Infrared spectroscopy of solid normal hydrogen doped with CH₃F and O₂ at 4.2 K: CH₃F:O₂ complex and CH₃F migration

L. Abouaf-Marguin and A.-M. Vasserot

Laboratoire de Physique Moléculaire pour l'Atmosphère et l'Astrophysique, Université Pierre et Marie Curie-Paris 6, CNRS UMR7092, Paris F-75005, France E-mail: luce.abouaf@upmc.fr

Received August 26, 2010

Double doping of solid normal hydrogen with CH₃F and O₂ at about 4.2 K gives evidence of (ortho-H₂)_n:CH₃F clusters and of O₂:CH₃F complex formation. A FTIR analysis of the time evolution of the spectra, in the v_3 C–F stretching mode region, points out a behavior of the clusters very different from that of (ortho-H₂)_n:H₂O clusters. The main point is the observation of CH₃F molecules migration in solid para-H₂ at 4.2 K, which is a behavior different from H₂O in identical experimental conditions. This is proved by the increase with time of the CH₃F:O₂ complex integrated intensity with a rate constant $K = 2.7(2) \cdot 10^{-4}$ s⁻¹.

PACS: 33.20.Ea Infrared spectra;

36.40.-c Atomic and molecular clusters.

Keywords: matrix isolation, solid hydrogen, CH₃F:O₂ complex, nuclear spin conversion, infrared spectroscopy.

1. Introduction

If room temperature normal hydrogen (nH₂, 75% ortho- H_2 with total nuclear spin I = 1, and 25% para- H_2 with total nuclear spin I = 0) is condensed on a cold substrate at cryogenic temperatures (< 5 K), the ortho-H₂ concentration within the solid remains nearly constant on the order of days. Indeed, in solid hydrogen mainly hcp structured, H₂ molecules are almost free rotors and nuclear spin conversion between ortho and para states is forbidden [1,2]. Therefore, solid normal hydrogen freshly condensed is composed of 25% para-H₂ molecules (pH₂) (J = 0, total spin I = 0, degeneracy 1) with no electric quadrupole moment (spherical symmetry), and 75% ortho-H₂ molecules (oH₂) (J = 1, total spin I = 1, degeneracy 3) with a quadrupole moment. Furthermore, ortho molecules can migrate inside the crystal. The nuclear spin transition requires a magnetic field gradient, and in solid normal hydrogen a very slow conversion ortho to para of the H₂ molecules is observed due to interaction between neighboring oH₂ molecules. This self-conversion is assisted by the diffusion of ortho molecules, which are delocalized inside the crystal [3,4]. A doping with a paramagnetic molecule such as O2 enhances very efficiently the conversion (catalyzed conversion).

In solid pH_2 , dopant molecules such as H_2O [5,6], CH₄ [7–10] and HCl [11], trapped in high-symmetry single substitutional sites with 12 nearest neighbors, undergo almost free rotation. The CH₃F molecule rotates only about its C_3 axis [12], and always carries a nonzero total nuclear spin (I = 3/2 or 1/2).

Via their quadrupole moment, oH_2 molecules interact more strongly than pH_2 ones with dopant molecules, and are particularly able to form clusters with H_2O and CH_3F in solid H_2 . For H_2O [13], a nonstatistical cluster distribution of $(oH_2)_n$: H_2O clusters have been identified (n = 1 to 11) using IR spectroscopy, and their evolution with time in O_2 doped solid normal hydrogen has been simulated [14]. $(oH_2)_n$: CH_3F clusters have been identified (n = 1 to 12) in pH_2 crystals where the amount of oH_2 was systematically varied from low (300 ppm) to high concentrations (> 3%) [15–17]. In pH_2 solids containing high levels of oH_2 , even larger $(oH_2)_n$: CH_3F clusters (n > 12) are observed, with oH_2 molecules in the second solvation shell.

The present paper is devoted to an analysis of the time evolution of the $(oH_2)_n$:CH₃F clusters, hereafter labeled as CL_n, observed in the v₃ vibrational range (C–F stretching) via IR spectroscopy, in solid normal H₂ at 4.2 K. Doping with O₂ is used to accelerate the o/p conversion process in solid nH₂. A brief description of the experimental conditions is given in Sec. 2. The spectroscopic observations are

detailed in Sec. 3, for concentrations $CH_3F/O_2/H_2 = 1/0/4000$, 1/10/6000 and 1/20/4000, with kinetic analysis using spectral decompositions. The discussion in Sec. 4, is centered on the $CH_3F:O_2$ complex assignment and time evolution, and analyzes the differences between H_2O and CH_3F behaviors. In the conclusion, Sec. 5, we point out some questions raised by the present results.

2. Experimental procedures

The experimental setup has already been used extensively for rare gas matrices [18,19]. Briefly, hydrogen (purity N55, supplied by Alphagaz), H₂O (doubly distilled and degassed), O2, CH3F and CH4 are premixed at various concentrations to ensure the homogeneity of the gaseous mixture, and premixing favors complex formation [20]. A solid polycrystalline film is obtained by deposition of the gas mixture onto a cold gold-coated mirror, at a rate of about 9 mmol/h, with deposition times ranging from 30 to 60 min, depending on dopant concentration and desired absorbance. The temperature of 4.2 K, is given by a calibrated silicon diode sensor embedded in the OFHC copper block of the mirror, and monitored by a S.E.R.2i BHT2400 temperature regulator, to get rid of slow drifts or oscillations, which are finally below ± 0.02 deg [21]. The samples thickness is approximately 40 to 60 µm, and its homogeneity is controlled by scanning a 2 scans spectrum every 5 torr deposited. The temperature gradient due to the spectrometer light is weaker than 1 deg. Indeed, the nuclear spin conversion time of H₂O diluted in solid Ar (1/2000) is identical when irradiated permanently by the globar light and irradiated only 15% of the time [21,22]. Infrared spectra are recorded with a Bruker IFS113v FTIR spectrometer, with $\sim 0.15 \text{ cm}^{-1}$ and $\sim 0.2 \text{ cm}^{-1}$ resolution at 2000 and 4000 cm⁻¹, respectively. The time dependence of absorptions is obtained by calculating integrated intensities of the relevant IR features in each spectrum recorded with 40 scans.

3. Spectroscopic analysis

3.1. General observations

The oH_2 concentration as a function of time is studied using solid hydrogen IR absorption features recorded between 4000 and 5000 cm⁻¹ and the empirical law of Ref. 23. The time dependence of the oH_2 concentration for a $CH_3F/H_2 = 1/4000$ doped nH_2 solid has been reported previously [24]. A fit of the data to a first-order rate law gives a time constant of 2520 min, which is slightly less than the self-conversion time constant of 3570 min indicating CH_3F can catalyze o/p conversion within the nH_2 solid. For the samples co-doped with O_2 , $CH_3F/O_2/H_2 = 1/10/6000$ and 1/20/4000, the data again fit well to a first-order rate law with time constants of about 1960 and 680 min, respectively [24]. Under these conditions the oH_2

decay is predominantly catalyzed by O₂ since it is present at much higher concentrations than CH₃F.

At time t = 0, for an oH_2 concentration above 60% [23], the CH₃F spectrum exhibits several structures between 600 and 4000 cm⁻¹ related to the different vibrations of 12 CH₃F, mainly v₃ (~1033 cm⁻¹), v₆ (~1183 cm⁻¹), v₂ (~1460 cm⁻¹), v₅ (~1470 cm⁻¹), 2v₅ (~2861 cm⁻¹), v₁ (~2965 cm⁻¹), and v₄ (~3014 cm⁻¹). The most intense vibrations of isotopic 13 CH₃F also appear. A time dependence is measured for all the CH₃F absorptions, but the most dramatic and useful spectroscopic changes are observed in the region of the v₃ 12 C-F stretching vibration. Indeed, in previous works [15,16], multiple resolved features appear between 1030 and 1040 cm⁻¹ for the v₃ stretching vibration, which have been assigned to $(oH_2)_n$:CH₃F clusters that form even in solid hydrogen matrices enriched in the para nuclear spin state.

3.2. Spectra at time t = 0

In freshly deposited samples, whatever the O_2 concentration, all the CH₃F molecules are embedded in large CL_n (n > 12) clusters. The v_3 C–F stretching mode (Fig. 1) exhibits a single asymmetric peak which can be assigned to (oH₂)_n:CH₃F clusters, with n > 12, at a frequency (\sim 1033 cm⁻¹) lower than that of CL₁₂ (1034.5 cm⁻¹), in agreement with previous works [15,16]. The v_3 peak observed at 1032.9 cm⁻¹ without O_2 is asymmetric with a sharp edge on the low-energy side and tails toward the high-energy side. For increasing O_2 concentrations of 1/600 and 1/200, respectively, the v_3 feature becomes broader, more and more asymmetrical, and shifts to the blue at 1033.1 and 1033.2 cm⁻¹. These spectroscopic observations are consistent with small amounts of o/p con-

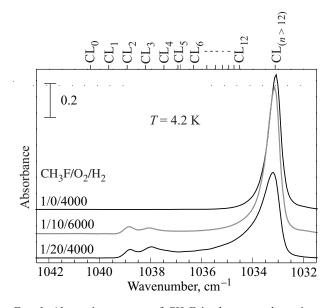


Fig. 1. Absorption spectra of CH₃F in the v_3 mode region at time t = 0 for different O₂ concentrations. The frequencies of $(oH_2)_n$:CH₃F clusters [15,16] are indicated at the top of the figure.

version occurring during deposition in the samples containing O₂. In addition, two relatively broad peaks appear at 1038 and 1038.8 cm⁻¹, and the intensity of these features is obviously correlated with the O₂ concentration.

3.3. Time effects

The time dependence of the v_3 spectra is illustrated in Fig. 2. For both samples containing O_2 , the absorption assigned to clusters with n > 12 near 1033 cm⁻¹ decreases in intensity and becomes broader while shifting to higher

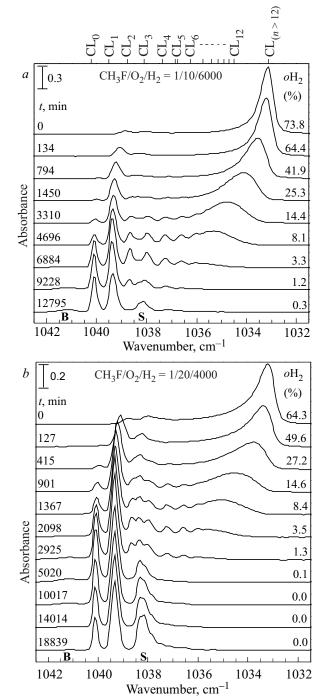


Fig. 2. Time evolution of the spectra at T = 4.2 K: $CH_3F/O_2/H_2 = 1/10/6000$ (a); $CH_3F/O_2/H_2 = 1/20/4000$ (b). For B and S definitions, see text Sec. 3.3.

frequencies. These spectroscopic observations are consistent with gradual conversion of the larger CL_n clusters to smaller cluster sizes as oH2 is converted irreversibly to pH_2 . The 1038.8 cm⁻¹ absorption present at time t = 0 increases and narrows with time, while shifting also to higher frequencies. This last feature is assigned to the CL₁ cluster that seems to be present even at early times for samples doped with O₂. It appears that clusters CL₀ and CL₁ grow directly from the decrease of clusters with n > 6. Clusters with *n* between 3 and 6 can be clearly identified for the $CH_3F/O_2/H_2 = 1/10/6000$ concentration sample (Fig. 2,a). A broad and weak feature labeled B, also observed in Fig. 2 of Ref. 12, grows temporarily but then stops. A small peak labeled S is observed, which has never been mentioned previously, and grows in with time at about 1038.2 cm⁻¹. This feature does not seem to belong to the CL_n cluster absorptions, and its integrated intensity is related to the O₂ concentration. It continues to grow up to the last spectrum recorded in Fig. 2,b.

3.4. Spectral decompositions and kinetics

Kinetics studies based on integrated intensities calculated with fixed integration limits are not relevant here. Indeed, the CL_n cluster features are broadened by the presence of O_2 and by the high oH_2 concentrations present at early times, and thus the individual cluster features are not resolved but rather are strongly overlapping. Furthermore, each CL_n (n = 1-12) cluster peak frequency shifts with time to higher values by at least 0.5 cm^{-1} . Therefore, kinetics are based on spectral decompositions (Fig. 3) carried out with similar continuity rules as for H_2O [14], but without details for n > 6. The kinetic results based on these spectral decompositions are presented in Fig. 4 (integrated intensities in cm^{-1}) for the structures which

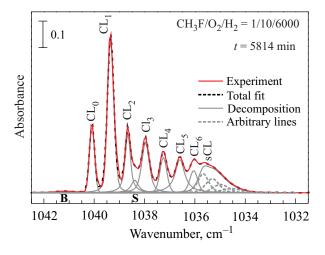


Fig. 3. Example of spectral decomposition: $CH_3F/O_2/H_2 = 1/10/6000$. Structure S appears between CL_2 and CL_3 . For sCL (clusters with n > 6), the decomposition (grey dotted lines) is just used to reproduce the absorption profile.

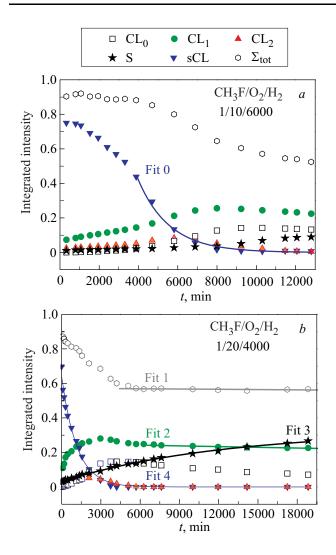


Fig. 4. (Color online) Time dependence of the integrated intensity of some structures (unit: cm⁻¹). a — CH₃F/O₂/H₂ = 1/10/6000, Fit 0: exponential decay of sCL after 4000 min, time constant τ = 1600(90) min; b — CH₃F/O₂/H₂ = 1/20/4000, Fit 1: linear regression of $\Sigma_{\rm tot}$, slope 5(3) ·10⁻⁷ min⁻¹; Fit 2: linear regression of CL₁, slope 1.8(2) ·10⁻⁶ min⁻¹; Fit 3: exponential growth of S, integrated intensity $I({\rm CL}_{\rm O_2})$ fitted by the law: $I({\rm CL}_{\rm O_2})$ = $\Delta I[1-\exp{(t/\tau)}]+I_0$, with I_0 = 0.03(1), ΔI = 0.29(1), τ = 12200(600) min; Fit 4: exponential decay of sCL, time constant τ = 1170(55) min.

can be clearly identified: CL_0 , CL_1 , CL_2 , S, sCL (clusters with n > 6), and the total integrated intensity Σ_{tot} (from 1031.5 to 1045 cm⁻¹). Intensities are corrected by the factor $[1+5.5\cdot10^{-6}\ t]$ (t unit: min) to account for sublimation of the sample. This sublimation correction is determined using the slow decrease of the 4505 cm⁻¹ structure of H_2 observed in the $CH_3F/O_2/H_2 = 1/20/4000$ experiment after 6000 min (oH_2 concentration < 0.1%). It is weaker than the correction determined for H_2O experiments $(8.7 \cdot 10^{-6})$ which corresponds to sample about 4 times thicker [23]. Figures 4,a ($CH_3F/O_2/H_2 = 1/10/6000$) and 4,b ($CH_3F/O_2/H_2 = 1/20/4000$) show similar behaviors, with evidence of an acceleration in nuclear spin

conversion due to higher O_2 concentration: features at 13000 min of Fig. 4,*a* are somewhat equivalent to features at 4000 min of Fig. 4,*b* ($oH_2 \sim 0.3\%$).

The total integrated intensity $\Sigma_{\rm tot}$ of the v_3 mode decreases during the conversion process until about 1% oH₂ concentrations (about 10000 min for 1/10/6000, and about 5000 min for 1/20/4000). At later times, only CL₀, CL₁, and structure S remain, with a constant total integrated intensity (Fig. 4,b, Fit 1). Therefore, the vibrational transition strength of clusters with n > 6 is larger than that of CL₀, CL₁ and S, and we consider that the oscillator strengths of CL₀, CL₁ and S are similar. After 6000 min, CL₁ remains almost constant (Fig. 4,b, Fit 2), and we can conclude that S (Fit 3) grows mainly at the expense of CL₀.

At an oH_2 concentration below 10%, in the approximation of a first-order decay, sCL vanishes with time constants of about 1600 min (Fig. 4,a, Fit 0) and 1170 min (Fig. 4,b, Fit 4) for concentrations 1/10/6000 and 1/20/4000, respectively.

4. Discussion

4.1. Assignments

The $(oH_2)_n$:CH₃F cluster assignment is straightforward from previous studies [15,16]. The broad transitory bump at 1041 cm⁻¹ labeled B, seems to be an intermediate between CL₁ and CL₀. It may be CH₃F solvated in a cage of 12 pH_2 molecules (CL₀) with oH_2 molecules in the second or higher solvation shells, as observed for H₂O [14]. It disappears when the oH_2 concentration vanishes (Fig. 2,b).

At time t = 0, the large absorption at 1038.8 cm⁻¹ is assigned to CL₁. The structure S is obviously related to the O₂ concentration. A complete analysis of the spectrum from 400 to 5000 cm⁻¹ did not allow to detect any unexpected impurity, so that S can be assigned confidently to the complex CH₃F:O₂, hereafter labeled as CL_{O₂}. It originates in the asymmetric feature at ~1038 cm⁻¹ (Fig. 1) most pronounced at long times.

4.2. CH₃F diffusion: the CH₃F:O₂ complex

Based on the integrated intensities of feature S and CL₀, it appears that the concentration of CH₃F:O₂ is growing at the expense of CH₃F solvated completely by *p*H₂ molecules. This can be explained by a migration of CH₃F molecules when not clustered to *o*H₂. Indeed, O₂ is not supposed to migrate under these conditions, as the H₂O:O₂ complex does not grow with time under analogous conditions. Therefore, the growth of the CH₃F:O₂ complex can be modeled by a diffusion controlled mechanism since the two molecules probably stick to each other to form irreversibly the complex as soon as they are in nearest neighbor positions, with almost no activation energy. It is not in the scope of this work to develop a detailed analysis of the diffusion, and we only draw up a balance of the process

through the law of mass action, corresponding to the elementary reaction:

$$CH_3F + O_2 \rightarrow CH_3F:O_2$$
,

where the O_2 concentration ($C_{O_2} = 1/600$ or 1/200) is much higher than that of the CH₃F molecules (C_{CH_3} F = 1/4000). Under these conditions, the rate coefficient of this reaction describes the mass transport at which reactants encounter each other [25].

The free concentrations of the two partners (CH₃F and O₂) obviously decrease with time, however, since $C_{\rm O_2} >> C_{\rm CH_3F}$, the O₂ concentration can be approximated as constant. If K is the reaction rate, the rate equation is

$$\frac{dC_{\text{CH}_3F}}{dt} = -KC_{\text{CH}_3F}C_{\text{O}_2}$$

and

$$C_{\text{CH}_3\text{F}} = A \exp\left(-KC_{\text{O}_2}t\right) + B .$$

The decrease in the number of free CH₃F molecules is balanced by the increase in CH₃F:O₂ clusters. Therefore, the function to be fitted for the increase of structure S can be written

$$C_{\text{CL}_{\text{O}_2}} = D \left[1 - \exp\left(-\frac{t}{\tau}\right) \right] + E,$$

where the parameter E corresponds to the concentration of CH₃F:O₂ clusters formed during deposition, before time t=0; D represents the concentration of CH₃F molecules free to form CH₃F:O₂ clusters, and $1/\tau = KC_{\rm O_2}$.

Therefore in absorption spectra the time dependence of the CH₃F:O₂ complex integrated intensity $I(CL_{O_2})$ should be fitted by the law:

$$I(CL_{O_2}) = \Delta I \left[1 - \exp\left(-\frac{t}{\tau}\right)\right] + I_0$$

with integrated intensities I_0 and $(\Delta I + I_0)$ at times t = 0 and $t \to \infty$, respectively.

The analysis of the increase of S with time, for concentrations 1/20/4000 (Fig. 4,b, Fit 3), leads to the following values: $I_0 = 0.03(1)$, $\Delta I = 0.29(1)$, $\tau = 12200(600)$ min. It means that at 4.2 K the rate of CH₃F:O₂ cluster formation is $K = 2.7(2) \cdot 10^{-4} \text{ s}^{-1}$. At the end of the experiment, all the CH₃F molecules are either isolated in pH₂ (CL₀), clustered with oH₂ (CL₁), or complexed with O₂. We can suppose that at infinite time all CH₃F molecules will be clustered with O₂ with a total integrated intensity of 0.32.

For concentrations 1/10/6000, such a kinetic analysis is not possible. Indeed, as observed in Fig. 2,a and in Fig. 3, the CL_{O_2} absorption feature is much weaker, and lies almost completely obscured below the CL_2 and CL_3 absorptions at least up to 7000 min. It grows very slowly

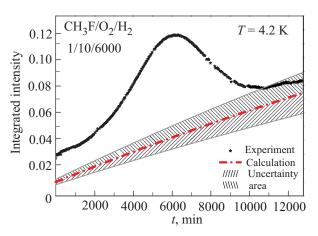


Fig. 5. (Color on line) Time dependence of the integrated intensity of structure S (CH₃F:O₂ complex) for concentrations CH₃F/O₂/H₂ = 1/10/6000. Black stars: experimental data with integration limits at 1037.54 and 1038.5 cm⁻¹, relevant behavior after 10000 min; dotted line: calculation with the law $I'(CL_{O_2}) = 0.31[1 - \exp(t/54900)] + 0.01$. The uncertainty area is obtained at $\pm 20\%$ of the parameters values.

(Fig. 4,*a*, black stars), as expected for this more dilute sample. Figure 5 presents the result of a careful analysis of S with integration limits adapted to the end of the experiment (1037.54 and 1038.50 cm⁻¹), when the frequencies do not shift anymore. Because the CL_{O2} peak overlaps with CL₂ and CL₃, the integrated intensity in this range exhibits a maximum at about 6000 min. Examination of Fig. 2,*a* shows that S can only be measured reliably after ~10000 min, when the CL₂ and CL₃ absorptions vanish. Therefore, its time dependence is significant at the end of the experiment between 10000 and 13000 min, which is too short of duration for a fit.

However, both solid samples contain the same total amount of CH₃F, as confirmed by a same value of the total integrated intensity at time t=0 (Fig. 4), with almost all CH₃F molecules in clusters with n>6. There is then a possibility to figure out what could be the time dependence of $\mathrm{CL}_{\mathrm{O}_2}$ in the more dilute sample, with a similar law:

$$I'(CL_{O_2}) = \Delta I' \left[1 - \exp\left(-\frac{t}{\tau'}\right)\right] + I'_0.$$

Indeed $\Delta I'$, I'_0 and the time constant τ' , can be estimated knowing that the same CH₃F amount, in a deposition 50% times longer at similar rate, implies a thickness of the 1/10/6000 sample e' = 1.5 e, if e is the thickness of the 1/20/4000 sample. Consequently:

• at time t = 0, some CL_{O_2} clusters are formed upon deposition with an integrated intensity $I_0 \sim 0.03$ for concentrations 1/20/4000. In the dilute sample, the CH₃F and O₂ concentrations are 1/1.5 and 1/3 times that of the concentrated sample, respectively, with e' = 1.5 e. Considering in a first approach that the number of CH₃F:O₂ clusters formed during

deposition is roughly proportional to the concentrations and the thickness, it comes $I_0' \sim I_0 / 3 \sim 0.01$;

- at infinite time, all the CH₃F molecules are clustered, and the total CL_{O_2} absorption should have the same value: $\Delta I' + I'_0 \sim \Delta I + I_0 \sim 0.32$. It comes: $\Delta I' \sim 0.31$;
- for 1/10/6000, as the O_2 and CH_3F concentrations are lower than for 1/20/4000, by 1/3 and 2/3 respectively, we can suppose roughly that the time constant for the cluster formation may be about 4.5 times longer: $\tau' \sim 4.5\tau \sim 54900$ min.

The kinetic equation for the dilute sample is then supposed to be roughly:

$$I'(CL_{O_2}) = 0.31 \left[1 - \exp\left(-\frac{t}{54900}\right) \right] + 0.01$$
.

This approximate behavior is represented in Fig. 5 with a dotted line. All our measurements are accurate to within \pm 20%. This leads us to define an uncertainty area between the 2 grey curves for the increase of the CH₃F:O₂ cluster in the dilute sample (Fig. 5). Finally, with all the overlapping problems, and knowing that integrated intensity measurements are somewhat dependent on the choice of the baseline (which is able to shift all the data), we can conclude that the increase of structure S is consistent in both experiments. It confirms the assignment of S to the CH₃F:O₂ cluster, and the diffusion of CH₃F molecules in solid pH₂ under our experimental conditions.

4.3. Time dependence of sCL

The long observation periods presented here for these CH₃F/O₂ double doped nH₂ samples allows the various oH₂ to pH₂ conversion mechanisms to be studied. During the course of the experiment there is a competition between oH₂ self-conversion (very slow except at very high oH2 concentrations), O₂ catalyzed conversion which is typically more efficient than self-conversion but relies on oH₂ migration to the O₂ catalytic center, and conversion catalyzed by CH₃F which is only active inside CL_n clusters which are at comparably low concentrations compared to O2. For example, the shapes of the decay curves for sCL are qualitatively different for the two CH₃F/O₂ samples studied. For the 1/10/6000 sample, initially the decay in the sCL integrated intensity is very slow however it switches over to single exponential decay in the 3000-4000 min time range and then decays steadily with a time constant of 1600(90) min. Thus, for this sample the balance between oH₂ to pH₂ conversion processes that lead to growth and decay of $(oH_2)_n$: CH₃F clusters with n > 6 turns over within this time range. In contrast, for the 1/20/4000 sample with the higher O_2 concentration, the sCL integrated intensity decays from t = 0 with a single exponential time constant of 1170(55) min. This suggest that for the 1/20/4000 sample the higher O₂ concentration rapidly catalyzes oH_2 to pH_2 conversion within the $(oH_2)_n$:CH₃F clusters while instead for the 1/10/6000 sample, intracluster conversion by CH₃F is the dominant process.

4.4. Comparison with H₂0

Experiments with CH₃F and H₂O have been performed under identical conditions, with the same amount of CO2 atmospheric impurity at 2300 cm⁻¹. However for H₂O, clusters with n < 12 are only observed, and they grow and decrease in a cascade-like process [14]. The aptitude of a molecule to cluster with oH2 can be considered at firstorder to be due to its permanent dipole moment, via a dipole-quadrupole attraction. For H₂O, the dipole moment is 1.841 D [26], and for CH₃F, it is 1.8584 D [27], only about 1% higher. It is clear that this small difference cannot explain the much stronger attraction between CH₃F and oH₂. To go further, the London dispersion interactions, induced dipole-induced dipole interactions between instantaneous transient dipoles have to be considered. They are proportional to molecules polarizability. The polarizability of CH₃F, about 70% higher than that of H₂O [28], could be responsible for the higher ability of CH₃F to catch oH₂ at 4.2 K. Furthermore, the ability of CH₃F to catalyze oH₂ conversion may explain the weak growing of intermediate clusters.

Contrary to CH₃F, no H₂O migration has been observed [13,14]. At first sight, molecular migration within solid hydrogen should be related to the size and mass of the molecule. To get an order of magnitude prediction of the molecular volumes of CH₃F and H₂O, we consider the bond lengths, angles, and van der Waals radii of the atoms. For H₂O ($R_{\rm O-H}=0.9599$ Å, $\theta_{\rm HOH}=104.45^{\circ}$) [29], we can suppose that the freely rotating molecule occupies a sphere with a diameter $D_{\rm H_2O}\sim3.92$ Å. The symmetric top CH₃F molecule rotating about its C_3 axis, with almost tetrahedric angles ($R_{\rm C-H}=1.0870$ Å, $R_{\rm C-F}=1.3884$ Å, $\theta_{\rm HCF}\sim110^{\circ}$) [30,31], occupies a cylinder with diameter $d_{\rm CH_3F}\sim4.44$ Å and length $l_{\rm CH_3F}\sim4.31$ Å. Simple geometrical considerations do not answer the question, as CH₃F seems larger and is more massive than H₂O.

5. Conclusion

In the present work, we have shown that CH_3F is a much stronger sequester of migrating oH_2 molecules than H_2O . It may be due to London dispersion interactions, but theoretical developments are needed.

Furthermore, differently from what we have observed for H_2O [13,14], a migration of CH_3F occurs in solid pH_2 at about 4.2 K. It has been proved in our experimental conditions, through the increase with time of the $O_2:CH_3F$ complex. In previous works, the very low concentrations, the short duration of the experiments, and also the low temperature, did not allow the detection of CH_3F migration. A complete study of the comparative migration of CH_3F and H_2O in solid pH_2 would be welcome in an attempt to identify which physical (or chemical) properties of the molecules could be involved in such a process. In-

deed the potential for small molecules to migrate in solid pH_2 could be a very useful property for controlled chemical reactions.

Aknowledgment

The authors are grateful to Professor David T. Anderson for helpful discussions and constructive comments.

- 1. I.F. Silvera, *Rev. Mod. Phys.* **52**, 393 (1980), and references therein.
- 2. T. Oka, Ann. Rev. Phys. Chem. 44, 299 (1993).
- 3. V. Shevtsov, A. Scherbakov, P. Malmi, E. Ylinen, and M. Punkkinen, *J. Low Temp. Phys.* **104**, 211 (1996).
- V. Shevtsov, P. Malmi, E. Ylinen, and M. Punkkinen, *Physica* B284–288, 385 (2000).
- 5. M.E. Fajardo, S. Tam, and M.E. DeRose, *J. Mol. Struct.* **695–696**, 111 (2004).
- M.E. Fajardo and C.M. Lindsay, J. Chem. Phys. 128, 014505 (2008).
- T. Momose, M. Miki, T. Wakabayashi, T. Shida, M.-C. Chan, S.S. Lee, and T. Oka, *J. Chem. Phys.* 107, 7707 (1997).
- 8. S. Tam, M.E. Fajardo, H. Katsuki, H. Hoshina, T. Wakabayashi, and T. Momose, *J. Chem. Phys.* **111**, 4191 (1999).
- 9. M. Miki and T. Momose, *Fiz. Nizk. Temp.* **26**, 899 (2000) [*Low Temp. Phys.* **26**, 661 (2000)].
- Y. Miyamoto, M. Fushitani, D. Ando, and T. Momose, J. Chem. Phys. 128, 114502 (2008).
- 11. D.T. Anderson, R.J. Hinde, S. Tam, and M.E. Fajardo, *J. Chem. Phys.* **116**, 594 (2002).
- 12. Y.-P. Lee, Y.-J. Wu, and J.T. Hougen, *J. Chem. Phys.* **129**, 104502 (2008).
- 13. L. Abouaf-Marguin, A.-M. Vasserot, C. Pardanaud, J. Stienlet, and X. Michaut, *Chem. Phys. Lett.* **454**, 61 (2008).

- L. Abouaf-Marguin, A.-M.Vasserot, and C. Pardanaud, J. Chem. Phys. 130, 054503 (2009).
- K. Yoshioka and D.T. Anderson, J. Chem. Phys. 119, 4731 (2003).
- K. Yoshioka and D.T. Anderson, J. Mol. Struct. 786, 123 (2006).
- 17. K. Yoshioka, P.L. Raston, and D.T. Anderson, *Int. Rev. Phys. Chem.* **25**, 469 (2006).
- 18. X. Michaut, A.-M. Vasserot, and L. Abouaf-Marguin, *Vibrat. Spectr.* **34**, 83 (2004).
- 19. C. Pardanaud, A.-M. Vasserot, X. Michaut, and L. Abouaf-Marguin, *J. Mol. Struct.* **873**, 181 (2008).
- 20. V. Raducu, D. Jasmin, R. Dahoo, P. Brosset, B. Gauthier-Roy, and L. Abouaf-Marguin, *J. Chem. Phys.* **102**, 9235 (1995).
- 21. C. Pardanaud, *thesis*, Université Pierre et Marie Curie-Paris 6, pp. **75**, 160 (2007).
- 22. L. Abouaf-Marguin, A.-M. Vasserot, C. Pardanaud, and X. Michaut, *Chem. Phys. Lett.* **447**, 232 (2007).
- L. Abouaf-Marguin and A.-M. Vasserot, *Chem. Phys. Lett.* 460, 82 (2008).
- L. Abouaf-Marguin, A.-M.Vasserot, and A. Lekic, *Chem. Phys. Lett.* 470, 228 (2009).
- D.F. Calef and J.M. Deutch, Ann. Rev. Phys. Chem. 34, 493 (1983).
- 26. M.T. do N.Varella, M.H.F. Bettega, M.A.P. Lima, and L.G. Ferreira, *J. Chem. Phys.* **111**, 6396 (1999).
- 27. M.D. Marshall and J.S. Muenter, *J. Mol. Spectr.* **83**, 279 (1980).
- 28. T.N. Olney, N.M. Cann, G. Cooper, and C.E. Brion, *Chem. Phys.* **223**, 59 (1997).
- 29. A.F.A. Vilela, P.R.P. Barreto, R. Gargano, and C.R.M. Cunha, *Chem. Phys. Lett.* **427**, 29 (2006).
- 30. A. Karpfen and E.S. Kryachko, Chem. Phys. 310, 77 (2005).
- 31. O.R. Gilliam, H.D. Edwards, and W. Gordy, *Phys. Rev.* **75**, 1014 (1949).