitution is justified when the applied magnetic field 

aH  slowly varies either in magnitude or direction, induc-
ing electric fields of sufficiently small magnitude inside the 
superconductor. Within the elliptic (circular) critical-state 
model such resistivities are not independent of each other 

and have a ratio = /r ⊥ρ ρ  equal to /c cJ J⊥  (=1 for the 
circular model) at J  just above its critical value .cJ  On the 
other hand, within the extended elliptic critical-state model 
the ratio r  is an independent parameter to be determined. 
The rectangular critical-state model also uses two indepen-
dent resistivities, ρ  and .⊥ρ  However, unlike the other 
critical-state models, the GDCSM assumes that flux cutting 
and flux depinning do not affect each other. 

The comparison of the predictions of the mentioned 
critical-state models with experimental measurements of 
magnetization for a rotating PbBi disk in a fixed magnetic 
field [33] shows that the original critical-state model can 
reproduce the main features of the magnetization curves. 
The circular and rectangular critical-state models only 
achieve a qualitative description of the experiment. The 
extended elliptic model, being more general than the origi-
nal elliptic one, has allowed us to study the effect of the 
relation between E  and J  in the dissipative region. How-
ever, additional theoretical and experimental studies are 
needed to elucidate on the effects associated with both 
flux-cutting and flux-flow resistivities. 

This work was partially supported by Consejo Nacional 
de Ciencia y Tecnología (CONACYT, Mexico). 
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