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Temperature dependence of the magnetic susceptibility of layered organic conductors with an arbitrary dis-
persion law, placed in a strong magnetic field, is analyzed. It is shown that quasi-two-dimensional character of 
the electron energy spectrum of such conductors results in strong dependence of the diamagnetic contribution to 
the magnetization upon the applied magnetic field orientation. Experimental investigation of the anisotropy of 
the magnetic susceptibility makes it possible to study separately the diamagnetic and paramagnetic contributions 
to the magnetization of layered conductors. 

PACS: 75.20.–g Diamagnetism, paramagnetism and superparamagnetism. 
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Spin splitting of charge carriers energy levels in a mag-

netic field B results in the magnetization of a conductor 
= pχM B , directed along the magnetic field vector. Ac-

cording to Pauli [1], the paramagnetic susceptibility is pro-
portional to the density of states of conduction electrons 

( )ν μ  with the energy є  equal to the charge carriers che-
mical potential μ , 

 2= ( )pχ ν μ β  (1) 

where = / 2e mcβ h  is the Bohr magneton, ,e m are the 
electron charge and mass, h  is the Plank constant, c  is the 
velocity of light. 

The Pauli formula (1) is only valid at temperatures T  
exceeding significantly the separation cωh  between the 
conduction electrons energy levels quantized by a magne-
tic field. In this range of temperatures and magnetic field 
values allowance for the quantization of the energy of charge 
carriers orbital motion leads to an additional contribution 
into the magnetization of the sample DM , opposite in di-
rection to the magnetic field (Landau diamagnetism) [2]. 

In a quantizing magnetic field the density of states for 
each fixed energy value ε  has a singularity which repeats 
itself with 1/ B  changing. For low enough temperature, 
when cT ≤ ωh , only one quantized energy level may be 
placed in the region of the temperature smearing of the 
Fermi distribution function for conduction electrons. These 
singularities give rise to the oscillatory dependence of the 
magnetization upon 1/ B , which was predicted by Landau 
[2] and observed independently in bismuth by de Haas and 
van Alphen in Leiden [3]. At such low temperatures it is 
already impossible to separate the diamagnetic and para-

magnetic contributions to the magnetization because ac-
count of the spin splitting of the charge carriers energy 
levels affect essentially the amplitude of the quantum os-
cillations of the magnetization and their phase [4]. Obser-
vation of this oscillation effect by Shoenberg in Cambridge 
in the Mond laboratory in a whole series of other metals 
[5] proves the universality of the de Haas–van Alphen ef-
fect. At temperatures close to zero, the amplitude of the 
quantum oscillations of the magnetization exceeds signifi-
cantly its slowly varying part. The theory of the de Haas– 
van Alphen effect for an arbitrary dispersion law of charge 
carriers in degenerated conductors, developed by Lifshitz 
and Kosevich [4], is used successfully up to the present 
time as an infallible spectroscopic method for the determi-
nation of the Fermi surface. 

The oscillation amplitude decreases with increasing 
temperature and decays exponentially at cT ωh . In this 
temperature range at any magnetic field orientation the 
Pauli paramagnetic susceptibility is determined by the 
charge carriers density of states at the Fermi level Fε  
(equal to the chemical potential at zero-temperature) up to 
small corrections in a magnetic field to the chemical poten-
tial μ . However the Landau diamagnetic susceptibility 

 = D
D B B

∂ ⎛ ⎞χ ⎜ ⎟∂ ⎝ ⎠

M B  (2) 

is anisotropic essentially in the case of anisotropic conduc-
tors. 

The interest in layered conductors which possess 
sharply anisotropic energy spectrum of elementary excita-
tions, is due to the Little's suggestion [6] that supercon-
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ducting state at sufficiently high temperatures is possible in 
conducting structures with low dimensionality. The atten-
tion was focussed on quasi-one-dimensional and quasi-
two-dimensional conductors of organic origin. Electron 
effects in organic conductors have been investigated by 
many authors, the results of these studies were given in a 
series of surveys (see, for example, [7–11]). 

In layered organic conductors the charge carriers energy 
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depends weekly on the momentum projection = /zp npn  
on the normal n to the layers, so a conduction electron 
moves slowly across the layers with the velocity 

= /z zє p∂ ∂v  which is much less than the characteristic 
Fermi velocity Fv , 

 .z F F≤ ηv v v  (4) 

Here a  is the separation between the layers. For the sake 
of compactness of calculations, harmonics changing their 
sign when zp  is replaced by zp− , are omitted in Eq. (3). 
According to the measurements of kinetic coefficients of 
layered conductors, the parameter of quasi-two-dimen-
sionality of the electron energy spectrum η  is of the order 
of 210− . 

Closed isoenergetic surfaces in the momentum space 
are only near the boundary of the energy band, and all the 
rest of isoenergetic surfaces, including the Fermi surface, 
are open and may consist of topologically different ele-
ments in the form of planes and cylinders weakly corrugat-
ed along the zp -axis. At low temperatures the Shubnikov–
de Haas oscillations of the magnetoresistance of practically 
all organic metals were observed [12], which indicate that 
at least one of the Fermi surface cavities is a weakly corru-
gated cylinder (see, for example, collected articles [11]). 
The Fermi surface of the organic conductor based on the 
tetrathiafulvalene 2(BEDT TTF) X−  where 2 3X = JBr , J , 
consists only of a single weakly corrugated cylinder. 

We consider the diamagnetic contribution to the magneti-
zation of charge carriers in quasi-two-dimensional conductors 
placed in a strong magnetic field = (0, sin , cos )B Bθ θB . 

In order to determine the magnetic susceptibility of a 
conductor 

 
2
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it suffices to calculate the thermodynamic potential 

 
2

=0

( )
= ln 1 exp ,

(2 )
n B

B
n

є peBT dp
Tc

±∞

±

⎛ ⎞μ −
Ω − +⎜ ⎟⎜ ⎟π ⎝ ⎠

∑∑∫
h

 (6) 

where = B±μ μ ±β , β  is the Bohr magneton. 
It easy to make sure that non-oscillating with the mag-

netic field part of the Landau diamagnetic susceptibility 
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is formed by electrons from small vicinities of the refer-
ence points of the isoenergetic surfaces along the magnetic 
field direction, averaging over the conduction band, i.e. 
over all values of = /Bp BpB , at which the area 

 1( , ) = 2
2B

eBS є p n
c
⎛ ⎞π +⎜ ⎟
⎝ ⎠

h  (8) 

of the isoenergetic surface cross-section cut by the plane 
= constBp , attains its minimum value and is close to 

zero. In the small vicinity 0=Δ −p p p  of the reference 
points 0p  the energy at a given Bp  value depends quad-
ratically upon the momentum projection on the plane or-
thogonal to the magnetic field. The cyclotron effective 
mass in Eq. (7) 1/2

1 2* = *( ) = ( )Bm m p m m  is expressed to 
a high accuracy in terms of the principal values 1 1

1 2,m m− −  
of the inverse effective mass tensor in the vicinity of the 
reference point of the isoenergetic surface. 

In a magnetic field applied orthogonal to the layers 
plane, there are no reference points along the magnetic 
field direction on the open isoenergetic surfaces, and the 
energy values ( )c Bє p  for which ( ( ), ) = / ,c B BS є p p eB cπh  
are placed near the boundaries of the energy band and dif-
fer essentially from the Fermi level. 

When the magnetic field is deflected from the normal 
to the layers by the angle θ , the reference points along the 
B-vector appear on the open isoenergetic surfaces as well. 
The range of possible cє  values at which the area of 
closed electron orbits is close to zero, increases with in-
creasing θ , and at tan 1η θ  the reference points occur 
on all isoenergetic surfaces. 

At tan 1η θ  the limit value of cε  at which the refer-
ence points are already absent on the open isoenergetic 
surfaces, is also differs essentially from the Fermi level. 
This is the case when the magnitude Lχ  is practically con-
stant and temperature-dependent corrections to it are expo-
nentially small at <<T μ . In the vicinity of the reference 
point the cyclotron effective mass increases in inverse pro-
portion to cos θ  with θ  increasing. As a result, the dia-
magnetic susceptibility decreases with the magnetic field 
inclination. At tan 1η θ  the temperature dependent cor-
rections to Lχ  decrease exponentially with the temperature 
until tanη θ  attains values of the order of unity. 

To clarify the above we consider the case of the simple 
charge carriers dispersion law 
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2

x x zp p ap
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h
, (9) 

where overlap integral of the wave functions of electrons 
belonging to neighboring layers t⊥  is assumed to be a cons-
tant quantity. 
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When c Tω μh , in a magnetic field orthogonal to 
the layers plane the temperature dependence of the dia-
magnetic susceptibility of the conductor is of the form 

2

02
=1

( ) = 1 ( 1) exp ( / ) ( / )
24
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L

N

eT N T I Nt T
c am

∞
±

⊥
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∑
  (10) 

where 0 ( )I x  is the modified Bessel function. Taking into 
account its asymptotic behavior at large values of the ar-
gument, it is easily seen that the temperature dependent 
correction to Lχ , 
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is vanishingly small and the diamagnetic susceptibility Lχ  
does not practically depend upon the temperature. 

Closed isoenergetic surfaces are only possible for <є t⊥  
(energy is counted off from the bottom of the band) or for 
the energy values that differ from the top of the band by a 
magnitude less than t⊥ . All the rest isoenergetic surfaces 
are open and have no reference points in the normal mag-
netic field, so t⊥  is the limiting value for cє  in Eq. (7). 

The electron velocity in the reference point of the iso-
energetic surface is always directed along the magnetic 
field, and its projections on the plane orthogonal to the B 
vector equal to zero: 

 = = 0, = = cos sin = 0,x y z
x

є є v v
p pξ

ξ

∂ ∂
θ − θ

∂ ∂
v v  (12) 

where = cos siny zp p pξ θ − θ . 

Within a quadratic approach in the deviation of the 
momentum from its value in the reference point 0p  we 
obtain the following expansion for the energy near this 
point 
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where the coefficients are 

22 2 2
2 0

2 2 2
1 cos= , = sin cos .z

x

apa tє є
m mp p

⊥

ξ

∂ ∂ θ ⎛ ⎞+ θ ⎜ ⎟
⎝ ⎠∂ ∂ hh

 (14) 

Thus, the inverse value of the cyclotron effective mass has 
the form 

 
2

2 2 0
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1 1= cos sin  cos .zapa mt
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 (15) 

The expression given above describes the behavior of 
the effective mass in a wide range of the angles of the 
magnetic field inclination. In the case when 2 1tanη θ , 
the second term under in the radicand may be omitted and 
the mass grows in inverse proportion to cos θ  with the 
magnetic field inclination. If 2 1tanη θ , both terms in 
the radicand are of the same order of magnitude and the 
cyclotron effective mass is inversely proportional to the 
square root of the quasi-two-dimensionality parameter, 

* 1/2
0/m m η , where 2 2

0 = /a mt⊥η h  coincides with η  up 
to a numerical factor of the order of unit. 

When 2 << 1tanη θ  the diamagnetic susceptibility
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does not practically depend on the temperature such as in 
the case of the the normal magnetic field. Replacing in 
Eq. (16) the Fermi distribution function by unit we obtain 
for Lχ  at < 1λ  the follkowing expression 
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where 2
0= tanλ η θ , ( )E x  is the complete elliptic inte-

gral. 
When 1λ  the expression for Lχ  takes the form 
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At the same time the paramagnetic susceptibility de-
pends essentially upon the temperature because the chemi-
cal potential decreases markedly with increasing T . Ex-
clusion is the case of the quasi-two-dimensional energy 
spectrum for charge carriers (9). In this case for any tem-
perature <<T μ  the density of states 2( ) = /m aν μ πh  is 
the constant value to within small corrections proportional 
to 2η . As a result the temperature dependence of the pa-
ramagnetic susceptibility appears only in quadratic ap-
proach in the small parameter of the quasi-two-dimen-
sionality of the electron energy spectrum. In fact the 
charge carriers dispersion law in organic conductors differs 
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substantially from the exotic energy spectrum (9) given 
above. The essentially different temperature dependences 
of the diamagnetic and paramagnetic susceptibility allows 
to study them separately. 

The expression (16) for Lχ  with the effective mass (15) 
describes to a large extend the diamagnetic susceptibility 
of an organic quasi-two-dimensional conductor with an 
arbitrary charge carriers dispersion law, because in calcu-
lating Lχ , it is sufficient that we confine ourselves to the 
quadratic approximation in the expansion in power series 
about 0( )x xp p−  and 0( )p pξ ξ−  of the energy 
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After reducing the tensor ijα  to the diagonal form we 
obtain the expression analogous to (13) with turned axes. 
The area of the isoenergetic surface cross section in the 
form of an ellipse is independent on the axes orientation 
and we have 

 
*

0 0( , ) = 2 ( ( )) ,S p p mε π ε − ε  (20) 
where 
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In a two-dimensional conductor ( = 0)η  charge carriers 
do not respond to the presence of a magnetic field in the 
layers plane. As appears from Eq. (15) and Eq. (21) at 

= / 2θ π , the diamagnetic susceptibility differs from zero 
only for 0η ≠  and increases proportionally to 2η  with η  
increasing. At the same time, when 1/2( / 2 )π − θ ≤ η , the 
paramagnetic susceptibility (remaining constant for any 
orientation of a magnetic field) exceeds significantly the 
diamagnetic susceptibility 

In a wide range of the angles of the magnetic field in-
clination, namely when 

 11 tan ,≤ θ
η

 (22) 

the reference points of the isoenergetic surface are located 
near intersection of the lines = 0xv  and = 0yv . Because 
of the central symmetry of the charge carriers energy 

( ) = ( )є є−p p , these points are situated on the whole 
-axiszp  at = = 0x yp p . Under the assumption that there 

are no other cross points of the lines = 0xv  and = 0yv  
within the unit cell of the momentum space, the coefficient 
of 2cos θ  in Eq. (21) should be put equal to its value at 

= = 0x yp p  (up to small corrections of the order of tan ).η θ  
Then, in the range of angles satisfying the condition (22), 
the expression for the magnetic susceptibility takes the 
form 

 2( ) = (0)cos .L Lχ θ χ θ  (23) 

Thus investigation of the temperature and angular de-
pendencies of the magnetic susceptibility of layered con-
ductors enables one to study separately the diamagnetic 
and paramagnetic contributions to their magnetization. 
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