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1. Introduction 

This year 2011 is marked by the two remarkable anni-
versaries, the centennial of discovery of superconductivity 
(SC) as a fundamental phenomenon and the quarter-
century of high-temperature SC (HTSC) in copper oxides. 
Both events, especially the first, made a huge impact on 
the development of many prospects in physics and on its 
ideology. Therefore, it does not look strange that many 
authors try to resume certain research in the field, first of 
all that related to their own works. And the authors of the 
present review article are not an exception. The topics they 
address are seen already from the index. Nevertheless, it 
can be hoped that, despite our main focus on the HTSC 
systems, some conclusions may be also relevant for the 
common, low-temperature SC systems where impurity 
effects are essential or disputable. 

To begin with we recognize that the twenty five years 
of intensive study after the discovery of HTSC in perov-
skite metal-oxide materials [1,2] provided a solid experi-
mental base on their electronic structure in normal and 
superconducting state, in particular on the specific type of 
SC order and its parameters [3]. However there still exist a 
lot of problems in theoretical understanding of fundamen-
tal physics behind the observable properties of high-Tc 
materials, and many of them are related to the effects of 
disorder by presence of impurities [4]. The impurity effects 
are known to be of less importance for quasiparticle dyna-
mics and SC properties in the traditional metals and alloys 
with s-wave type of SC pairing [5,6], except for strong 
pair-breaking effect by paramagnetic impurities [7] and 
related localized impurity levels within the SC gap [8–10]. 
However, in the metal-oxide materials, seen as strongly 
doped semiconductors in the normal state [11] and 
displaying an d-wave SC order [12] below Tc, both mag-
netic and nonmagnetic impurities can act as effective pair-
breakers [13] and produce quasiparticle resonances in the 
finite density of states (DOS) between the d-wave 
coherence peaks [14,15]. Such effects were already noted, 
though not properly recognized, in the early point-contact 
experiments [16] but were fully verified later on by the 
spectacular observations in scanning tunneling microscopy 
(STM) [17–19]. The further interest to the impurity effects 
in high-Tc materials is stimulated by their possible influence 
on fundamental physical properties as infrared quasiparticle 
conductivity [21,20], dynamics of magnetic vortices [22,23], 
low-temperature heat conduction [24,25], etc. 

The theoretical methods for study of impurity effects in 
SC systems are widely adopted from the well developed 
general field of elementary excitations in disordered solids, 
beginning from the classical works by Lifshitz [26], Mott 
[27], and Anderson [28]. The most effective approach to 
the quasiparticle dynamics is provided by the Green 
function (GF) method [29–31], modified especially for SC 
quasiparticles by Gorkov [32]. The GF analysis of the 

disorder effects in superconductors with nontrivial 
symmetry of order parameter was first developed yet 
before the discovery of high-Tc materials, mostly based on 
the concept of self-consistent T-matrix approximation 
(SCTMA) [33–35] for the quasiparticle self-energy that 
describes modification of their dispersion law and lifetime 
under disorder. The following investigations of the effects 
of disorder on metal-oxide SC systems with nodal points 
on the quasi-2D Fermi surface lead to the conclusions on a 
great universality of their transport properties [36–38], and 
these conclusions could be also important for other Fermi 
systems with similar structure of excitation spectrum, as 
recently discovered graphene sheets [39,40]. 

Nevertheless, the existing dicrepancies between the 
predicted universal transport behavior and available expe-
rimental data [41,42], indicate a need in critical revision of 
the used theoretical approach. In particular, the fact that 
SCTMA is essentially a single-impurity approximation 
makes it possible that the omitted effects of inter-impurity 
correlations can in principle introduce important modifi-
cations into dynamics and kinetics of quasiparticles. 

The main subject of this review is the theoretical work 
made by the authors during last ten years on validity of 
different approximations for GF’s in disordered d-wave 
superconductors, for different types of impurity pertur-
bations. The topic of our particular interest is the extension 
of the SCTMA approach to a more general form of the so-
called group expansions (GE's) of self-energy [43], where 
the first SCTMA term is followed by a group series in 
increasing numbers of interacting impurity centers. They are 
alike the classical Ursell–Mayer group expansions in the 
theory of nonideal gases [44] where the particular terms (the 
group integrals) include physical interactions between the 
particles. In our case, these expansions include indirect (and, 
what is important, dependent on ε) interactions between the 
impurity centers, through the exchange by virtual excitations 
from (admittedly renormalized) band spectrum, so that each 
term corresponds to summation of a certain infinite series of 
diagrams. Actually, there are different types of GE's possible 
for particular regions of energy spectrum, one of them, 
called fully renormalized GE, is more adequate to extended 
(band-like) states and the other, nonrenormalized GE, to 
localized states [43,45]. Then the issue of SCTMA validity 
is defined by the convergence of fully renormalized GE, 
otherwise new important impurity effects beyond SCTMA 
can be obtained from the nonrenormalized GE as discussed 
in the following sections. 

2. General formalism 

Below we use the particular type of two-time GF’s [30], 
since they are more adapted to the systems with intrinsic 
disorder than the Matsubara functions, commonly used in 
the field-theoretical approaches for uniform systems [31]. 
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Fig. 1. The exemplary metal-oxide perovskite structure of 
La2CuO4 with conducting CuO2 planes (shadowed) and a 
fragment of square lattice in such a plane. Arrows indicate AFM 
spin order at Cu sites. 

a

The Fourier transformed two-time (advanced) GF is 
defined as 

 
0

( 0)| = e { ( ), (0)} ,i i ta b i a t b dtε−
ε

−∞

〈〈 〉〉 〈 〉∫  (1) 

where a  and b  are Heisenberg fermionic operators, 〈 〉…  
is the quantum-statistical average with the corresponding 
Hamiltonian, and {.,.}  is the anticommutator. Various 
observable quantities at given temperature 1= ( )BT k −β  are 
obtained after these functions through the known spectral 
formula [30] for an average of operator product 

 ( )
1= | ,

e 1
dba a b

∞

εβ ε−μ
−∞

ε
〈 〉 〈〈 〉〉

π +∫  (2) 

including the chemical potential μ . The energy argument 
ε  (in units where = 1 ) beside a GF will be dropped in 
what follows, unless necessary. 

The explicit forms of two-time GF’s can be found from 
the Heisenberg equation of motion for operators [30]: 

 [ ]( ) = ( ), ,di a t a t H
dt

  

where [., .]  is the commutator. Then we have the related 
equation of motion for the Fourier transformed GF's as 

 | = { , } [ , ] | .a b a b a H bε〈〈 〉〉 〈 〉 + 〈〈 〉〉  (3) 

In particular, considering the operators of creation †ak  and 
annihilation ak  of free quasiparticles with quasimomen-
tum k  and eigen-energy ,εk  obeying the Hamiltonian 

 †= ,H a aε∑ k kk
k

  

the diagonal GF †|a a〈〈 〉〉k k  is simply found from Eq. (3) as 

 † 1| = .a a〈〈 〉〉
ε − εk k

k
  

A much more complicated case of interacting quasi-
particles (but in a uniform system) has a general solution 

 † 1| = ,
( )

a a〈〈 〉〉
ε − ε −Σ εk k

k k
  

where the complex self-energy ( )Σ εk  is usually built 
using the diagrammatic series [31]. 

3. Green function method for d-wave superconductor 

We start from the simplest single-band model for a d-
wave superconductor (in absence of impurities), formed by 
2D hopping of holes between nearest neighbor oxygen 
sites in CuO2 planes [46–48] (Fig. 1). Taking explicit 
account of spin indices = ,σ ↑ ↓  and of the mean-field 
anomalous coupling, the Hamiltonian can be presented in 
the compact matrix form with use of Nambu spinors, the 
row-spinor † †

,,= ( , )a a− ↓↑
ψk kk  and respective column-

spinor :ψk  

 †
3 1ˆ ˆ= ( ) .H ⎡ ⎤ψ ξ τ + Δ τ ψ⎣ ⎦∑ k k kk

k
 (4) 

Here =ξ ε −μk k  is the energy of normal quasiparticle 
with quasimomentum k referred to the chemical potential 
μ  (this will be also the reference for the energy variable ε) 
and ˆ jτ  ( = 1, 2,3)j  are the Pauli matrices in Nambu 
indices. The SC pairing parameter Δk  satisfies the BCS 
gap equation [6]: 

 ,
1= tanh ,

2
E

V
N E

′ ′
′

′′

Δ β⎛ ⎞Δ ⎜ ⎟
⎝ ⎠

∑ k k
k k k

kk
 (5) 

where 2 2=E ξ + Δk k k  is the SC quasiparticle energy and 
the Cooper separable ansatz is used for the SC coupling 
function , = SCV V′ ′γ γk k k k  with the SC coupling constant 

.SCV  The coupling function 2 2= ( ) cos 2Dγ θ ε − ξ ϕk k k  
includes the restriction to the BCS shell of width Dε  (the 
“Debye energy”) around the Fermi level and the d-wave 
symmetry cosine factor with the angular variable 

= arctan /y xk kϕk  for the 2D Brillouin zone. Then Eq. (5) 
yields in the gap function = cos 2Δ Δ ϕk k  where the 
parameter Δ  is found from the specific d-wave gap 
equation: 

 
2 2 2

2 2 2

( ) 2cos1 =
2cos

SC DV
N

θ ε − ξ ϕ
×

ξ + Δ ϕ
∑ k k

k k k

  

 
2 2 22costanh .

2

⎛ ⎞ξ + Δ ϕ⎜ ⎟× β
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⎝ ⎠

k k  (6) 
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Fig. 2. DOS in a clean d-wave SC system (solid line). Dashed 
lines indicate the linear low-energy asymptotics, the logarithmic 
divergence at | |ε → Δ , and the tendency to constant value Nρ
at | | .ε Δ  
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Next we define the 2 2×  Nambu matrix of GF’s: 

 †
, = | ,G ′ ′〈〈ψ ψ 〉〉k k k k  (7) 

whose matrix elements are the well-known Gor'kov normal 
and anomalous functions [32]. In what follows we 
distinguish between the Nambu indices (N-indices) and the 
quasi-momentum indices (m-indices) in this matrix and in 
the related (more complicated) matrices. Then the exact 
GF matrix for the uniform system results from Eqs. (3), 
(4), (7) in the m-diagonal form: 0

, ,= ,G G′ ′δk k kk k  with 

 0 3 1
2 2
ˆ ˆ

= .G
E

ε + ξ τ + Δ τ

ε −
k k

k
k

 (8) 

In general, the physical characteristics of SC state are 
suitably defined by the GF’s. For instance, the electronic 
specific heat follows from the global single-particle DOS: 

 1( ) = ImTr ,G−ρ ε π  (9) 

where 1=G N G− ∑ kk  is the local GF matrix with 
, .G G≡k k k  Next, the topography STM data [18] are 

described using the local DOS (LDOS) at nth lattice site: 

 ( )1( ) = e ImTr .i G
N

′− ⋅
′

′
ρ ε

π ∑ k k n
k,kn

k,k
 (10) 

Other observable characteristics are also expressed through 
GF's using the spectral formula, Eq. (2), as will be 
discussed in what follows. 

For the 2D lattice sums, like Eqs. (6), (10) at given d-wave 
symmetry, it is suitable to use the ׂ“polar coordinates” 
ξ ≡ ξk  and ,ϕ ≡ ϕk  accordingly to the integration rule: 

 
21 = ( , )

2 x y
af d f k k

N
⎛ ⎞ ≈⎜ ⎟π⎝ ⎠

∑ ∫k
k

k   

 
2

0
( , ).

4

W
N d d f

−μ π

−μ

ρ
≈ ξ ϕ ξ ϕ

π ∫ ∫  (11) 

Here a  is the square lattice constant and 4 / ( )N Wρ ≈ π  is 
the normal state DOS. The limits for “radial” integration 
(involving the bandwidth W) are rather qualitative, however 
they only define some less sensitive logarithmic factors. 

Thus the local GF matrix for a uniform system 

 
0 0

0 as 3
1 ˆ= = ( )NG G g g
N

ρ − τ∑ k
k

 (12) 

contains the energy dependence mainly in the function 

 0 2 2
1( ) = ,g

N E
ε

ε
ε −

∑
k k

  

and from Eq. (11) (within accuracy to 3 3( / ))O Δ μ  the 
latter is 

2 2

0 2 2( ) ImK sign ( ) ReK .
4

g i
⎛ ⎞ ⎛ ⎞Δ Δ ε

ε ≈ − ε + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ πμε ε⎝ ⎠ ⎝ ⎠
 (13) 

Here = (1 / )Wμ μ −μ ≈ μ  and the complete elliptic 
integral of 1st kind K( )k  behaves as [49] 

 

(1 / 4) / 2 at 1,

K( ) ln (4 / 1) at 1 1,

ln (4 ) / at 1.

k k

k k k

i i k k k

π +⎧
⎪

≈ − −⎨
⎪−⎩

  

It should be noted that the analytic result, Eq. (13), reflects 
the fact that 0Re ( )g ε  is odd and 0Im ( )g ε  is even in 
energy (understood as 0)iε −  in accordance with the 
particle–antiparticle symmetry. The respective DOS for a 
uniform d-wave SC crystal 

 0
0

1 2( ) = ImTr = Im ( )NG gρ ε ρ ε
π π

  

displays sharp SC coherence peaks 

 22
( ) ln 4 1 ( / )Nρ ⎡ ⎤ρ ε ≈ − Δ ε⎢ ⎥π ⎣ ⎦

  

at | | ,ε → Δ  decays linearly as ( ) | | /Nρ ε ≈ ε ρ Δ  at 
| | ,ε Δ  and tends to the normal state constant DOS value 

Nρ  at | |ε Δ  (Fig. 2). 
The asymmetry factor beside 3τ̂  in Eq. (12) is almost 

constant: 

 as 2 2
1= ln / 1,g W
N E

ξ
− ≈ μ −

ε −
∑ k

k k
 (14) 

until | | , Wε μ  and only turns zero at exact half-filling, 
= / 2.Wμ  As will be seen below, this nonzero value is 

relevant for impurity perturbations on the d-wave spectrum. 
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Similarly, we can calculate the gap equation, Eq. (6), at 
0:T →  

 
2 2

2 2 20

2cos1 = .
4 2cos

D
SC N

D

V
d d

επ

−ε

ρ ϕ
ϕ ξ

π ξ + Δ ϕ
∫ ∫  (15) 

Integrating this first in ,ξ  we have 

 
2 2 2

= 2arcsinh =
| cos 2 |2cos

D
D

D

d
ε

−ε

εξ
Δ ϕξ + Δ ϕ

∫   

 
2

2ln
| cos 2 |

Dε≈
Δ ϕ

  

(since ).DΔ ε  Doing next the angular integration 

 
2

2

0

2 4 12 ln = ln ,cos
| cos 2 | 2

D Dd
π ε ε⎛ ⎞ϕ ϕ π −⎜ ⎟Δ ϕ Δ⎝ ⎠∫   

we arrive at the gap parameter 

 1/ 1/2= 4 eD
− λ−Δ ε  (16) 

with the dimensionless pairing constant = / 2SC NVλ ρ . As 
usually, this value can be compared with the critical 
temperature cT  of SC transition, found from the same gap 
equation, Eq. (5), under the condition 0:Δ ≡k  

 
0

21 = tanh ln ,
2

D
E D

B c B c

d
k T k T

ε
γ εξ ξ

≈
λ ξ π∫   

where 1.781Eγ ≈  is the Euler constant [49], so that 

 1/= (2 / )e .B c E Dk T − λγ ε π  (17) 

From comparison of Eqs. (16) and (17) we conclude that the 
characteristic ratio = 2 / B cr k TΔ  in this case is 2 / e  
times higher than the s -wave BCS value 

= 2 / 3.52,BCS Er π γ ≈  reaching 4.27.r ≈  The above 
considered characteristics of the d-wave SC state in the pure 
crystal are essential for the impurity effects in the 
quasiparticle spectrum. 

3.1. Impurity perturbation and group expansions 

The simplest impurity perturbation of the Hamiltonian, 
Eq. (3), is realized by the point-like Lifshitz potential LV  on 
random lattice sites p  with relative concentration 1.c  Its 
matrix form 

 †( )1= eiH V
N

′− ⋅
′

′
′ ψ ψ∑ k k p

kk
p,k,k

 (18) 

includes the impurity perturbation matrix 3ˆ= .LV V τ  This 
is the most extensively used model for impurity effects in 
superconductors [4,15,36,50–52], but also some extensions 
of this form, either in spatial range of perturbed sites and in 
spin variables, are considered below. 

In presence of impurities, the equation of motion for the 
Nambu matrix GF, related to the Hamiltonian H H ′+  reads 

 0 0( )
, ,,

1= e ,iG G G V G
N

′′− ⋅
′ ′′ ′′

′′
δ + ∑ k k p

k k k k k kk k
p,k

 (19) 

and we shall choose different routines to close the infinite 
chain of equations for the “scattered” GF’s, like ,G ′′ ′k k  in 
Eq. (19). In particular, the routine to obtain the above 
mentioned fully renormalized GE consists in consecutive 
iterations of this equation for the “scattered” GF’s and in 
systematic separation of all those already present in the 
previous iterations [44]. It should be noted that the 
observable characteristics of a disordered system are des-
cribed by the so-called self-averaging GF’s, whose values 
for all particular realizations of disorder are practically 
nonrandom, equal to those averaged over disorder [26]. 
GE’s are well defined just for self-averaging quantities, so 
one should always try to formulate each particular problem 
in terms of these quantities. 

Thus, considering the m-diagonal ,Gk  the most 
important example of self-averaging GF, we separate, 
among the scattering terms, the function Gk  itself from 
those with , ,G ′k k  :′ ≠k k  

 0 0( )
,

1= eiG G G V G
N

′− ⋅
′

′
+ =∑ k k p

k k k k k
k ,p

  

 0 0 0( )
,

1= e .iG cG VG G V G
N

′− ⋅
′

′≠
+ + ∑ k k p

k k k k kk
k k,p

  

  (20) 

Then for each , ,G ′k k  ′ ≠k k  we write down Eq. (19) 
again and single out the scattering terms with Gk  and 

,G ′k k  in its r.h.s.: 

 0( )
, ,

1= eiG G V G
N

′ ′′− ⋅
′ ′ ′′

′′ ′
=∑ k k p

k k k k k
k ,p

  

 0 0( )
,

1= eicG V G G V G
N

′− ⋅
′ ′ ′+ +k k p

k k k k k   

 
0( )1 ei G V G

N
′ ′− ⋅

′
′≠

+ +∑ k k p
k k

p p
  

 ( ) 0
,

;

1 e .i G V G
N

′ ′′ ′− ⋅
′ ′′

′′ ′ ′≠
+ ∑ k k p

k k k
k k,k p

 (21) 

Note that, among the terms with ,Gk  the =′p p  term (the 
second in r.h.s. of Eq. (21)) bears the phase factor 

( )e ,i ′− ⋅k k p  so it is coherent to that already present in the last 
sum in Eq. (20). That is why this term is explicitly separated 
from other, incoherent ones, ( )e ,i ′ ′− ⋅∝ k k p  ′ ≠p p  (but there 
will be no such separation when doing 1st iteration of 
Eq. (19) for the m-nondiagonal GF ,G ′′k k  itself). 



Yu.G. Pogorelov, M.C. Santos, and V.M. Loktev 

808 Fizika Nizkikh Temperatur, 2011, v. 37, No. 8 

Continuing the sequence, we collect the terms with the 
initial function Gk  which result from: 

i) all multiple scatterings on the same site ,p  and 
ii) such processes on the same pair of sites p  and 

,′ ≠p p  and so on. 
Then summation in p  of the i)-terms gives rise to the 

first term of GE as ,cT  where 

 1= (1 ) ,T V GV −−  (22) 

and, if the impurity cluster processes were neglected, this 
term would be just the self-consistent T-matrix [33,53]. The 
second term of GE, obtained by summation of the ii)-terms 
in , ,′ ≠p p p  contains the interaction matrices [15] 

 ( )1= eiA G T
N

′ ′⋅
′ ′

′
∑ k p –p

p –p k
k

  

generated by the multiply scattered GF’s , ,G ′k k  ,′ ≠k k  
etc. (including their own renormalization). For instance, 
the iterated equation of motion for ,G ′′k k  with ,′′ ′≠k k k  
in the last term of Eq. (21) will produce 

 0( )
, ,

,

1= eiG G V G
N

′′ ′′′ ′′− ⋅
′′ ′′ ′′′

′′′ ′′
=∑ k k p

k k k k k
k p

  

 
0 0( ) ( )1 1= e ei iG V G G V G

N N
′′ ′′ ′− ⋅ − ⋅

′′ ′′+ +k k p k k p
k k k k   

 , ,terms with andG G′ ′′+ +k k k k   

 ,terms with ( , , ).G ′′′ ′′′ ′ ′′+ ≠k k k k k k  (23) 

Finally we arrive at the fully renormalized representation 
for the m-diagonal GF as 

 
110

,= = ,G G G
−−⎡ ⎤⎛ ⎞ − Σ⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
kk k k k  (24) 

where the renormalized self-energy matrix is presented by 
the GE: 

 
2

0 0= 1 .cT cA cA cB⎛ ⎞Σ − − + +⎜ ⎟
⎝ ⎠

k k  (25) 

Here the next to unity terms are due to quasiparticle scat-
tering by impurity clusters, respectively to their c-orders. 
Thus, the c2-terms result from impurity pairs, and the pair 
correlations define the term 

2 2 2 1

0
= ( e )(1 ) ,iB A A A A A A− ⋅ −

− −
≠

+ −∑ k n
k n n n –n n n

n
 (26) 

written so after replacing the sum in random impurity sites 
′p  around a given ,p  ,f ′

′≠
∑ p –p

p p
 by its positional average, 

0
,c f

≠
∑ n
n

 over all lattice sites around zero. The terms not 

written explicitly in Eq. (25) are due to the clusters of three 
and more impurities. 

An alternative routine consists in iterations of the 
equation of motion for all the terms ,G ′′k k  in Eq. (19) and 
summing the contributions 

0
,G∝ k  like the first term in the 

r.h.s. This finally leads to the solution of the form 

 
0 0 0 0

=G G G G+ Σkk k k k , (27) 

where the nonrenormalized self-energy 

 
0 00

= (1 )cT cBΣ + +k k  (28) 

includes the nonrenormalized T-matrix 

 
10 0

= 1 ,T V G V
−

⎛ ⎞−⎜ ⎟
⎝ ⎠

 (29) 

and the corresponding pair term: 

 
10 0 0 0 0 0

0
= e 1 .iB A A A A A

−
− ⋅

− −
≠

⎛ ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ k n
k n n n n n

n
 (30) 

The nonrenormalized interaction matrices are given by 

 
0 00 0 0 0 0

0
1= , = e , .iA G T G G G G
N

⋅ ≡∑ k n
n n n k

k
 (31) 

Like the previous Eq. (25), the next to unity term in the 
brackets of Eq. (28) describes the contribution from all 
possible clusters of two impurities and the dropped terms 
are for clusters of three and more impurities. This permits 
to describe, in principle, the hierarchical structure of quasi-
continuous spectrum of localized states in the crystal with 
impurities [26]. Besides the two above presented, other 
types of GE’s (with different degrees of their renor-
malization) can be also obtained from specific routines for 
the equations of motion [54]. 

The crucial issue for group expansions is their 
convergence. Strictly speaking, it can be only asymptotic, 
moreover, it essentially depends on the chosen value of .ε  
In practice, we simply consider that the group series 
converges, at a given ,ε  if the contribution to the self-
energy Σ  from the 1st (single-impurity) term of GE 
dominates over that from the 2nd term (impurity pairs). 
Then it is believed that the pair term and all the rest of the 
series can be dropped, as is proved in some simplest model 
cases [45]. But with varying ,ε  a condition can be reached 
that the first two GE terms turn to be of the same order (and, 
supposedly, all the rest too), this is expected to define a limit 
of convergence for the given GE type. Such limits for 
different GE types are different [45], and we can combine 
between them to cover the maximum energy range. Finally, 
the areas of the spectrum where no GE is convergent define 
special regions, like the regions of concentration broadening 
around localized levels or the mobility edges (dividing band-
like states from localized states). The quantitative analysis of 
GE convergence and of impurity cluster effects begins from 
the simplest single-impurity level, providing the elements 
for all the following steps. 
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Fig. 3. Low-energy resonance levels res±ε  (arrows) in the DOS
of d-wave superconductor containing a finite concentration

= 0.2 Nc ρ Δ  of impurity scatterers with 0.67 /L NV ≈ ρ
(corresponding to 2).≈v  Other distinctions from the pure crystal
DOS in Fig. 2 (shown here by the dashed line) are the finite
spikes at | | =ε Δ  and the enhanced slope at res| | < .ε ε  
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4. Impurity effects on superconducting state 

Using Eqs. (12), (29), we express the nonrenormalized 
T-matrix as 

 
0 0 3

2 2
0

ˆ
( ) = ,

1N

g
T

g
− τ

ε
ρ −

vv
v

 (32) 

through the function 0 ( ),g ε  Eq. (13), and the dimensionless 
perturbation parameter ( ) 1

as= / 1L N L NV V g −ρ − ρv  [55]. 
This T-matrix permits existence of low-energy resonances 
[14,15] at symmetric points res= ,ε ±ε  found from the 
condition 2

0 resRe[ ( )] = 1,g εv  analogous to the known 
Lifshitz equation in normal metals and semiconductors [26]. 

Since 2 2 2 2 2 2 2
0Re[ ( )] [Im K( / )] [Re K( / )]g ε ≈ Δ ε − Δ ε  

reaches its highest value 0.47≈  at | | 0.443 ,ε ≈ Δ  
the formal solution to the Lifshitz equation first appears 
just at these points when the perturbation v  reaches 

1.46≈ . However, this formal solution will not yet 
correspond to a true resonance peak in DOS because its 
broadening res 0 res 0 res

Im ( ) / ( Re / )g d g d εΓ ≈ ε ε  reaches 
0.541≈ Δ  in this case, that is larger of resε  itself. But 

for strong enough perturbation: 1,v  the resonance 
energy is low, res ,ε Δ  and from the logarithmic 
asymptotics: 0Re ( ) ( / ) ln(4 / ),g ε ≈ ε Δ Δ ε  it estimates as 

res / [ ln(4 )]ε ≈ Δ v v  [14,15]. Then also the broadening 
res res / [2 ln(4 )]Γ ≈ πε v  is smaller than resε  (though not 

very much) already for 1.7,v  as seen in Fig. 3. 
It is important to notice that in presence of the finite 

asymmetry factor as ,g  Eq. (14), the perturbation para-
meter can be very large, | | 1,v  even for a moderate 
perturbation potential 1 /L NV ρ∼  if asL NV gρ  gets close 
to unity. This can open possibility for the unitary scat-

tering regime [36] in superconductors with rather common 
impurity substitutes as transition metals or Zn for Cu. This 
specific property of impurity scattering in high-Tс systems 
with asymmetric bands was first indicated by Hirschfeld 
et al. [56]. 

The local SC order parameter in the d-wave system is 
constructed from the off-diagonal correlators between 
nearest neighbor sites in the lattice, , , ,a a+ ↑ ↓n nδ  where 

= ( / 2, / 2),a a± ±δ  taking the GF form (in agreement 
with Eq. (2)) 

 [ ( ) ] 2 2 2 2

,
= e ( ) ( )

2
iSC

D D
V

N
′⋅ + − ⋅

′
′

Δ θ ε − ξ θ ε − ξ ×
π ∑ k n k n

n k k
k k

δ   

 , 1/ Im Tr .
e 1T

d G
∞

′ε
−∞

ε
× τ

+∫ k k  (33) 

Its average value over all the sites n is presented in the GF 
form as 

 
0

1/= Im Tr .
2 e 1
SC

T
V d F

∞

ε
−∞

ε
Δ τ

π +∫ δ  (34) 

Here the elements of the matrix   

 
0 02 21= e ( )i

DF G
N

⋅ θ ε − ξ∑ k
kk

k

δ
δ  (35) 

are calculated accordingly to the rules 

( )e ( ),i

k
f k f k⋅ ≈∑ ∑k

k

δ   

2( )e cos 2 ( ) 2 ,cos
2

i Nf k f k⋅ πμρ
ϕ ≈ ϕ∑ ∑k

k k
k k

δ   

2 2 2( ) ( ) = 0,D fξ θ ε − ξ ξ∑ k k k
k

  

to result in 

 
0

10 1 .
2

N
NF f g

πμρ⎛ ⎞≈ ρ + τ⎜ ⎟
⎝ ⎠

δ  (36) 

This includes another energy function 

 
2

2
1 2 2 2 2

0 0
( ) = 2cos

2 2cos

D dg d
επΔ ξ

ε ϕ ϕ ≈
π ε − ξ − Δ ϕ∫ ∫   

 
2 2

2 2K E ,
2 D

i
⎡ ⎤⎛ ⎞ ⎛ ⎞Δ ε Δ Δ

≈ − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ε Δ ε ε⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
  

with the full elliptic integral of 2nd kind E  [49], and the 
function 0f  which only differs from 0 ,g  Eq. (12), by its 
last term being / .Dε ε  Absence of asymmetry term 33ˆ∝ τ  
in Eq. (36) is due to the BCS shell factor 2 2( )Dθ ε − ξk  
present in Eq. (35). 
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Fig. 4. Suppression of the local SC order parameter at the very
impurity site 0= 1 /η − Δ Δ  in function of the perturbation
parameter ,v  calculated for d-wave case from Eq. (39) (solid
line) vs its analytical s-wave form 2 2 2 2/ (1 )π + πv v  [15] (dash-
dotted line). Inset: comparison of the integrand functions in the
numerator (solid line) and denominator (dashed line) of Eq. (39)
at = 2v  reveals a notable negative effect of the resonance level
at resε  that diminishes η  in the d-wave case vs the s-wave case
where no such resonance exist. 
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The local deviation of SC order parameter Δn  on nth 
site from its average value Δ  is only defined by the m-
nondiagonal contributions into Eq. (33), which are easily 
calculated for the simplest case of a single impurity center 
at = 0:p  

 
00 0

,
1= ,G G T G
N

′ ′k k k k  (37) 

expressing this variation in terms of matrices F  as 

 
0 0 0

1/= Im Tr .
2 e 1
SC

T
V d F T F

∞

+ε
−∞

ε
Δ − Δ τ

π +∫ n nn δ  (38) 

Taking into account that 
0
0F  is simply a scalar 0N fρ  and 

considering zero temperature, we obtain the parameter 
0= 1 /η −Δ Δ  of relative suppression of SC order on the 

very impurity site = 0n  in the form 

 

0 0 0
0 1

0

0
1

0

ImTr

=

ImTr

D

D

d F T F

d F

ε

ε

ε τ

η − =

ε τ

∫

∫

δ

δ

  

 

2 2 2
0 0 1 0

0

1
0

Im / (1 )

= ,

Im

D

D

d g f g g

d g

ε

ε

⎡ ⎤ε −⎣ ⎦
−

ε

∫

∫

v v

 (39) 

as a function of the perturbation parameter .v  This nume-
rically calculated function ( ),η v  when compared to the 

analytic result for impurity in an s-wave superconductor 
[15]: 2 2 2 2( ) = / (1 ),sη π + πv v v  presents a sensible delay of 
its growth with v  (Fig. 4). This is apparently due to 
the pronounced negative effect of the low-energy resonance 
level resε  on the integrand function in numerator of 
Eq. (37), compared to the integrand in its denominator (inset 
in Fig. 4), whereas in the s-wave case, at absence of 
impurity resonance, the two integrands (in numerator and 
denominator) are simply proportional to each other. 

5. Other types of impurity centers 

5.1. Extended impurity center 

The predicted effects of a point-like scatterer on the 
local SC order are perhaps too strong to be adequate to the 
observed stability of SC state under disorder. In reality the 
impurity perturbations in high-Tc materials are not exactly 
point-like but rather extended to a finite number of neighbor 
sites to the impurity center. This raises an important question 
on how robust are the results of a point-like model with 
respect to the spatial extent and geometry of impurity 
perturbation. The opposite limit to the point-like per-
turbation, that when the defect is much bigger of the Fermi 
wavelength and can be treated quasiclassically [57], hardly 
applies to real atomic substitutes in high-Tc systems with 
perturbation limited to few nearest neighbors of the 
impurity site. To model the latter situation, we extend the 
perturbation Hamiltonian, Eq. (18), to the form [58] 

 †( ) ( )
ext

, ,

1= e e .i iH V
N

′ ′− ⋅ − ⋅
′

′
− Ψ Ψ∑ ∑k k p k k

kk
k k p

δ

δ
 (40) 

It contains formally the same perturbation matrix 
3= LV V τ  as in Eq. (18), but takes an explicit account of 

the phase shifts ( )ei ′− ⋅k k δ  at quasiparticle scattering by 
extended perturbation on the nearest neighbor lattice sites 
δ  to the impurity center p  (which itself does not pertain 
to the lattice in this case, see Fig. 5). Then the equation of 
motion, Eq. (19), is modified to 

0 0( )
, ,, , ,

, ,

1= e ,i
j j

j
G G G V G

N
′′− ⋅

′ ′′ ′′ ′′
′′

δ + α α∑ k k p
k k k kk k k kk k

k p
 

  (41) 
where the functions 

 1, = 2cos cos ,
2 2

yx akak
α k   

 2, = 2cos sin ,
2 2

yx akak
α k   

 3, = 2sin cos ,
2 2

yx akak
α k   

 4, = 2sin sin ,
2 2

yx akak
α k  (42) 
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Fig. 5. Extended perturbation over four nearest oxygen sites iδ
to the impurity ion (its projection onto the CuO2 plane is shown
by the dashed circle at the origin). 
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realize irreducible representations of the 4C  point group 
( = 1j  being related to A-, = 2,3j  to E-, and = 4j  to B-
representations [59]) and thus satisfy the orthogonality 
condition 

 , , ,
1 = .j j j jN ′ ′α α δ∑ k k

k
 (43) 

The impurity effects on quasiparticle spectrum are naturally 
classified along these representations, alike the known 
effects of magnetic impurities in ferro- and antiferro-
magnetic crystals [45,60]. 

Orthogonality of the ,jα k  functions results in that 
Eq. (41) has a solution formally coinciding with Eq. (27), 
but with the T-matrix additive in the 4C  representations: 

0 0
= jjT T∑ , where each partial T-matrix 

0 0 1= (1 )j jT V G V −−  includes the specific local GF matrix: 
0 01 2

,= .j jG N G− α∑ kkk  Alike Eq. (32), this matrix can be 
expanded in the basis of Pauli matrices 

 
0

0 1 1 3 3ˆ ˆ= ( ) .j N j j jG g g gρ + τ − τ  (44) 

The functions jig  are calculated by using Eq. (10), some 
of them are zero by the symmetry reasons: 11 41= = 0,g g  
and the rest can be approximated as 

2 2 2
0 0 3 as 21 31 2 1, , = .j j j jg g g g g g g≈ α ≈ α − ≈ α  (45) 

Here 2
jα  are the average values of 2

,jα k  over the Fermi 

surface: 2
1 4(1 / ),Wα ≈ −μ  2

2,3 4 / ,Wα ≈ μ  2 2
4 2( / ) ,Wα ≈ μ  

where the band occupation parameter /Wμ  is sup-

posedly small. Then the most important contribution to 
0T  comes from the = 1j  term (A-representation): 

 
0 0 31

2
1

ˆ
= ,AA

AN

g
T

D
− τ

α ρ

vv  (46) 

with the A-channel perturbation parameter =Av
2 2
1 1 as/ (1 )L N L NV V g= α ρ −α ρ  and the denominator 

2 2
0( ) = 1 ( ).A AD gε − εv  It can produce low-energy 

resonances at res=ε ±ε  (such that resRe ( ) = 0AD ε ), 
similar to the above mentioned resonances for point-like 
impurity center. This again requires that Av  exceeds a 
critical value ,cr 2 / .A ≈ πv  

The contributions from = 2,3j  (E-representation) are 

 
0 0 1 1 32,3

2
2

ˆ ˆ( )
= ,EE

EN

g g
T

D
τ − τ

α ρ

∓vv  (47) 

with  

2 2
2 2 as= / (1 ),E L N L NV V gα ρ −α ρv   2 2 2

0 1= 1 ( ).E ED g g− −v  

It is less probable to have a resonance effect in this channel 
at low occupation / 1Wμ , since the reduced parameter 

Ev  compared to Av  and competition between 2
0Reg  and 

2
1Reg  in .ED  

The B-channel 
0
4T  has the same structure as the A-

channel term, Eq. (48), but with Av  replaced by a strongly 
reduced value 

2 2
4 4 as= / (1 ),B L N L NV V gα ρ −α ρv  

hence it turns even less important than the E-channel 
terms. 

Now, using Eqs. (46), (47) in Eq. (8), the global DOS is 
obtained as 

 0 0( ) Im ( ),N g
ρ

ρ ε ≈ ε −Σ
π

 (48) 

where the scalar self-energy 

 
2 2 2

0
0 2 2 2

1 2 4

( ) 2
=

4
A E B

A E B

cWg

D D D

⎛ ⎞π ε ⎜ ⎟Σ + +
⎜ ⎟α α α⎝ ⎠

v v v  (49) 

includes the effects of all three channels. Figure 6 presents 
the results of direct calculation from Eq. (48) with use of 
Eq. (49) at a typical choice of parameters, = 2W  eV, 

= 0.3μ  eV, = 0.15Dε  eV, = 0.3LV  eV (this gives for 
particular channels: 1.763,A ≈v  0.129,E ≈v  and 

0.009),B ≈v  and = 0.1.c  They are similar to the results 
for point-like impurities [4,15], showing low-energy 
resonances at res ,±ε  mainly due to the A-channel effect. 
But the reduction of coherence peaks at | | =ε Δ  is much 
stronger, due to additional effect from the E-channel, while 
the B-channel has no appreciable effect at all. 
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Fig. 6. DOS in the d-wave superconductor with extended
impurity centers (the solid line), for the choice of parameters

= 2W  eV, = 0.3μ  eV, = 0.15Dε  eV, = 0.3LV  eV, = 0.1.c
The arrow indicates the low-energy resonance by the A-
channel impurity effect and the dashed line represents the
pure d-wave DOS. 
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Fig. 7. Local density of states on the nearest neighbor site to an 
extended impurity center, for the same choice of parameters as in 
Fig. 6 (but supposing 0).c →  Note the overall enhancement of 
electronic density compared to that on remote sites from impurity 
(dashed line). 
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In analogy with Eq. (38) for the variation of SC order 
parameter, the variation of LDOS ( ),nρ ε  Eq. (10), near the 
impurity site, compared to the average value ( ),ρ ε  is only 
given by the m-nondiagonal GF’s: 

 ( )
,

,

1( ) = e ImTr .i G
N

′− ⋅
′

′≠
δρ ε

π ∑ k k n
k kn

k k k
 (50) 

Here 
00 01

, , ,= ,jj jjG N G T G−
′ ′′α α∑k k kk kk  and the 

strongest variation is attained at =n δ , the nearest 
neighbor sites to the impurity. Using Eq. (50) and the 
orthogonality relations, we expand this value into a sum 

 
00 0( ')

= , ,2
, ,

1( ) = e ImTri
jj j

j
G T G

N
⋅

′ ′
′

δρ ε α α =
π

∑ k –k
k kn k k

k k

δ
δ   

 
00 01= ImTr ,jj j

j
G T G

π∑   

and present the overall maximum LDOS as 

= 0 2 2 2
1 2 4

2
( ) = Im ( ) 1 2 .N A A E E B B

A E B

N N N
g

D D D

⎡ ⎤⎛ ⎞ρ ⎢ ⎥⎜ ⎟ρ ε ε + + +
⎢ ⎥⎜ ⎟π α α α⎝ ⎠⎣ ⎦

n
v v v

δ

  (51)
 

Alike Eq. (48) for global DOS, the resonance contribution to 
Eq. (51) at low energies resε ε∼  comes from the A-term 
with the numerator 2 2

3 0 3= 2 ( ).A AN g g g+ +v  Other chan-
nels, with 2 2 2

3 0 1 3= 2 ( )E EN g g g g+ − −v  and 3= 2BN g +
2 2
0 3( ),B g g+ +v  mainly contribute to modification of the 

pure d-wave DOS 0( ) = 2 / [ Im ( )]d gρ ε π ε  far from the 
resonance. LDOS on nearest neighbor sites to the 
impurity, calculated from Eq. (51) (solid line in Fig. 7), 
displays less pronounced low-energy resonances than 
those in the global DOS, Fig. 6, but an overall 
enhancement compared to the LDOS curve for remote 
sites from impurity ( ) = ( )→∞ρ ε ρ εn  (the dashed line). 

This picture resembles the direct experimental 
measurements of differential conductance through the STM 
tip positioned close to and far from an impurity center [18]. 

Similarly, the local perturbation of SC order parameter, 
Eq. (38), can be considered. The local d-wave SC order in 
the unit cell containing the impurity (see Fig. 5) is given by 
the average , ,1 2

= SCV a a+ ↓ + ↑Δ 〈 〉n n nδ δ  (of course, any 
pair of nearest neighbor sites to impurity can be chosen 
instead of 1δ  and 2 ).δ  Again, the suppression parameter 
for this extended defect is defined as ext 0= 1 / ,η − Δ Δ  and 
it is only contributed by the nondiagonal GF’s: 

 ( ) 2 22 3ext
,

= e ( )
4

iSC
D

V W
N

′⋅ − ⋅

′′≠
η − θ ε − ξ ×

μ Δ ∑ k k
k

k k k

δ δ   

 2 2
, ,( )D a a′ ′− ↓ ↑× θ ε −ξ 〈 〉 =k k k   

 

0 0 0 0
1

0 0
1

( 1) ImTr

= ,

ImTr

j
j j j

j
d F T F

d F

−∞

−∞

− ε τ

−

ε τ

∑ ∫

∫ δ

 (52) 

where the matrices 
0 (0)1 2 2 2

,= ( )j j DF N G− α θ ε − ξ∑ k k k
k

 

mainly differ from 
0
jG  by the absence of 3ˆ∝ τ  term, like 

in Eq. (36) which again defines 
0
.Fδ  Using here Eqs. (52), 

(44), one arrives at the expression 

2 2
1 0 0 0 1

2 0
ext

1
0

Im (2 ) /

= 2 ,

Im ( )

D

E

E
D

g f g f g D d

g d

ε

ε

⎡ ⎤+ + ε⎣ ⎦
η −

ε ε

∫

∫
v  (53) 
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Fig. 8. The dimensionless function ( )F ε  (solid line) used in the
numerator of Eq. (52), compared to the dimensionless integrand
in its denominator (dashed line) to calculate the suppression
parameter supη  at the same conditions as in Fig. 4. 
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Fig. 9. Effective magnetic perturbation for charge carriers on 
nearest neighbor sites to the nonmagnetic impurity substitute for 
Cu2+ in CuO2 plane. 
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where only the E-channel terms contribute to the 
numerator (see Fig. 8 to compare it with the denominator). 

Numeric analysis of this expression for the above 
chosen perturbation parameters results in ext 0.132.η ≈  
This value is much smaller than that for the point-like 
impurity (assuming = Av v  gives 0.763),η ≈  and, in view 
of the said in the beginning of this Section, the present 
model looks more plausible for disordered high-Tc sys-
tems. The most evident physical reason for so weak 
suppression is the separate action of the extended impurity 
center in different symmetry channels, so that the stronger 
perturbation, ,Av  is effective for the N-diagonal charac-
teristics (DOS and LDOS) while the N-nondiagonal ones 
(as SC order) are defined only by the weak perturbation, 

.Ev  As will be shown below, even more diverse effects on 
local DOS and d-wave order parameter are produced by 
the extended impurity perturbation if it is spin-dependent. 

5.2. Magnetic perturbation from nonmagnetic impurity 

Unlike the above mentioned distinct effects of magnetic 
and nonmagnetic impurities in traditional SC materials, 
introduction of nonmagnetic Zn2+ ions instead of Cu2+ into 
the cuprate planes has a suppression effect on HTSC, not 
weaker but rather stronger than that by true magnetic ions, 
as Ni2+ [13]. Therefore nonmagnetic impurity ions in 
HTSC are seen as extremely strong scatterers [61], treated 
in the unitary limit [36,62,63]. However, the impurity 
centers formed in the CuO2 plane by homovalent 
substitution (as Zn2+ or Ni2+ for Cu2+), hardly could 
produce so strong perturbation potential. Also the pre-
dicted symmetric resonances by nonmagnetic impurities in 
LDOS are not observed in the experimental STM spectra 
taken near Zn sites in Bi2Sr2CaCu2O8+δ [18]. 

This Section presents an alternative approach to the 
problem of Cu-substituting impurities. It will be shown 
that, irrespectively of their type (magnetic or nonmagne-
tic), the resulting center generally acts on charge carriers as 
magnetic. In accordance with the general concept of time-
reversal symmetry breaking, such center should in fact 
strongly suppress SC order either of s- or d-type, as was 
first qualitatively stated yet by Mahajan et al. [64]. Similar 
views on the effect of Zn impurities in high-Tc cuprates were 
expressed more recently [65–67], though still focusing on 
unitary scattering. As seen below, the spin-dependent effect 
of isolated (nonmagnetic) impurity in a CuO2 plane, not 
reaching the unitary limit of perturbation but changing its 
Nambu structure, can become really strong [68]. 

Figure 9 shows a cathion impurity substitute for Cu in a 
CuO2 plane, like real Zn, Fe, or Ni impurities in high-Tc 
compounds, and this center presents a notable geometric 
similarity to the extended center, Fig. 5 from the previous 
Section. However, there is also a difference in the 
mechanism of perturbation by these two centers. The main 
perturbation on O– holes by the present type of impurity 
(regardless of being magnetic or nonmagnetic) is due to the 
fact that its neighbor O sites occur in a nonzero exchange 
field by Cu2+ spins [69,70], which is equivalent to the effect 
of magnetic impurity in a common superconductor. On the 
other hand, there are no reasons to consider any sizeable 
spin-independent perturbation from such isovalent impurity. 

The respective model Hamiltonian consists in three 
terms: int ,cH H H+ +  where H  is given by Eq. (3). The 
first perturbation term =c zH hS−  models the (AFM) cor-
relation between the impurity center and its environment, 
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where ddh J∼  is the Cu–Cu exchange constant and S  is 
the spin of a fictitious “magnetic impurity”. It can be 
attributed to the cluster of four 1/2 spins of Cu nearest 
neighbors to real nonmagnetic impurity. In reality, its 
quantization axis z  is only defined over time periods no 
longer than ( ) 13/ 10 ss s ddaJ −τ ξ∼ ∼  for experimen-
tally measured spin correlation length /s a xξ ∼  [71] 
and doping levels 0.1x∼  (this also agrees with the NMR 
data [65]). However sτ  is much longer than typical 
electronic times 15/ 10 s−μ∼ ∼  for HTSC compounds. 
For > 0h  we have zS s〈 〉 ≡  and 0 < < ,s S  which 
accounts for the short-range AFM order, whereas 0s →  in 
the paramagnetic limit .Bh k T  The spin-dependent 
interaction between charge carriers and impurity is can be 
also separated into three parts: 

 M
int int intint= ,FH H H H⊥+ +  (54) 

where 

 †
int , , ' ,',

, ' =
=MF

j j
JsH a a
N − σσ

σ ±
α α σ∑ ∑ k k kk

k k
 

describes the “mean-field” (MF) polarization of carrier 
spins by the impurity center, and 

 †
, , ,int ,

, =
= ( ) ,j j z

JH S s a a
N ′ σ′ σ

′ σ ±
α α σ −∑ ∑ k k kk

k k
 

 †
int , , ,,

, =
= ,j j

JH S a a
N

⊥
′ σ σ′ −σ

′ σ ±
α α∑ ∑ k k kk

k k
 

are their interactions with longitudinal and transversal 
fluctuations of .S  In the paramagnetic limit, 0,s →  
Eq. (54) is reduced to the common Kondo interaction 
[72,73]. For definiteness, the Cu–O p–d exchange 
parameter J  is taken positive. The functions ,jα k  are 
formally the same as given by Eq. (42) for extended 
impurity center in the previous Section, but the distinctive 
features of the perturbation, Eq. (54), are: 

i) additional degrees of freedom by the spin ,S  and 
ii) coupling of S  to the local AFM correlations. 
To describe the local effects by this impurity center, we 

determine the m-nondiagonal GF’s ,G ′k k  from the equa-
tion of motion  

 ( ) ( )
, , , ,, ,

,

ˆ ˆ ˆ ˆ ˆ= ( )z
j j

j

JG G sG G G
N

−
′ ′′ ′ ′′′ ′

′′
α + + α∑k k k k k k kk k k k

k
 

including three scattered GF's: the MF one , ,G ′′ ′k k  the 

longitudinal 
( ) †

, = ( ) |
z

zG S s′′′′ ′ ′〈〈ψ − ψ 〉〉kk k k  and the trans-

versal 
( ) †

, = |G S
−

′′ −′′ ′ ′〈〈ψ ψ 〉〉kk k k  with the “spin-inverted” 

spinor 
† †

,,= ( , ).a a− ↑↓
ψk kk  The two last terms are analo-

gous to the well known Nagaoka's Γ-term [73,74] and 

treating them with a similar decoupling procedure leads to 
the solution of type Eq. (50): 

 , , ,
1= ,jj j

j
G G T G

N
′ ′ ′α α∑k k k kk k  (55) 

but with more complicated partial T-matrices: 

 2 2 2 2 1= [ ( )][1 ( )] ,j j jj jT Js J G X Js J G X −+ Σ + − − Σ +   

where 

 ( )2 2 2 2
,

1= , = ,jz jS s X G h X
N

Σ 〈 〉 − α ε +∑ kkk
k   

 2
3ˆ= ( 1) ( 1) 1 2 ,X S S s s

E
⎛ ⎞ξ

+ − + −Σ + + τ⎜ ⎟
⎝ ⎠

kk
k  

 

and the shift of energy argument, ,hε → ε+  is due to the 
nonelastic scattering effect of AFM stiffness. 

It is interesting to trace the behavior of jT  in the two 
characteristic limits for AFM correlations between Cu2+ 
spins. In the paramagnetic limit: 0,h →  0,s →  we have 

2 ( 1) / 3S SΣ → +  and 2 ( 1) / 3,jX S S→ +  so that 

 
12 2 2( 1) 1 ( ) ,j jj jT J S S G Js J G X
−

⎡ ⎤→ + − − Σ +⎣ ⎦  

generalizing the known results [7,74] on the case of 
extended impurity center. 

Another limit, fully polarized, ,h →∞  ,s S→  corres-
ponds to 2 0,Σ →  0jX →  and results in 

 1(1 ) ,j jT JS JSG −→ −  (56) 

which is only due to MF magnetic scattering and similar to 
the simple forms, Eqs. (46), (47). This limit is justified at 

,BJS k T  hence it well applies in the SC phase at 
< /c BT T kΔ∼  and will be used for the T-matrices below. 

The important change of the perturbation matrix structure, 
from 3ˆV ∝ τ  to 0ˆ ,V ∝ τ  causes a strong modification of 
the impurity effects. 

Thus, the variation of LDOS, Eq. (10), compared to the 
uniform value ( ),ρ ε  Eq. (9), is here presented as 

 ( )
,

,

1( ) ( ) = ImTr ei G
N

′− ⋅
′

′≠
ρ ε −ρ ε =

π ∑ k k n
k kn

k k k
  

 = ImTr ( ) ( ),jj j
j

G T G∑ n n   

where the matrices 
(0)1 2

,( ) = ei
j jG N G− ⋅ α∑ k n

kkkn  appear 
by virtue of Eq. (55). The maximum LDOS variation is 
attained at = ,n δ  the nearest neighbor sites to the 
impurity, mainly contributed by = 1:j  

 11 1( ) ( ) ImTr ( ) ( ).G T Gρ ε −ρ ε ≈δ δ δ  (57) 
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Fig. 10. Local density of states near magnetic impurity ( )ρ εδ ,
given by Eqs. (57), (58), at the choice of perurbation
parameter J = 0.3 eV, slighly above the critical value

2
cr 1 as= 1 / ( ) 0.26NJ S gα ρ ≈  eV, presents a sharp resonance just

below the Fermi level, similar to that observed in the STM
spectrum on Zn site in Bi2Sr2CaCu2O8 at 1.5≈ −  meV [18] (inset).
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Fig. 11. The comparison between the behavior of dimensionless 
numerator (solid line) and denominator (dashed line) in Eq. (59). 
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The relevant GF matrices are obtained in similarity with 
Eq. (44): 

 2
1 1 0 as 3ˆ( ) ( ),NG g g≈ α ρ + τδ   

so that resulting ( )ρ εδ  can display a resonance at res ,ε  
defined by the denominator of 1̂:T  

 2 2 2
0 res asRe {[1 ( )] } = 0,A Au g u g− ε −  (58) 

with the spin-dependent perturbation parameter 
2
1= ,A Nu JSρ α  for the A-channel. Alike the case of non-

magnetic impurity, the finite asymmetry factor asg  makes 
it possible to have resε  close to zero at rather moderate 

perturbation parameter ,J  close to 2
cr 1 as= 1/ ( ),NJ S gα ρ  

then the peak in LDOS becomes very sharp, as shown in 
Fig. 10 for ( )ρ εδ  at the choice = 0.3J  eV cr1.15 .J≈  The 
most notable distinction from the nonmagnetic perturba-
tion consists in that the resonance condition 0 resRe ( )g ε =  

1
as= Au g− ±  for odd function 0Re ( )g ε  leads to a single 

sharp peak on one side from the Fermi level, instead of two 
symmetric peaks as in Figs. 3 and 6. This is just the 
observed behavior for LDOS near Zn sites in 
Bi2Sr2CaCu2O8 [18] (inset in Fig. 10), which is a strong 
argument in favor of the proposed perturbation mechanism 
for these impurities in CuO2 planes. 

The local effect on SC correlation is characterized by 
the same average ( ) , ,1 2

= SCV a a+ ↓ + ↑Δ 〈 〉n n nδ δ  as in the 

preceding Section, and the suppression parameter 
0= 1 /Sη − Δ Δ  is formally given by the same Eq. (52), but 

with the partial T-matrices defined by Eq. (56). Again, it is 
only contributed by the E-channel terms: 

 

0 0 0 0
2 2 2 1

0 0
1

ˆ2 ImTr

=

ˆImTr
S

d F T F

d F

−∞

−∞

ε τ

η − =

ε τ

∫

∫ δ

  

 
2 2

0 0 0 0 1
1

0

2 (2 )
= 2 Im

D
E

E
E

f u f g f g
u d g

D

ε
− + +

− ε ×∫   

 

1

1
0

Im ( ) ,
D

d g

−ε⎡ ⎤
⎢ ⎥× ε ε
⎢ ⎥
⎣ ⎦
∫  (59) 

where 2 2 2 2
0 1 as= (1 ) ( )E E ED u g u g g− − +  and the spin-

dependent perturbation parameter for E-channel =Eu
2
2.NJS= ρ α  Comparing this function (see Fig. 11) to its 

analogue, Eq. (52), for the spin-independent perturbation, 
shows a much more pronounced suppression effect. The 
evident reason for this is the different structure of ED  in 
Eq. (59) compared to that in Eq. (47), directly related to 
the above mentioned change of the perturbation matrix 
structure. 

In fact, numeric integration in Eq. (59) with the same 
set of parameters as used above for LDOS (corresponding 
to 0.15Eu ≈ ) shows a considerable suppression of local 
SC order: 0.349,Sη ≈  almost triple of that for equal spin-
independent perturbation in the previous Section. The 
dependence ( )S Jη  is generally nonmonotonous, anyhow 
it should be stressed that no unitary limit 1NJSρ  is 
needed to get such a strong effect. 
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6. Self-consistent approach and its validity 

At higher concentrations of impurity scatterers the non-
renormalized T-matrix approximation is no more reliable, 
and it is usually changed for its self-consistent version. In 
the simplest case of point-like scatterers, Eq. (3), we define 
the self-consistent approximation for m-diagonal GF as 

 
11( ) (0) ( )

= ,
sc sc

G G
−−⎧ ⎫⎪ ⎪⎡ ⎤ −Σ⎨ ⎬⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭

k k  (60) 

including the self-consistent matrices for self-energy: 

 
1( ) ( )

= 1
sc sc

cV G V
−

⎡ ⎤Σ − +⎢ ⎥⎣ ⎦
 (61) 

and for local GF: 

 
( ) ( )1= .
sc sc

G G
N ∑ k

k
 (62) 

The self-energy matrix, Eq. (61), is expanded in Pauli 
matrices: 

 
( )

0 1 1 3 3ˆ ˆ= ,
sc

Σ Σ +Σ τ + Σ τ  (63) 

where iΣ  are generally some complex-valued functions of 
energy [55]. Then integration in Eq. (62), using Eq. (11), 
results in a similar expansion for the self-consistent GF 
matrix: 

 
( )

0 1 1 3 3ˆ ˆ= .
sc

G G G G− τ − τ  (64) 

It can be easily shown that the self-consistent value of 
1( )G ε  is actually zero [55], and 3G  is practially constant: 
3 as ,NG g≈ ρ  hence the self-consistency problem for point-

like impurities in the d-wave SC is reduced to that for the 
complex function 0 0 0( ) = ( )NG gε ρ ε −Σ  defined by the 
equation for scalar self-energy 0 ( ):Σ ε  

 2
0 0 0 0

0
1 ( ) ( ) = 0.

N

cg g
⎡ ⎤

− ε −Σ ε −Σ −⎢ ⎥Σ ρ⎣ ⎦
v  (65) 

In the most important region of low energies, | | ,ε Δ  
this equation can be simplified, presenting 0g  in the loga-
rithmic approximation: 

 0
| |( ) ln ,
4 2 4

g iε ε π ε⎛ ⎞ε ≈ + +⎜ ⎟Δ Δ πμ⎝ ⎠
 (66) 

instead of exact elliptic functions, Eq. (13). Considering 
Eq. (65), P. Lee supposed that in the unitary limit, 

,→∞v  the unity term can be dropped [36], then the self-
energy gets related to the local GF as 0 0= /c GΣ −  
(inverse to the common relation 2 2

0 0 / Nc GΣ ≈ ρv  in the 
Born limit, 1).v  This surprising relation leads directly 
to the conclusion that, in a d-wave superconductor with 
unitary scatterers, the self-energy should tend to a finite 
limiting value: 0 0( 0) ,iΣ ε → → − γ  and so the DOS: 

0 0( 0) = / ( ),cρ ε → →ρ πγ  or in the present notations: 
0 /Ncρ ≈ π ρ Δ  (within to some logarithmic corrections 

and neglecting the terms /Δ μ∼  beside unity). A similar 
conclusion for the case of Born scatterers, 1,v  was 
made earlier by Gor’kov and Kalugin [75], and their 
predicted finite DOS reads in these notations as 

1/
0 (4 / )eN

− αρ ≈ πρ α  with 2= / ( ) 1.Ncα π ρ Δv  
These finite limits should mean a spontaneous break-

down of the d-wave symmetry in presence of scatterers and 
a qualitative rearrangement of the low-energy excitation 
spectrum, including appearance of strongly localized 
quasiparticle states (in spite of absence of such localization 
in the simple T-matrix treatment [14,15]). The last decade 
produced an extensive theoretical discussion on reality of 
such SCTMA behavior, and an astonishing variety of 
results was obtained, including a power law convergence 
to zero: ( 0) ,αρ ε → ∝ ε  with universal [76] or nonuni-
versal [51,77] values of the exponent α , different finite 
limits 0( 0)ρ ε → →ρ  [36,75,78] and even a divergence 

( 0) ln(1/ )ρ ε → ∝ ε ε  [79]. On the other hand, numerous 
experimental studies have been done to check the principal 
conclusion from the existence of finite 0ρ  in the unitary 
limit, the so-called universal values of quasiparticle 
electrical conductivity 2 2

0 = ( / ) /Fe Δσ π v v  [36] and 
heat conductivity 2 2 2

0 / = ( / 3)( ) /B F FT k Δ Δκ +v v v v  [38], 
and also the results of these measurements are still 
contradictory. 

It should be stressed that the above mentioned 
theoretical construction uses the two main assumptions: 
i) that certain impurities in high-Tc superconductors are 
extremely strong scatterers (even as high values as 

2 310 –10v∼  are used sometimes to adjust the theoretical 
predictions to observable data); ii) that solutions of self-
consistent equations (linear in c) can apply either to 
extended and localized states (since the finite 0ρ  relates to 
localized states). 

However, even for possibly high value of v  (enhanced 
by the above discussed asymmetry factor, though less 
probable to exceed few units), the neglect of the unity term 
in Eq. (65) may be unjustified at very low energies. This 
rises a technical question about existence of different 
formal solutions of this equation. But a more fundamental 
issue is that the self-consistency procedure is only well 
defined for extended electronic states [80], which assure 
effective averaging of effects of random impurity scatterers, 
say, along the mean free path. This suggests to additionally 
check whether the obtained solutions are compatible with 
the self-consistency, and, if they do not, to look for 
alternative solutions, beyond the framework of SCTMA. 
Below we consider in more detail whether the finite DOS at 
zero energy necessarily follows from the SCTMA solution 
and which alternatives can exist for it [81]. 

Equation (65) can be formally solved with respect to 
0 0( ):g ε − Σ  

 
2 2

0
0 0

0

(2 / )
( ) = ,

2
N

N

c c
g

− ± + Σ ρ
ε − Σ

Σ ρ

v
 (67) 
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Fig. 12. Contour plots of the left hand side of Eq. (65), in
function of complex self-energy 0Σ  for two different energies ε
at the choice of = Nc ρ Δ  and three different perturbation
parameters: unitary limit = 10v  (upper row), intermediate
regime = 1v  (middle row), and Born limit = 0.35v  (bottom
row). There are always two roots shown by white circles and
denoted SCTMA1 and SCTMA2, and at 0ε →  the first of them
tends to zero, close to the real axis, while the other tends to a
finite imaginary limit. 
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Fig. 13. Residual self-energy 0
0

= lim ( )i
ε→

γ Σ ε  for the SCTMA2

solution, calculated from Eq. (69) with the choice of =10μ Δ  in 
function of the perturbation parameter v  (open circles). The 
dashed lines show the limiting behaviors: exponential in the Born 

limit, 2
0 / 4exp ( / )N cγ Δ ≈ −ρ Δ π v , and a constant value in the 

unitary limit. 
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so that the Lee’s choice in the unitary limit (at 
0| | 2 | | /N cρ Σv ) is related to the minus sign while the 

Gor’kov and Kalugin’s choice in the Born limit (at 
0| | 2 | | /N cρ Σv ) to the plus sign. Also we notice that, 

taking into account the functional forms as Eqs. (13) or 
(66) for 0 0( ),g ε − Σ  the l.h.s. of Eq. (65) defines a rather 
complicated expression for 0Σ  in function of energy ε  
and, for arbitrary perturbation parameter ,v  it generally 
displays multiple roots. Then a single physical solution for 
any given energy ε  should be selected on the basis of 
SCTMA validity criterion (this analysis will be done in the 
next Section). 

The numerical solutions of Eq. (65) in the complex plane 
of self-energy 0Σ  for different values of ε  and v  are 
summarized in Fig. 12. It is seen that there are two roots in 
each case, denoted SCTMA1 and SCTMA2. The SCTMA2 
root tends to a finite and imaginary value at 0,ε →  and, 
passing to the unitary or Born limits in ,v  one reproduces 
respectively the Lee’s and Gor’kov and Kalugin’s 
predictions in a unified way. At the same time, the SCTMA1 
root tends to zero at 0ε →  for any value of ,v  suggesting a 
zero limit for the DOS. This general behavior is essentially 
the same for both functional forms of 0g  in Eq. (65). 
Hence, at any regime of impurity perturbation, there is an 
alternative to the finite limit of low-energy DOS, 
consistently calculated within the SCTMA framework! 

One additional comment is in order to the self-
consistent equation with multiple solutions, like that in 
Fig. 12. It is seen there that the SCTMA2 root have a much 
wider “attraction basin” than SCTMA1, especially at very 
low energies. This can hinder detection of the alternative 
solution when running a numeric routine, as probably was 
the case for several numerical SCTMA studies which 
found finite DOS at zero energy [51,78]. 

It will be seen below that each of the two suggested 
SCTMA solutions has its specific validity domain, beyond 
the area of impurity resonance, while no one of them is a 
good approximation within this area. Let us specify the 
low-energy behavior of each solution and try to build a 
“pragmatic” combination of the two, in order to obtain a 
correctly normalized quasiparticle DOS. 

The low-energy limit for the SCTMA2 solution, 
0 0( 0) = ,iΣ ε → − γ  is obtained accordingly to Eq. (65) as a 

root of 

22 2 2
2 0 0

2 2
00 0

1 2K 2K = 0,
2 2N

c⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞γ γΔ Δ
⎢ ⎥ ⎢ ⎥+ − + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟μ ρ γ μ⎢ ⎥ ⎢ ⎥γ α⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

vv  

  (68) 
in the “elliptic” form, or 

2 2
2 2

0
0 0

2 4 1 2 4 11 ln ln = 0,
N

c⎛ ⎞ ⎛ ⎞Δ Δ
+ γ − − −⎜ ⎟ ⎜ ⎟Δ γ μ ρ Δ γ μ⎝ ⎠ ⎝ ⎠

vv  (69) 

in the “logarithmic” form. The numeric solution of Eq. (69) 
for 0γ  in function of perturbation parameter v  (shown in 
Fig. 13 for the choice of = )Nc ρ Δ  reproduces the Lee’s 
limit already for 3v  and the Gor’kov and Kalugin’s limit 
for 0.5v  and thus justifies the attribution of regimes in 
Fig. 12. The result for Eq. (68) is essentially the same. 
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* But only valid at extremely low energies. 

Fig. 14. Construction of the self-consistent DOS (solid line) 
adjusted to the two different SCTMA solutions beyond the region
of impurity resonance resε  of width res.Γ  The impurity para-
meters are chosen as = 1v  and = 0.2 .Nc ρ Δ  The SCTMA1
solution is shown by the dashed line, the SCTMA2 solution by 
the dash-dotted line, and the short-dash line shows the common 
T-matrix solution from Fig. 3. 
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The behavior of the SCTMA2 solution at finite energies 
ε  can be obtained from Eq. (65) only numerically, and the 
related DOS, as shown in Fig. 14, grows slowly from the 
residual value 0ρ  at resε ε  and then at res>ε ε  goes 
closely to the result of simple T-matrix approximation of 
Sec. 4, which suggests reliability of SCTMA2 in this 
energy range. 

For the alternative SCTMA1 solution, Eq. (65) admits 
an analytical approximation* by using the logarithmic 
asymptotics for the elliptic K-integral (or arcsin x ≈  

ln(2 )i ix≈ −  at | | 1x  [55] for the arcsine form): 

 
2

0 2 2( ) .
ln (4 / )

N

N
G

c ic
ρ ε

ε ≈
ρ εv v

 (70) 

The corresponding analytic function for the low-energy 
DOS is 

 
2

2 22
( ) ,

(4 / )ln
N

Nc c
ρ ε

ρ ε ≈
ρ εv v

 (71) 

though, for the instance in Fig. 14, the numerical SCTMA1 
solution attains this behavior only at 310 .−ε Δ  However, 
it is just this function that describes the asymptotic 
vanishing of DOS, even faster than the nonperturbed 
function, Eq. (14) or the simple T-matrix function, Fig. 3. 
Also it vanishes faster than the power laws, ( ) αρ ε ∝ ε  with 

1α ≤  [51,77], or with = 1α  [76], using other than SCTMA 
approaches. That fast vanishing can be seen as a certain 
narrow “quasi-gap” near the Fermi energy, and beyond this 
quasi-gap a plausible matching between the two SCTMA 
solutions, over the interval of broadening resΓ  of the 
resonance res ,ε  can be done by the simple T-matrix 
function, in order to preserve the overall normalization of 
DOS [68] 

 [ ]( ) = 0.Ndε ρ ε −ρ∫  (72) 

Notice that Eq. (72) is already satisfied if ( )ρ ε  is 
chosen in the simple T-matrix form (short-dash line in 
Fig. 14). Hence it is also satisfied if the positive and 
negative areas between that and SCTMA (solid line) 
curves in the energy intervals beyond the resΓ  range are 
equal, as approximately realized by the construction in 
Fig. 14. This provides the sought “compromise” SCTMA 
solution for DOS. 

6.1. Ioffe–Regel–Mott criterion and validity of SCTMA 
solutions 

A criterion for a quasiparticle state with excitation 
energy ε  and momentum p  to be of extended type, as 
necessary for the SCTMA solutions, was first proposed by 
Ioffe and Regel [82] and then substantiated by Mott [27], 
consisting in that the quasiparticle mean free path  be 
longer than its wavelength = 2 / ,pλ π  or else that its 
lifetime τ  be longer than the oscillation period / ε . This 
criterion is widely used for analysis of normal excitation 
spectra in disordered systems [80], however, when 
applying it to disordered superconductors, one has first to 
redefine the quasiparticle basic characteristics. Thus, 
excitation of a Bogolyubov quasiparticle with the nominal 
wave vector k  over the BCS ground state changes the 
system energy by Ek  and hence its momentum by 

= / .p E E∇k k k k  Then the related wavelength is 
= 2 / ,E Eλ π ∇k k k k  generally different from the free 

particle value 2 / .kπ  Next, the mean free path k  is 
defined as the group velocity /E∇k k  times the lifetime 

/ Im ( ),EΣ k  so that the Ioffe–Regel–Mott (IRM) 
criterion λk k  can be presented as 

 ( )Im .E EΣk k  (73) 

In fact, the dispersion law is renormalized due to impurity 

scattering, passing from 2 2=E ξ + Δk k k  to Ek  defined by 

 Re ( ) = .E E E− Σk k k  (74) 

Using the simple T-matrix solution, 
2 1 2 2

0 0= / (1 ),Nc g g−Σ ρ −v v  we have in the long-wave limit: 
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Fig. 15. Real and imaginary parts of the self-energy ( )Σ ε  (in 
units of )Δ  obtained for two different SCTMA solutions at the 
choice of perturbation parameters = ,Nc ρ Δ  = 1.v  Note the 
tendency of (2)Re ( )Σ ε  to ε  (dashed line) at 0.ε →  
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 (75) 

Thus the criterion (73) is only fulfilled for low enough 
concentration of scatterers:  

 2< / ,Nc cΔ ≡ ρ Δ v   

and this can be considered the validity condition for simple 
T-matrix approximation. 

At higher impurity concentrations, ,c cΔ  we need to 
pass to the SCTMA solutions of the preceding Section and 
to renormalize the dispersion law Ek  and self-energy 

( )EΣ k  in a way specific for each solution [83]. Since the 
SCTMA self-energy only depends on energy, not on 
momentum, Eq. (74) holds for any relation between the 
radial and tangential components, ξk  and ,Δk  of 
excitation energy .Ek  In particular limits: i) 0,Δ →k  
E →ξk k and ii) 0,ξ →k  ,E →Δk k  the limiting values 
are renormalized accordingly to the equations 

 i) Re ( ) = ,ξ − Σ ξ ξkk k   

 ii) Re ( ) = .Δ − Σ Δ Δk k k   

Then, using the SCTMA1 solution (in elliptic K-form) in 
Eq. (74), we estimate the long-wave dispersion law within 
logarithmic accuracy as 

 (1) 4lncE E
c EΔ

Δ
≈ kk

k
  

(note the difference from Eq. (75) for simple T-matrix). 
Respectively, its limiting values are renormalized as 

 (1) (1)4 4ln , ln ,c c
c E c EΔ Δ

Δ Δ
ξ ≈ ξ Δ ≈ Δk kk k

k k
 

and the related damping: 

 (1)(1) (1)= Im ( ) .
2 ln(4 / )

E
E

E
π

Γ Σ ≈
Δ

k
k k

k
  

Using this in the IRM criterion, Eq. (73), leads to the 
SCTMA1 validity condition: 

 exp ,
2
c

E
c
Δ⎛ ⎞π

Δ −⎜ ⎟⎜ ⎟
⎝ ⎠

k  (76) 

which holds in a very narrow vicinity of the Fermi energy 
at < .c cΔ  At > ,c cΔ  the corresponding validity condition 
is already obtained from the nonrenormalized dispersion 
law: (1) ,E Γk k  and this defines a broader vicinity of 
Fermi level E Δk  (its numerical smallness can be, for 
instance, as 210 ).− Δ∼  The above discussed relations 
between real and imaginary parts of the two solutions for 
self-energies Σ(1), (2) are illustrated in Fig. 15. 

Applying the same treatment to the SCTMA2 solution, 
which formally defines the low-energy dispersion law 

(2)E E≈ kk  and the damping (2)(2) (2)= Im ( )EΓ Σ ≈k k  
2 1

0Im ,Nc g−≈ ρv we obtain the condition 

 0Im ( ),cE g E
cΔ

Δk k  (77) 

so that this solution is valid only far enough from the nodal 
points, where it provides the correct limit of pure d-wave 
DOS. However, this solution is clearly eliminated near the 
nodal point. Thus, the only SCTMA solution, which may 
be valid in a close vicinity of the Fermi energy, is the 
SCTMA1 solution, Eq. (71). 

Notably, the two estimates, Eqs. (76), (77), do not 
necessarily assure the overlap between the two validity 
regions, so that for c cΔ  there can exist some inter-
mediate energy range where neither of SCTMA solutions 
applies. This range roughly corresponds to the broad 
linewidth of the impurity resonance resε  where DOS 
cannot be rigorously obtained even with use of the next GE 
terms, and where it was interpolated by the simple T-mat-
rix form between the two SCTMA asymptotics in the 
previous Section. 

Finally, we notice that other known nonperturbative 
solutions for d-wave disordered systems with DOS 
vanishing at 0ε →  as a certain power law: ( ) αρ ε ε∼  
[76,77], also have to obey the IRM criterion since they use 
the field theoretic approach, only compatible with band-
like states. But it can be easily shown that the IRM 
criterion is only fulfilled for such DOS if the power is 

> 1,α  while the reported values are = 1/ 7α  [77] and 
= 1α  [76]. In fact, let the renormalized components of 

dispersion law (in the low-energy limit) depend on the 
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Fig. 16. Schematic of local coordinates near nodal points in the 
Brillouin zone of a d-wave superconductor. 

kx

ky

k1k2

k3
k4

q2

q1
k

effective nodal variables ξ  and η  by power laws, 
k

νξ ∝ ξ  and ,k
νΔ ∝ η  with a certain > 0.ν  Then the 

simplest estimate for the d-wave DOS is 

 2 2 2 2 2( ) ( ) ( )d d E E dEρ ε ∝ ε Δ ξδ ε − ξ − Δ ∝ ε δ ε − =∫ ∫ ∫   

 2 2 2/ 1= ( ) ,E E dEν ν−ε δ ε − ∝ ε∫   

that is the DOS exponent = 2 / 1.α ν−  In the considered 
field models, the quasiparticle broadening is expressed 
through the DOS: 2= ( ),bu E kΓ ρk  with the disorder 
parameter u  of the Anderson model [28]. Then the 
criterion, Eq. (73), is reformulated as 

 2 ( ),E u Eρ   

and leads to the condition 2/ 1const .E E ν−
⋅  In the limit 

0,E →  this is only possible if 2 / 1 > 1,ν −  that is > 1.α  

7. Group expansions and localization of nodal 
quasiparticles 

The above considerations essentially restrict possible 
candidate solutions for quasiparticle spectrum in the 
disordered d-wave superconductor and may suggest Eq. (71) 
as the only consistent low-energy solution for the problem. 

However the SCTMA (or field-theoretical) analysis can 
not be considered fully comprehensive for the real 
quasiparticle spectrum in a disordered system, if the 
localized states are also admitted. In accordance with the 
above IRM check, the single-impurity scattering processes 
by SCTMA can not produce localized states near zero 
energy. But if the SCTMA contribution to DOS vanishes 
in this limit, the importance can pass to the next GE terms, 
related to scattering (and possible localization) of 
quasiparticles on random groups (clusters) of impurities. 
The essential point is that their contribution to DOS is 
mostly defined by the real parts of GF’s which do not need 
self-consistency corrections and thus remain valid for the 
energy range of localized states (where the IRM criterion 
no more holds). 

The known approaches to impurity cluster effects in 
disordered d-wave superconductors, either numerical 
[56,84] and analytical [79], were contradictory about the 
DOS behavior and did not conclude definitely on 
localization. A practical analysis of such effects within the 
GE framework, using a special algebraic technique, was 
proposed for an s-wave superconductor in the limit ε → Δ  
[85]. A similar technique for disordered d-wave systems in 
the limit 0ε →  is presented below for the cases of 
nonmagnetic (NM) and magnetic (M) impurities, showing 
that only M impurities can provide a finite DOS in this 
limit, replacing the SCTMA1 solution (and different from 
the SCTMA2) in a narrow vicinity of the nodal energy, 
manifesting the onset of localization there. In particular, 
this should produce, instead of universal conductivity, its 
exponential suppression at sufficiently low temperatures. 

7.1. Interaction matrices and DOS at nodal points 

We pass to consideration of the states near the Fermi 
level, 0,ε →  with use of the nonrenormalized GE, Eq. (28) 
(expected to be more adequate for localized states). Then 
the limit value for DOS ( 0)ρ ε →  is related with the 
imaginary and traceful part of the self-energy matrix: 

= TrIm (0) / 2σ Σk  (for simplicity, we drop the super-
indices at all nonrenormalized GE matrices). If the main 
contribution to γ  comes from the GE pair term, Eq. (30), 
where the share of ˆ e iA − ⋅k n

n  is negligible beside that of 
ˆ ˆA A−n n , the value of γ  can be considered momentum-

independent. In this approximation, supposing also 
,γ Δ  one obtains [36] 

 2(0) ln ,N
σ Δ

ρ ≈ ρ
πΔ σ

 (78) 

and the following task is reduced to the proper calculation 
of σ  in function of the impurity perturbation parameters. 
Then we present the interaction matrices at ε Δ  as 

 [ ]0 3 3 1 1ˆ ˆ( ) = ( ) ( ) ( ) (0),A g g g Tε + τ + τn n n n  (79) 

where the coefficient functions 

 0 2 2
e( ) = ,

i
g

N E

⋅ε

ε −
∑

k n

k k
n   

 3 2 2
e1( ) = ,

i
g

N E

⋅ ξ

ε −
∑

k n
k

k k
n   

 1 2 2
e1( ) =

i
g

N E

⋅ Δ

ε −
∑

k n
k

k k
n  (80) 

are obtained using the linearized dispersion laws near 
the nodal points =1, ,4jk …  (see Fig. 16): 1,F qξ ≈k v  

2 ,kΔΔ ≈k v  where the 1- and 2-components are along the 
diagonals of the Cartesian basis and the characteristic 



Impurity effects in quasiparticle spectrum of high-Tc superconductors 

Fizika Nizkikh Temperatur, 2011, v. 37, No. 8 821 

velocities Fv  and Δv  are related as / = =FΔ βv v  
= / 1.Δ μ  Then, after summing over nodal points, the 
above functions are expressed as 

( ) ( )1 2 1 2 1 2( ) = , cos , cos ,l l F l Fg f n n k n f n n k n+n  (81) 

that is superpositions of fast oscillating Fermi cosines with 
slowly decaying amplitudes. The first such amplitude reads 

 0 1 2( , ) =
4

W
Nf n n d d

−μ Δ

−μ −Δ

ρ ε
ξ η×

Δ ∫ ∫   

 
( )1 2

2 2 2

exp / /
,Fi n n Δξ + η⎡ ⎤⎣ ⎦×

ε − ξ −η

v v
 (82) 

and its reasonable approximation for low energies, | | ,ε Δ  
and long enough distances, 1,2 1,Fk n  is given by the 
extension of integration to infinite limits: 

(1) 2 2 2 2
0 1 2 1 20( , ) / / .

2
N

Ff n n i H n n Δ
πρ ε ⎛ ⎞≈ − +⎜ ⎟

⎝ ⎠Δ
 (83) 

Here (1)
0H  is the Hankel function of the first kind [49] 

and = /i i εv  are its radial and tangential decay lengths 
(notice their divergence at 0).ε →  The logarithmic 
divergence of the formula, Eq. (83), at formal limit 

1,2 0,Fk n →  is restricted to the level of 
0 ( ) ln( / ),Ng ε ρ ε Δ ε∼  that is corresponding to 

1,2 1.Fk n ∼  The corrections due to the finite integration 
limits have much shorter decay lengths (not longer than the 
SC coherence length) and thus can be safely neglected. 
Other amplitudes in Eq. (81) are expressed through the 
above one 

 0 1 2
3 1 2

1

( , )
( , ) = ,F

f n n
f n n i

n
∂

−
∂

  

 0 1 2
1 1 2

2

( , )
( , ) = .

f n n
f n n i

nΔ
∂

−
∂

 (84) 

In the limit = 0,ε  the matrices ˆ(0)T  and Ân  are purely real 
(see the next Section), then the imaginary part of the GE pair 
term is generated by the poles of the inverse matrix 

1ˆ ˆ(1 ) .A A −
−− n n  Here we notice that, from Eqs. (83), (84), 

the interaction matrix in the limit = 0ε  is “odd” in its 
vector argument: ˆ ˆ= .A A− −n n  If there is no such poles, one 
has to search for contributions to γ  from the next order GE 
terms. Thus, for an lth order GE term, the imaginary part is 
related to the poles of the inverse of a certain lth degree 
polynomial in 

1 ( 1)/2
ˆ ˆ, ,

l l
A A

−n n…  (where 1 ( 1)/2, , l l−n n…  

are all possible separations between l  impurities). 
Generally, in the energy spectrum of a crystal with 

impurities, one can distinguish certain intervals where 
DOS is dominated by different types of states: i) band-like 
states, ii) localized states by single impurities, iii) those by 
close impurity pairs (that is closer than the average 

separation /a c∼  between impurities), iv) by close 
triples, etc. [26]. Then, e.g., in the pair-dominated energy 
interval, each discrete peak is due to all impurity pairs with 
a given close separation ,n  and it experiences small shifts, 
due to farther impurity neighbors of each pair, different in 
different parts of the system. These shifts produce 
broadening of pair peaks, and if this broadening is wider 
than the distance between the peaks, the resulting 
continuous spectrum of pair-dominated type can be 
effectively described by passing from summation in 
discrete 0≠n  in Eqs. (26), (30) to integration in 
continuous r  (for ).r a  Such possibility was shown 
long ago for normal electron spectrum [43], but a specifics 
for a superconducting system with disorder is in the 
aforementioned oscillating interaction between impurities 
and the related multiplicity of pole contributions to DOS. 
The detailed analysis of matrix GE terms is also specified 
by the particular matrix forms for impurity perturbation, as 
shown below. 

7.2. Nonmagnetic impurities 

The expansion, Eq. (79), of interaction matrices Ân  in 
the set of ˆ lτ  with oscillating and complex coefficient 
functions, makes it quite a hard problem to calculate even 
the pair GE term, to say nothing about higher order terms. 
However this problem can be essentially simplified in the 
limit = 0,ε  when the function 0g  identically vanishes and 

1,3g  are finite and real. In a similar situation for matrix GE 
in s-wave superconductors, the algebraic isomorphism 
between the interaction Nambu matrices and common 
complex numbers was used [85], permitting to reduce the 
matrix problem to much easier complex analysis. 
Remarkably, the same isomorphism is also found for the 
case of NM impurities in the d-wave system at zero energy 
[86]. Here we have explicitly: 3

ˆ ˆ(0) =T V τ , where 
= / ,NV ρv  and the interaction matrices, Eq. (79), are 

presented as 3 1 2
ˆ ˆ= ( ) ( ) ,A Vg iVg+ τn n n  thus pertaining to 

the general two-parametric family 2
ˆ ˆ( , ) =C x y x iy+ τ  with 

real , .x y  This family forms an algebra with the product 
ˆ ˆ ˆ( , ) ( , ) = ( , ),C x y C x y C xx yy yx xy′ ′ ′ ′ ′ ′− +  isomorphic to that 

considered in Ref. 85 and to the algebra C  of common 
complex numbers: ( )( ) = ( ).x iy x iy xx yy i yx xy′ ′ ′ ′ ′ ′+ + − + +  
By this isomorphism, the real matrix Ân  is seen as a 
“complex number” 3 1ˆ= ( ) ( ),A Vg iVg+n n n  where the 
“imaginary unity” î  corresponds to the real matrix 2ˆ ˆ .i i≡ τ  
Using this “complex” representation and the above 
mentioned passage from summation in n to integration in ,r  
we can write the pair contribution to γ  in the form 

 
2

2
> 0

ˆ( ) ( )Im ,ˆ( ) ( )r r

c p iq d
s ita

+
ℜ

+∫
r r r
r r

 (85) 

with the functions 2 2 2
3 1( ) = 1 ( ) ( )s V g g⎡ ⎤− −⎣ ⎦r r r  and 

2
3 1( ) = 2 ( ) ( )t V g g−r r r  in the denominator and some 

functions ( ), ( )p qr r  in the numerator. Here the symbol ℜ  
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Fig. 17. Inset: the isolated poles of the integrand in Eq. (8) in
function of pair separation vector = ( , ),x yr  are located along
the nodal axes in the direct space, where one of the pole
conditions, 1( ) = 0,g r  holds identically. Another pole condition,

3 as| ( ) | = 1/ | | = | 1 / |,g V g V−r  is reached at discrete points (here
at the choice of parameters as= 0.05, = 5).Vgβ  The main panel
shows the related behavior of 3( ) 1Vg −r  along the nodal
direction of .r  
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means the “real” (traceful) part of the “complex” 
integrand, while the common imaginary part Im  is 
produced by its poles. These are attained at such 
separations = ∗r r  of impurity pairs that ( ) = ( ) = 0,s t∗ ∗r r  
which requires two conditions to be fulfilled: 

 3 1
1| ( ) | = , ( ) = 0.g g
V

∗ ∗r r  (86) 

Direct calculation in Eq. (80) at = 0ε  gives the amplitudes 
in Eq. (81) as 

 1
3 1 2 2 2 2

1 2
( , ) = ,

2
F N n

f n n
n n

λ ρ β

β +
 (87) 

with the Fermi wavelength = 2 / ,F Fkλ π  and also 
1 1 2 3 1 2( , ) = ( , ).f n n f n n  Using them in Eqs. (81), (86) 

shows that all possible ∗r  are isolated points on nodal 
directions, forming identical finite series along them (like 
those in Fig. 17). Also we note that poles only exist at high 
enough band filling, 1(1 e)N

−μρ ≥ +  and strong enough 
perturbation parameter, 1

as(1 ) ,g −≥ +v  as chosen in 
Fig. 17. If so, it is suitable to pass in the vicinity of each 
∗r  from integration in the components 1 2,r r  of the vector 

r  to that in the components ,s t  of the “complex” 
denominator: 

 2 2
( , ) ( , )Im ( , ) ,p s t s q s t tdsdt s t

s t∗
∗

+

+
∑∫ r
r

J  (88) 

where the transformation Jacobian 

 1 2

=

( , )
( , ) =

( , )
r r

s t
s t∗

∗

∂
∂r

r r
J   

is real and nonsingular for any .∗r  Then a singularity in 
the denominator of Eq. (88) is canceled by a vanishing 
residue in the numerator and, even at formal existence of 
poles, they give no contribution to the zero energy DOS. 
Mathematically, this simply follows from an extra 
dimension at 2D integration, giving zero weights to 
isolated poles. 

The above conclusion can be immediately generalized 
for any lth order GE term ( ( 3),l ≥  where the integrand is 
again presented as ˆ ˆ( ) / ( )p iq s it+ +  and , , ,p q s t  are now 
continuous functions of = 2( 1)lN l −  independent 
variables (components of the vectors 1 1, , )l−r r…  in the 
configurational space .lS  This integrand can have simple 
poles on some ( lN − 2)-dimensional surface lA  in lS  
(under easier conditions than for = 2).l  Then the -foldlN  
integration can be done over certain coordinates 

1 2, , Nl
u u −…  in lA  and over the components ,s t  of the 
“complex” denominator in the normal plane to :lA  

 1 2 1 2Im ( , , )N Nl l
du du u u− − ×∫ … …J   

 2 2
( , , ) ( , , ) ,p s t s q s t tdsdt

s t
+

×
+∫

… …
 (89) 

with a nonsingular Jacobian .J  The latter integral has no 
imaginary part by the same reasons as for Eq. (88). Thus, it 
can be concluded that perturbation by NM impurities in a 
d-wave system can not produce localized quasiparticles of 
zero energy, and this directly relates to the indicated 
isomorphism of the interaction matrices with the algebra 
C  of complex numbers. 

Moreover, the same conclusion is also valid for yet 
another type of NM-perturbation, due to locally perturbed 
SC order by the perturbation matrix 1

ˆ ˆ= .V V τ  In this case, 
the interaction matrix: 

 { 1 as 32 2
as

ˆ = ( ) ( )
1

VA g Vg g
V g

+ +
−

n n n   

 [ ] }3 as 1 2ˆ( ) ( ) ,i g Vg g+ − τn n   

pertains to the same family ˆ( , )C x y  as in the above case, 
hence leading to the same absence of contribution to the 
zero energy DOS. 

7.3. Magnetic impurities 

However, an essential cluster contribution to zero 
energy DOS can be produced by M impurities with the 
scalar local perturbation ˆ =V V  and the respective T-mat-
rix (similar to Eq. (56)) in the zero energy limit: 

 1 as 3
2 2

as

ˆ1ˆˆ(0) = (1 ) = ,
1

g
T V VG V

g
− + τ

−
−

v
v

 (90) 

where = .NVρv  Unlike the traceless ˆ(0)T  for NM impu-
rities, this matrix produces a finite shift of the nodal point 
itself, from = 0ε  to 2 2

0 as= / (1 ).cV gε ε ≈ − v  As usually, 
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Fig. 18. Trajectories in the space of variables 1 3( ), ( ),g gr r
corresponding to the poles of GE denominator, Eq. (93), for M 
impurities at the choice of = 1v  and = 0.1.δ  
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this shift can be absorbed into the Fermi level position by 
shifting all the energy arguments of considered GF’s, then 
the DOS calculated in the T-matrix (or SCTMA) 
approximation will vanish at 0ε → ε  (in the same way as 
it vanishes at 0ε →  for NM impurities), fixing the 
distinguished point of quasiparticle spectrum in the case of 
M impurities. The following treatment of higher order GE 
terms involves the matrix of interaction between M 
impurities: 

 3 as 3 1 as 2 1
2 2

as

ˆ ˆ ˆ( ) ( ) ( ) ( )ˆ = .
1

g g i g g
A

g
τ + + τ − τ

−
r

r rv v
v

v
 (91) 

Notably, this matrix does not fit the -algebra,C  and, 
though being harder technically, this allows effective 
contribution by M impurities to the zero energy DOS. In 
fact, the straightforward calculation of the corresponding 
GE pair term leads to the general matrix expression: 

 1 0 1 1 2 2 3 3ˆ ˆ ˆˆ ˆ(1 ) = .
N N iN N

A A
D

−
−

− τ − τ − τ
− r r

r
 (92) 

Here ’sjN  and Dr  are the following functions of 1( )g r  
and 3( ):g r  

2 2 2 2 2
0 1 3= (2 ) ,N g g+ δ + δ + δv v   

2 2
1 1 3 2 1 3= 2 1 , = 2 (1 ) ,N g g N g g+ δ + δv v   

2 2
3 3= 2 1 ,N g+ δv   

4 2 2 2 2 4 4 4
1 3 1 1 3= (8 6 ) 4 ( )D g g g g g⎡ ⎤+ δ + + + δ +⎣ ⎦r v v v   

2 2 2 2 3
1 32 ( ) ,g g+ + δ + δv  (93) 

with the parameter 2 2
as= 1 .gδ − v  Zeroes of D  in the 

space of variables 1 3,g g  form certain continuous 
trajectories shown in Fig. 18 (cf. to their location in the 
isolated points 1 3 as( ) = 0, ( ) = 1/ ,g g g± +r r v  in the NM 
case). It is just this extension of singularities, from isolated 
points to continuous trajectories, that allows the imaginary 
part of the 2D integral 

 2 0 3
2

1
Im

N Ndc V
Da

− + δ
σ ≈ δ ∫

r

r  (94) 

to be finite. On the other hand, this is assured by the fact 
that the traceful numerator in Eq. (94) does not vanish on 
these trajectories. Quantitative analysis is simplified in the 
case of | | 1δ  defines a low-energy resonance at 

2
res / [ ln(1/ )]ε ≈ Δδ δv  [85]. In this case the numerator in 

Eq. (94) is simplified as 2 2 2
0 3 1 31 2 ( ).N N g g− + δ ≈ −v  

Using the functions 1 3( ), ( )g gr r  from Eqs. (81), (87), it 
can be shown that the pole trajectories, = 0,Dr  when 
presented in variables 1,2,r  form multiple loops (seen in 
Fig. 19,a) of total number 1/ ( | |),β δ∼  each contributing 
by 2 2/ [( ) | |]Fakπ δ∼  into 2 2( ) Im /Va d g D− ∫ r rr  in 

Eq. (86). Thus we arrive at the estimate: 2 / | |,c Vσ δ∼  
and hence to the finite residual DOS: 

 
2

0 2
| |( ) ln .

| |N
c V

c V
Δ δ

ρ ε ρ
Δ δ

∼  (95) 

We recall that this result is impossible in the properly 
formulated self-consistent approximation [55], and it is 
also in a striking difference to the SCTMA predictions, 

2 2 2(0) exp( / ) / ( )N Nc cρ −ρ Δ ρ Δ∼ v v  in the Born limit [75] 
or (0) /Ncρ ρ Δ∼  in the unitary limit [36]. The 
nonuniversality of this effect is manifested by its 
sensitivity to the M-perturbation parameter ,v  so that 

0( )ρ ε  is mostly defined by impurity pairs only for strong 
enough perturbations, 1

as| | (1 ) .g −+v  For weaker ,v  
nodal quasiparticles will be only localized on impurity 
clusters of a greater number > 2n  (the bigger the smaller 
| |),v  and the particular form of Eq. (87) would change to 

(0) n
N cρ ρ∼  (with some logarithmic corrections). 

Anyhow, a finite limit of DOS at zero energy is granted by 
the fact that in real high-Tc systems a certain M-type 
perturbation can result even from nominally nonmagnetic 
centers (as shown in Sec. 5.2). Moreover, the above 
considered condition as| | 1g ≈v  does not seem very 
difficult, as testified by the observation of extremely low-
energy resonance res 1.5ε ≈ −  meV by Zn impurities in 
Bi2Sr2CaCu2O8+δ [18]. It just fits the asymmetric M 
resonance from Fig. 20, contrasting with the symmetric 
NM resonance picture. 

Then the overall impurity effect in a d-wave 
superconductor can be seen as a superposition (almost 
independent) of the above described effects from NM 
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Fig. 19. In the r-plane, the trajectories of zeroes of Dr  form
continuous loops within the stripes of / ( | | )F FkΔ δ∼ v v  length
and 1 / (| | )Fkδ∼  width along the nodal axes. 
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Fig. 20. Low-energy d-wave DOS ( )ρ ε  in simultaneous presence 
of NM impurities (with = 3%NMc  and = 1),NMv  producing 
two symmetric broad resonances, and M impurities (with 

= 0.03%,c  = ,NMv v  and as = 0.9),gv  producing single 
sharp resonance at extremely low energy res.ε  Inset shows the 
mobility edges cε  and c′ε  around the shifted nodal point 0 ,ε
they separate localized states (shadowed area) with almost 
constant DOS, 0( ) ( ),ρ ε ≈ ρ ε  from band-like states whose DOS is 
close to the T-matrix value (solid line). 
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impurities with perturbation parameter NMV  and 
concentration NMc  and from M impurities with 
perturbation parameter V  and concentration c  
(supposedly ).NMc c  An example of such situation is 
shown in Fig. 20. 

The residual DOS from pair GE term prevails within a 
certain narrow vicinity of 0ε  where quasiparticle states are 
all localized on properly separated impurity pairs. Outside 
this vicinity, the states are extended and reasonably 
described by T-matrix (or SCTMA). The transition from 
localized to extended states occurs at the Mott mobility 
edges 0<cε ε  and 0>c′ε ε , where GE and T-matrix 
contributions to DOS are comparable. Using the simplest 
approximation for the T-matrix term: 

0( ) | | /Nρ ε ρ ε − ε Δ∼ , we estimate the range of localized 
states (somewhat exaggerated in the inset of Fig. 20) as 

 
2

0 0 2
| |ln ,

| |c c c
c V

c V
′

Δ δ
ε − ε ε − ε δ

δ
∼ ∼ ∼  (96) 

provided it is much smaller than the distance to the M 
resonance: 0 res| | .cδ ε − ε  The same estimates for the 
mobility edges follow from the IRM breakdown condition: 

Re ( ) Im ( ),ε − Σ ε Σ ε∼  at 0.ε ≈ ε  
The tendency to localization of quasiparticles can be 

generally opposed by the effects of repulsive Coulomb 
interaction between them [21] and this issue was also 
discussed for disordered d-wave superconductors [87,88]. 
These field theory treatments showed that localization can 
survive at low enough temperature. The full account of 
Coulomb interactions in the present GE approach is rather 
complicated technically, but a simple estimate follows 

from the overall number of (supposedly) localized particles 
within the energy range, Eq. (96), which is as small as 

4 2 22
loc 0( ) ( / ) | / | .lncn c V c Vρ ε δ Δδ Δδ∼ ∼  Since the 

average distance between them loc/a n∼  is much longer 
than the distance between charge carriers 

/ / ,N Fa n a ρ ε∼ ∼  the effects of Coulomb interaction 
are hopefully screened out, at least for the systems far 
enough from half-filling [89]. Notably, localization turns to 
be yet possible near the resonance energy, res ,ε ≈ ε  but this 
requires that the concentration of M impurities surpasses a 
certain characteristic value 2

res res res( / ) ln( / | |).c ε Δ Δ ε∼  
In particular, for the choice of parameters in Fig. 20, we find 

4
res 3 10 ,c −⋅∼  so that this system should be close to the 

onset of localization also in this spectrum range, where each 
localized state is associated with a single impurity center. 

Generally, presence of localized states near the lowest 
excitation energies in the spectrum must influence signi-
ficantly the kinetic properties of a crystal with impurities, 
such as electric and (electronic part of) heat conductivity at 
lowest temperatures. Taking in mind the above referred 
modification of Kubo formula for the energy range 

0| |< ,cε − ε δ  their temperature dependencies, instead of 
reaching the universal values 0σ  and [ / ](0),Tκ  should 
rather tend to the exponential vanishing: exp ( / ),c Bk T−δ∼  
at low enough temperatures: / .c BT kδ  The latter value, 
at the same choice of impurity perturbation parameters and 
typical gap 30Δ∼  meV, is estimated as 0.2∼  K. In this 
context, the intriguing sharp downturn of / ,Tκ  recently 
observed at temperatures 0.3  K [41] and attributed to the 
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Fig. 21. Isoenergetic lines for d-wave dispersion law display 
elliptic structure near nodal points and hyperbolic structure near 
antinodal points. Inset shows how these lines near an antinodal 
point give rise to the hyperbolic coordinates E  (solid lines) and 
t  (dashed lines) in the “spacelike” (SL) and “timelike” (TL) 
sectors of the ,ξ η  plane. 

low-temperature decoupling of phonon heat channel [42], 
can be otherwise considered as a possible experimental 
manifestation of the quasiparticle localization by impurity 
clusters. A more detailed analysis of possible nonuniversal 
behavior of transport properties of disordered d-wave 
superconductors will be necessary to confirm this 
conjecture. 

8. Interaction between impurities and collapse of 
antinodal quasiparticles 

Now we pass to the physics near the antinodal points, 
corresponding to another special energy in quasiparticle 
spectrum of pure d-wave superconductor, characterized by 
the logarithmic singularity of DOS, Eq. (13). In presence 
of impurities, this singularity is broadened and the issue of 
quasiparticle localization is in order. The anomalous 
behavior of electronic excitations near the antinodal points 
was recently recognized in ARPES data [90–92] on d-
wave high-Tc superconductors and a description of the 
peculiar spectral density function characterized by a new 
energy scale was proposed within the dynamical mean-
field method [93]. Here we develop an alternative ap-
proach to this problem, along the same lines as in Sec. 7 
for low energies, beginning from the simple T-matrix, 
Eq. (32), or SCTMA, Eq. (65), and using the IRM 
criterion, Eq. (73). Since the relevant GF 0 0( )g ε −Σ  at 
ε ≈ Δ  is dominated by the big imaginary part, its relation 
to the self-energy can be written in a “unitary limit” form: 

 0 0
0

( )
( )N

cg ε − Σ ≈
ρ Σ ε

  

(for definiteness, nonmagnetic impurities are considered). 
Using here the logarithmic approximation, 

2 2
0 ( ) ln (4 / ),g ε ≈ Δ Δ −ε  we arrive at the estimate: 

 
( )0 ( ) .

ln 4 /N N

ic
c

Σ Δ ≈
ρ ρ Δ

  

Then the IRM criterion: 0Im ( ),Δ Σ Δ  is fulfilled for the 
SCTMA solution if the impurity concentration c  is well 
below the characteristic “antinodal” value: 

 1ln .AN N
N

c
⎛ ⎞

≈ ρ Δ ⎜ ⎟ρ Δ⎝ ⎠
 (97) 

This would mean that for < ANc c  band quasiparticles 
survive in the whole of antinodal areas. However, by the 
same reason as in Sec. 7, this conclusion needs yet to be 
checked with respect to the effects of interaction between 
impurities, displayed by the GE terms. The specifics of the 
antinodal area is the hyperbolic structure of isoenergetic 
lines, 2 2 2 2= ,ε − Δ ξ −η  instead of the elliptic structure, 
Eq. (82), in the nodal area. Here the variables 1= F qξ v  
and 2= qΔη v  are formally the same as in the nodal case, 
but related to the 1- and 2-components along the Cartesian 

,x y  axes (Fig. 21), instead of the diagonals in the nodal 
case. Then the amplitudes in Eq. (79) for the matrices Ân  
can be estimated with the same infinite extension of 
integration limits: 

 
( ) /

0 2 2 2
e( , ) ,

4

i x y kFNf x y d d
∞ ∞ β ξ+ η Δ

−∞ −∞

ρ
≈ η ξ

ε − ξ + η∫ ∫  (98) 

where the small energy parameter 2 2 2ε ≡ ε − Δ  defines the 
longest decay lengths (see below). 

This integration is most naturally done in the hyperbolic 
variables E  and t  for energy, defined in a proper way for 
different sectors of the ,ξ η  plane, “spacelike” (SL) with 

2 2>ξ η  and “timelike” (TL) with 2 2< :ξ η  

 
= cosh , = sinh (SL),
= sinh , = cosh (TL).

E t E t
E t E t

ξ η⎧
⎨ξ η⎩

  

Similar hyperbolic variables for position, r  and ,τ  are 
defined in the “spacelike” (sl), 2 2 2> ,x yβ  and “timelike” 
(tl), 2 2 2< ,x yβ  sectors of ,x y  plane: 

 
= cosh , = sinh (sl),
= sinh , = cosh (tl).

x r y r
x r y r

β τ τ⎧
⎨β τ τ⎩

  

Then, for positions from the sl-sectors (but not too close 
to their borders), the amplitude in Eq. (98) is represented as 
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Fig. 22. Narrow areas (seen as solid lines) in the Brillouin zone of 
a d-wave superconductor with low concentration of impurities, 

,ANc c  where the quasiparticle states are no more described 
by the band dispersion law but localized on clusters of close 
impurities. 

ky

kx

 0 2 2
0 0

cos cosh
( , )

F

N

Ek r t
f x y E dE dt

E

∞ ∞
⎧ ⎡ ⎛ ⎞
⎪ ⎜ ⎟⎢ Δ⎪ ⎝ ⎠⎢≈ ρ +⎨

⎢ ε −⎪
⎢⎪ ⎣⎩

∫ ∫   

 2 2

cos sinh
,

FEk r t

E

⎫⎤⎛ ⎞
⎪⎜ ⎟ ⎥Δ ⎪⎝ ⎠ ⎥+ ⎬
⎥ε + ⎪
⎥⎪⎦⎭

 (99) 

and these integrals are done analytically: 

 
2 2 2

3,1 0, 1/2
0 1,1 0,0,0; 1/2 2( , ) |

4 4
N Fk r

f x y G −
−

⎡ ⎛ ⎞πρ ε
⎢≈ − +⎜ ⎟⎜ ⎟⎢ Δ⎝ ⎠⎣

 

 
2 2 2

3, 0,
,1 0,0,0; 2| .

4
Fk r

G − −
− −

⎤⎛ ⎞ε
⎥+ −⎜ ⎟⎜ ⎟⎥Δ⎝ ⎠⎦

 (100) 

Here the first from the Meijer G-functions, 3,1
1,1G  [49], is 

almost coincident with the Hankel function by Eq. (83), 
but for ε ≈ Δ  and the argument written as 

2 2 2 2/ /Fx y Δ−  with the decay lengths = /i i εv , 

while the second G-function, 3,
,1 ,G −

−  is much faster 
decaying. Similar expressions for the tl-sectors involve the 

argument 2 2 2 2/ / .Fy xΔ −  
However the validity of the above approximation is 

limited in distances , .x y  Thus, alike the low-energy case of 
Sec. 7, the formal divergence of the function, Eq. (100), at 
approaching the sector borders, 2 2 2 ,x yβ →  is restricted 
to a finite value cos ( / ),N Fk yρ ε Δ∼  corresponding to 
distances | | / .x y aβ − Δ ε∼  Also, due to the actually finite 
integration range in , ,E t  the decay length for 0f  along 
these borders is limited to / .aμ Δ∼  The general 
characteristics of the resulting interaction is its contribution 
to the GE pair term from the set of contours in the ,x y  
plane within the stripes of /aΔ ε∼  width and /aμ Δ∼  
length along the 2 2 2=x yβ  lines. This contribution is 
estimated as 

 ,
| | ln( / | |)

ccB μ
ε μ ε

∼  (101) 

and its comparison with unity defines the GE convergence 
range outside the energy range of 

 | | .
ln( / ) AN

c c
c

μ
ε Δ Δ

Δ μ Δ
∼ ∼  (102) 

Thus we can expect that in the presence of the considered 
impurities in a d-wave superconductor, even at their low 
concentration ,ANc c  there is a narrow vicinity of 
antinodal line at the Fermi surface, defined by Eq. (102), 
where GE, Eq. (28), becomes to diverge and so the band 
quasiparticles can not exist (Fig. 22). Within this vicinity, 

the excited quasiparticles are localized on various clusters 
of close impurities. This also defines a new energy scale in 
the quasiparticle spectrum, related to the impurity con-
centration by Eq. (102). 

A similar destroying of band dispersion of 
quasiparticles near the van Hove singularities in the 
spectrum of a d-wave superconductor can also result from 
quasiparticle scattering by other mechanisms (electron–
electron, electron–phonon, etc.). 

9. Conclusions 

The quasiparticle states are considered in a d-wave 
superconductor with impurities, extending the self-
consistent T-matrix approximation framework by using the 
techniques of group expansions of Green functions in 
complexes of interacting impurities. A comparative 
analysis of impurity effects on quasiparticle energy and 
lifetime is done for different types of impurity 
perturbations, varying their intensity, spatial extent, and 
matrix structure in Nambu indices. The essential difference 
between point-like and extended perturbation is estab-
lished, consisting in separate action of different symmetry 
modes of perturbation on different physical properties 
of quasiparticles, which eventually reduces destructive 
effects of extended impurity centers on SC order. Using 
the Ioffe–Regel–Mott criterion, modified for the case of 
quasiparticles in d-wave superconductors, the criteria of 
validity are established for SCTMA and a proper 
combination of different self-consistent solutions for 
different regions of energy spectrum is suggested. Beyond 
the scope of SCTMA, the practical calculation of group 
expansions for different types of impurities is developed. It 
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is shown that, if the impurity perturbation of magnetic type 
is present, the indirect interaction between impurities can 
essentially change the quasiparticle spectrum near nodal 
points, producing strongly localized states of nonuniversal 
character (depending on the perturbation strength). 
Experimental check for possible nonuniversal effects in 
low-temperature transport properties can be done, e.g., in 
the Zn doped Bi2Sr2CaCu2O8+δ system. 
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