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Monte Carlo simulation of two-dimensional Shastry–Sutherland lattice has been carried out using heat-bath 
method. The dependencies of magnetization M  on external field H  have been obtained in the framework of 
classical Heisenberg model. In certain interval of exchange parameters ratio the plateau of magnetization corres-
ponding to = 1 / 3M  has been observed. The influence of exchange anisotropy of “easy-axis” type on this pla-
teau width is studied. It has been shown that even weak anisotropy ( 1 2%−∼ ) leads to essential enlargement of 
the plateau. The dependence of critical temperature on exchange parameters ratio has been established. 

PACS: 75.10.Hk Classical spin models; 
75.30.Gw Magnetic anisotropy; 
05.50.+q Lattice theory and statistics (Ising, Potts, etc.). 
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1. Introduction 

Recently the physical properties of two-dimensional 
compounds with “Shastry–Sutherland Lattice” (SSL) mag-
netic structure have attracted great interest. There are many 
theoretical and experimental, fundamental and applied 
works dedicated to the given subjects. These systems are 
interesting due to a number of unusual magnetic properties, 
which exhibit various kinds of compounds. The structure 
of SSL can be described as a square lattice with four anti-
ferromagnetic couplings J  and one additional diagonal 
antiferromagnetic coupling J ′  [1]. It is interesting, that 
SSL has been considered initially by Shastry and Suther-
land as an abstract model of a frustrated quantum spin sys-
tem with an exact ground state in some region of parame-
ters. Later, it has been established that a number of quasi-
two-dimensional compounds have magnetic structures 
which are close to SSL. These are 2 3 2SrCu (BO )  [2–4] and 
rare earth tetraborides [5–7]. The experiments with these 
compounds have shown a number of interesting features. 
For example, the dependence of magnetization M on exter-
nal magnetic field H  contains a series of plateaux. These 
plateaux correspond to rational values of the ratio sat/M M  
where satM  is saturated magnetization. The plateau cor-

responding to sat/ = 1/8M M , 1/4 , 1/3 , 1/2  were observ-
ed in different compounds [6–9]. As indicated above, the 
first measurements of magnetization peculiarities were 
carried out on 2 3 2SrCu (BO )  compound. Due to pro-
nounced quantum magnetic properties of Cu ions, quantum 
SSL model were studied intensively. At the same time, 
such plateaux were discovered in rare-earth tetraborides 
RB 4  in which the rare-earth ions are placed in the (001)  
plane according to a lattice which is topologically equiva-
lent to the SSL. These compounds present large total angu-
lar momenta that justify a classical description of the SSL 
[10–13]. Is was shown that even in classical limit and in 
the framework of isotropic SSL model some peculiarity on 

( )M H  dependence at sat/ = 1/3M M  takes place. This 
peculiarity can be identified as plateau “nucleus” (or pseu-
do-plateau). Spin structure corresponding to this pseudo-
plateau has been established in the same paper. Later, in 
[12] was shown that anisotropy of exchange interaction 
affects the pseudo-plateau. 

The main goal of our paper is to investigate in details an 
influence of exchange constants ratio /J J′  and easy-axis 
anisotropy on the thermodynamic properties of two-
dimensional SSL using Monte Carlo simulation in the 
framework of classical Heisenberg model. 
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2. Hamiltonian and method 

The Hamiltonian of the system under consideration has 
the form 

 
< , > < , >

ˆ ˆ= i i i i i
i i i

J J ′+δ +δ
′δ δ

′+ −∑ ∑ ∑s s s s H sH . (1) 

Here is  are the classical vectors with unity length 
(| | = 1).is  Symbol < , >i δ  in the first term means that the 
summation is taken over four near neighbours and < , >i ′δ  
in the second term means the summation with one diagonal 
neighbour. The last term is the interaction of the spins sys-
tem with the external magnetic field H . The elements of 
diagonal matrixes  
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are the exchange constants ( , > 0, = , ,J x y zα α α ). 
A number of interesting features has been discovered in 

SSL in the framework of classical Monte Carlo method 
with Metropolis test. It should be noted that along with 
evident advantages (simplicity and universality) the me-
thod possess a number of disadvantages. The most impor-
tant of them is low efficiency in low-temperature region. It 
is essentially because the specific characteristics of SSL 
manifest itself in full measure just in this temperature re-
gion. Further, low efficiency of the method leads to limita-
tion on the system size (as far as we know, the maximal 
system size studied in the previous works is about 40×40). 
As the result the question about an influence of boundary 
effects is open yet. In this work we propose algorithm of 
Monte Carlo simulation based on the so-called “heat-bath” 
method. The method significantly improves computing 
efficiency at low-temperatures region and for systems with 
continuous degrees of freedom. Moreover, we adopted the 
method for parallel (cluster) calculations, which allows us 
to improve the efficiency also. 

In the framework of “heat-bath” method the transition 
probability from “old” configuration s  to a “new” one s′  
has the form [14] 

 

{ }

( , )
( , ) =

( , )
a

a
s

f s s
w s s

f s s
′

′
′

′∑
. (2) 

Symbol { }s′  means summation over all possible states of 
spin s′ . For our calculation the acceptance probability af  
has been chosen in Metropolis form: 

 ( , ) = exp ( [ ( ) ( )])af s s E s E s′ ′−β −  

where = 1/ Tβ  is inverse temperature (T  is in energy 
units) and ( )E s  is the system energy in configuration s. In 
such a case (2) depends on s′  only and acquires the form 
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According to Monte Carlo approach the configurations s  
and s′  differ by the state of one particle which we will in-
dicate by index i . Let us introduce 
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δ

′+ −∑S s s H . (4) 

Then 
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Here = | |i iS β S  and = cos( )ξ π− θ , where θ  is the angle 
between is  and iS . This choice of ξ  is determined by 
antiferromagnetic interaction among the spins. iZ  is nor-
malization constant in denominator (3). In our case 
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Performing non-linear white noise selection 
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we obtain finally 

 cos ( )rξ = π − θ =   

 ( )0
1 ln exp ( ) [exp ( ) exp ( )]r

i i i
i

S S S
S

= − γ − −  (10) 

where 0
rγ  is uniformly distributed random number 

0(0 < 1r≤ γ ). This expression has the following sense. Let 
us introduce local polar coordinate system with || iz −S  and 
arbitrary direction of x  and y  in the plane perpendicular 
to z. In such a case (10) gives the transition probability of 
spin is  to a new state as the function of polar angle θ . As 
far as (5) depends on θ  only one can choice azimuthal 
angle φ  in xy  plane as 1= 2 rφ πγ , where 1

rγ  is uniformly 
distributed random number ( 10 < 1r≤ γ ). 
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Performing back transformation to global Cartesian 
coordinate system we obtain 
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The final expression (11) describes the probability of 
system transition as the function of uniformly distributed 
random numbers 0

rγ  and 1
rγ . This Monte Carlo algorithm 

was tested on exact solvable models. Beside this, the 
search algorithm for the configurations corresponding to a 
minimum of internal energy is realised. The analysis of the 
properties of such configurations is extremely important 
for studying the ground state structure. 

3. Results and discussion 

One of the SSL distinctive features is a step-like beha-
vior in the field dependence of magnetization M . Such 
behavior takes place even in the case of isotropic spin–spin 
exchange interaction. In the framework of classic Heisen-
berg model the plateau takes place for = 1/ 3M  [11] (as 
far as sat = 1M  here and further more sat/ =M M M ). The 

dependence ( )M H  obtained in the framework of our ap-
proach for isotropic case and || zH  is presented in 
Fig. 1,a. Here = = = 1xx yy zzJ J J , = = = 2xx yy zzJ J J′ ′ ′ , 
temperature = 0.02T  and system size is 48 48× . It should 
be stressed, that our result is in good agreement with litera-
ture data [11,12]. 

On the first stage of our investigation we have studied 
influence of exchange anisotropy on such a peculiarity. 
Corresponding dependence for the case of exchange aniso-
tropy is presented in Fig. 1,b. Here = = 1xx yyJ J , 

= = 2xx yyJ J′ ′  = 1zzJ + α , = 2zz zzJ J′  and anisotropy 
parameter = 0.05α . One can see that even weak anisotro-
py (α ∼  5%) leads to essential growth of “step”, corres-
ponding to = 1/ 3M  [12]. Another important thing is that 
the curves corresponding to different system sizes ( 24 24×  
and 48 48× ) are in a good agreement. It means that boun-
dary effects are small and, thus, such system size is appro-
priate for our calculations. The dependence of = 1/ 3M  
magnetization plateau width, Δ , on α  is presented in 
Fig. 2. It should be noted that increase in α  leads to Δ  
growth only. The plateaux corresponding to 1 / 3M ≠  are 
absent. 

Spin configurations corresponding for = 1/ 3M  phase 
coincide with those ones described in [11]. The calculated 
data (solid boxed) have been fitted by power function 

1/= kAΔ α . The best fit corresponds to = 0.36A  and 
= 1.73k  which is very close to 3 . 
On the second stage we have determined the region of 

the step-like peculiarity as the function of exchange con-
stants ratio = /J J′μ . The dependence of plateau width Δ  
on μ  for = 0.005α  is presented in Fig. 3. One can see 
that in the phase, corresponding to = 1/ 3M  plateau exists 
in the region 1.5 2.4μ . 

On the next stage we have studied temperature depen-
dencies of specific heat 

 2 2
2

1( ) = (< > < > )C T E E
T

−  

Fig. 1. The dependence of magnetization M on external magnetic field H for system size 24 24× , = / = 2J J′μ  and anisotropy para-
meter = 0α  (isotropic case). The vicinity of pseudo-plateau = 1 / 3M  are presented in the inset (a). The same dependence for 

= 0.05.α  The temperature = 0.02T  was used for both figures (b). 
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and magnetic susceptibility 

 2 21( ) = (< > < > ).T M M
T

χ −  

Here < >E  and 2< >E  are average energy and square 
average energy, respectively. These averages have been 
calculated also in Monte Carlo process. It is well known 
that these quantities are the most sensitive for the phase 
transitions in antiferromagnetic compounds. Analysing 
these curves for different μ  values one can plot the depen-
dence of critical temperature NT  on μ  (Fig. 4). As seen 
from this figure, NT  goes to zero for 0 1.96μ →μ ≈ . It 
should be noted, that 0μ  is very close to critical point val-
ue for classical SSL model ( = 2μ ) [11]. Another interest-
ing thing is applicability of Mermin–Wagner theorem for 
the system under consideration. Really, according to Mer-
min–Wagner theorem continuous symmetries cannot be 
spontaneously broken at finite temperature in isotropic 
two-dimensional systems with sufficiently short-range in-
teraction. In real systems there are many reasons resulting 

in Mermin–Wagner theorem violation. This is quasi-two-
dimensionality, long-range interaction etc. In numerical 
experiments this is, for example, pseudo random distribu-
tion of random number. The correlation length is large, but 
finite. Another important reason is discreteness of real 
number representation in computer. The density of num-
bers is not constant. In our case it leads to appearance of 
extremely small, but finite effective anisotropy. In addi-
tion, if long-range correlations decay slow, then it is very 
difficult to detect this phenomena numerically (including 
Monte Carlo method). It is necessary to consider extremely 
large systems and calculation time becomes huge. Even so, 
boundary effects can be small, but boundary conditions can 
affect on correlation functions behavior. The detailed dis-
cussion dedicated to Mermin–Wagner theorem applicabili-
ty for SSL model goes beyond the scope of this paper. We 
plan to investigate this problem in near future. 

Unlike experimental data, any low-temperature (below 
NT ) peculiarities of ( )Tχ  and ( )C T  are absent in the 

framework on the proposed classical model. It confirms 
indirectly that the unusual low-temperature behavior of 

( )Tχ  inherent in SSL has quantum origin. 
In addition, in order to check our results we have car-

ried out a number of computer simulation using multica-
nonical method, described in [15,16]. We have extended 
this approach to the systems with continues degrees of 
freedom. It should be noted that the results obtained in the 
framework of both Monte Carlo methods are in good 
agreement. 

4. Conclusions 

We have studied numerically two-dimensional Shastry–
Sutherland lattice in the framework of classical Heisenberg 
model. Parallel Monte Carlo algorithm based on heat-bath 
method has been developed. It has been shown, that the 
influence of boundary effects on SSL magnetic properties 

Fig. 2. The dependence of plateau width Δ  on anisotropy para-
meter α  for system size 24 24× , = / = 2J J′μ , = 0H  and

= 0.02T . 
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Fig. 3. The dependence of plateau width Δ  on exchange con-
stants ratio μ  for = 0.005α , system size 24 24× , = 0H  and

= 0.02T . 

1.2 1.4 1.6 1.8 2.0 2.2 2.4

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

�

/J J�� �

0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.00

0.1

0.2

0.3

0.4

0.5

0.6

0.7

/J J�� �

T
N
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(isotropic case). Solid boxes are calculated values, solid line is 
fitting by linear function. 
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is extremely small for the systems with sizes greater than 
24 24× . The dependence of magnetization plateau width 
Δ  on anisotropy parameter α  has been established. This 
dependence can be approximated well by power function 

 1/ 3= .AΔ α   

The plateau corresponding to 1/ 3M ≠  are absent in 
the framework of this classical model. It has been deter-
mined that critical temperature NT  depends linearly on 
exchange constants ratio μ . The extrapolation of ( )NT μ  
shows that the critical temperature goes to zero for 

0 1.96.μ → μ ≈  The obtained limiting value 0μ  is very 
close to critical point for classical SSL model ( = 2μ ). 
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