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The angular and magnetic-field dependence of interlayer magnetoresistance is calculated in the limit of strong 
magnetic field and very high anisotropy, where it shows several unusual properties. The monotonic part of interlay-
er magnetoresistance grows with the increase of magnetic field along the current, which contradicts the standard 
theory. This changes the angular dependence of magnetoresistance. The Dingle temperature increases with magnet-
ic field, which damps the magnetic quantum oscillations and changes the field dependence of their amplitudes. 
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74.70.Kn Organic superconductors; 
74.72.–h Cuprate superconductors. 
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1. Introduction 

The investigation of the angular and magnetic field de-
pendence of magnetoresistance provides a powerful tool of 
studying the electronic properties of various metals. The 
Fermi surface geometry of the most metals has been meas-
ured using the magnetic quantum oscillations (MQO) of 
magnetoresistance [1–3]. The angular dependence of mag-
netoresistance also gives the important information about 
the electronic structure and is widely used to investigate the 
electronic properties of layered compounds: organic metals 
(see, e.g., Refs. 4–7 for reviews), cuprate high-temperature 
superconductors [8–11], heterostructures [12] etc. 

In layered quasi-2D metals, where the interlayer trans-
fer integral zt  is considerably smaller than the in-plane 
electron Fermi energy, the electron dispersion is given in 
the tight-binding approximation by  

 3 ( ) ( , ) 2 cos( ),D x y z zk k t k dε ≈ ε −k  (1) 

where ( , )x yk kε  is the in-plane electron dispersion, zk  
is out-of-plane electron momentum, and d  is the inter-
layer spacing. If zt  is much larger than the Landau level 
(LL) separation = / ,c eB m c∗ω  the standard theory of 
galvanomagnetic properties [1–3] works well. This theory 
predicts several special features of magnetoresistance in 
quasi-2D metals: the angular magnetoresistance oscilla-
tions [13,14] and the beats of the amplitude of MQO [1]. 

In strongly anisotropic layered quasi-2D metals, when 
the interlayer transfer integral zt  is of the order of or less 
than Landau level separation ,cω  many new qualitative 
effects show up. For example, the slow oscillations of 
magnetoresistance appear [15,16] and the beats of MQO of 
transport and thermodynamic quantities become shifted 
compared to each other [16,17]. These effects are not de-
scribed by the standard theory [1–3] because it is valid 
only in the lowest order in the parameter / .c ztω  When 
this parameter becomes of the order of unity, the standard 
theory is no longer applicable. 

The monotonic part of magnetoresistance also changes 
when / 1.c ztω ∼  According to the standard theory [2], 
external magnetic field along the electric current leads only 
to MQO but does not influence the monotonic (back-
ground) part of this current. However, the monotonic in-
crease of interlayer magnetoresistance zzR  with the in-
crease the magnetic field B  perpendicular to the 
conducting layers has been observed in various strongly 
anisotropic layered metals [18–24]. This monotonic growth 
of magnetoresistance was attributed to the “strongly inco-
herent” regime, where the interlayer tunnelling described 
by the usual Hamiltonian term in Eq. (5) is not effective, 
and the new mechanisms of interlayer electron transport 
play the major role. For example, the variable-range elec-
tron hopping between the localized states in strong mag-
netic field leads to the insulating behavior and to the expo-
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nential dependence of interlayer conductivity on temperature 
and magnetic field [25]. In another model, where the in-
plane electron motion is metallic but the interlayer electron 
transport goes via rare local crystal defects (e.g., resonance 
impurities), the interlayer conductivity zzσ  also has metal-
lic-type temperature dependence but decreases strongly with 
the increase of the out-of-plane component of magnetic field 
[23]. Below I show, that the monotonic growth of magneto-
resistance zz zR B∝  appears also in the standard model 
described by the Hamiltonian (2)–(6) in strong magnetic 
field at very weak interlayer coupling: 0 > ,c ztω Γ�  
where 0 0= / 2Γ τ  and 0τ  is electron mean free time in the 
absence of magnetic field. This contradicts the common 
opinion [26] that in the “weakly incoherent” regime, i.e. at 

0 > ,ztΓ  the interlayer magnetoresistance does not differ 
from the coherent almost 3D limit 0.zt Γ�  

2. The model 

The electron Hamiltonian in layered compounds with 
small interlayer coupling consists of the 3 terms: 

 0
ˆ ˆ ˆ ˆ= .t IH H H H+ +  (2) 

The first term 0Ĥ  is the 2D free electron Hamiltonian 
summed over all layers: 

 0 2 , ,
,

ˆ = ( ) ,D m j m j
m j

H m c c+ε∑  (3) 

where { } = { , }ym n k  is the set of quantum numbers of 
electrons in magnetic field on a 2D conducting layer, 

, ,( )m j m jc c+  are the electron creation (annihilation) opera-
tors in the state { }m  on the layer j , and 2 ( )D mε  is the 
corresponding free electron dispersion given by 

 2 ( , ) = ( 1 / 2).D y cn k nε ω +  (4) 

The second term in Eq. (2) gives the coherent electron tun-
nelling between two adjacent layers: 

† †
1 1

ˆ = 2 [ ( , ) ( , ) ( , ) ( , )],t z j jj j
j

H t dxdy x y x y x y x y− −Ψ Ψ +Ψ Ψ∑∫
  (5) 

where ( , )j x yΨ  and † ( , )j x yΨ  are the creation (annihila-
tion) operators of an electron on the layer j  at the point 
( , )x y . We call this interlayer tunnelling Hamiltonian “co-
herent” because it conserves the in-layer coordinate depen-
dence of the electron wave function (in other words, it con-
serves the in-plane electron momentum) after the interlayer 
tunnelling. The last term 

 ˆ = ( )I i
i

H V∑ r  (6) 

is the impurity potential. The impurities are taken to be 
point-like and randomly distributed on the layers with vo-
lume concentration in  and areal concentration =i iN n d  
on each conducting layer. The impurity distributions on 

any two adjacent layers are uncorrelated. The potential 
( )iV r  of any impurity located at point ir  is given by 

 3( ) = ( ).i iV Uδ −r r r  (7) 

We also introduce the 2D analogue of the point-like impur-
ity potential:  

 0( , ) = ( ) ( ),i i iV x y V x x y yδ − δ −  (8) 

where 2
0 = ( ) / .iV U z U dψ ≈  This is equivalent to 

the smearing of the 2D impurity strength with the distri-
bution [32] 

 2
0 0

0
( ) =  ( ( ) ).

d

I i
dzD V V U z
d
δ − ψ∫   

This smearing of the impurity strength can be performed in 
the final result for conductivity. It does not lead to the new 
qualitative effects, and, for simplicity, we neglect it. 

3. The electron in-plane Green’s function 

In the limit, , ,z ct Γ ω�  the interlayer hopping zt  
must be considered as a perturbation for the disordered 
uncoupled stack of 2D metallic layers. The 2D metallic 
electron system in magnetic field in the point-like impurity 
potential has been extensively studied [27–33]. In the self-
consistent single-site approximation the coordinate elec-
tron Green's function, averaged over impurity configura-
tions, is given by 

 0 0
1 2 2 1, ,

,
( , , ) = ( ) ( ) ( , ),n k n ky yn ky

G r r G n∗ε Ψ Ψ ε∑r r  (9) 

where 0
1, ( )n ky
rΨ  are the 2D electron wave functions in 

perpendicular magnetic field [34], and the Green’s func-
tion ( , )G nε  does not depend on :yk  

 1( , ) = ,
( 1 / 2) ( )c

G n
n

ε
ε − ω + −Σ ε

 (10) 

where ( )Σ ε  is the electron self-energy part due to scatter-
ing by impurities. 

In strong magnetic field, when 0 0= / 2 ,cω Γ τ�  
one can consider each Landau level separately. In the self-
consistent single-site approximation [27] the Green’s func-
tion is given by 

 1 2(1 ) ( )( )
( , ) = ,

2
g i

g

E E c E E E E
G E n

EE
+ − − − −

 (11) 

and the density of states (DOS) on each LL is described by 
the well-known dome-like function [27] 

 1 2( )( )
( ) = ,

2 g

E E E E
D E

E E
− −
π

 (12) 
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where the electron energy E  is counted from the last 
occupied LL: 2 ( , ), D F yE n k≡ ε − ε and 0= ,g LLE N V  
where the LL degeneracy per unit area is 

2= 1/ 2 = / 2 .LL HzN l eB cπ π  The boundaries of the DOS 
dome in Eq. (12) are 

 2 2
1 2= ( 1) , = ( 1) ,g i g iE E c E E c− +  (13) 

where ic  is the dimensionless ratio of the impurity concen-
tration to the electron concentration on one LL: 

 2= / = 2 .i i LL Hz ic N N l n dπ  (14) 

The function ( )D E  in Eq. (12) is nonzero in the interval 
1 20 < < <E E E  and normalized to unity: ( ) = 1.D E dE∫  

The LL half-width 

 2 1( ) / 2 = 2 .B g iE E E c BΓ ≡ − ∝  (15) 

The subscript “B” in BΓ  in Eq. (15) emphasizes that the 
LL broadening depends on magnetic field .B  The Green’s 
function in Eq. (11) differs considerably from the Green’s 
function used in Ref. 26: 

 
0

1( , ) = .G E n
E i− Γ

 (16) 

The LL broadening in Eq. (12) is much larger and depends 
on magnetic field. The ratio 

 0 0/ 4 / 1B cΓ Γ ≈ ω πΓ �  (17) 

grows as B  in high magnetic field. Without magnetic 
field 0.BΓ ≈ Γ  To get the correct asymptotic behavior for 

BΓ  both in strong magnetic field and at = 0,B  one can 
take the simple function 

 ( )
1/42

0 04 / 1 .B c
⎡ ⎤Γ ≈ Γ ω πΓ +⎢ ⎥⎣ ⎦

 (18) 

More realistic models of the finite-range impurity po-
tential, and more accurate calculation of the DOS, includ-
ing the many-site corrections, lead only to the small tails of 
the DOS dome [28,30,33]. The number of electron states in 
these tails is much less than the number of states in the 
DOS dome and can be neglected. However, to include 
these tails into account and to simplify the subsequent cal-
culation, one can take the Lorentzian DOS distribution 
with the same broadening: 

 
2 2

Im ( )
( ) = .

( )
B R

B

G E
D E

E
Γ

≈ −
ππ + Γ

 (19) 

The physical origin of large DOS broadening in Eq. (12) is 
not the finite lifetime τ  of electron states, which is ma-
thematically described by the imaginary part of the self-
energy Im 0= = / 2 ,Σ Γ τ  as in the 3D limit. On the 2D 
layers the LL broadening comes from the energy shift of 
each electron state, which is described by the state-

dependent real part of the electron self-energy Re .Σ  The 
averaging of the electron Green’s function in Eq. (16) over 
the impurity configurations is independent on each con-
ducting layer, since the impurity distribution is assumed to 
be uncorrelated. Then the denominator acquires the real 
part of electron self energy, Re ,ε→ε− Σ  and the averag-
ing over impurity configurations makes ReΣ  to be distri-
buted with the DOS function (Re ):D Σ  

 1( , ) = ( ) .
( 1/ 2) 0c

G E n dE D E
E n iε − − ω + −∫   

Substituting the DOS distribution from (19), one can easily 
perform the integration over E  and obtain 

 1( , ) = .
( 1 / 2)c B

G E n
n iε − ω + − Γ

 (20) 

This Green’s function differs from Eq. (16) by the increase 
of the imaginary self-energy part: 0 BΓ → Γ  with BΓ  giv-
en by Eq. (18). The more rigorous calculations of the elec-
tron Green’s function gives the same result as in Eq. (20). 
This Green’s function will be used in the next section to 
calculate the interlayer conductivity. 

4. Calculation of conductivity 

The interlayer conductivity ,zzσ  associated with the 
Hamiltonian (5), can be calculated using the Kubo formula 
and the formalism, developed for the metal–insulator–
metal junctions [35]. In analogy to Eq. (44) of Ref. 26, 

 
2 24

= z
zz

x y

e t d
L L

σ ×   

2 2 Im ( , , , )Im ( , , 1, )[ ( )] ,
2 R R F
dd d G j G j nε′ ′ ′ ′× ε + ε − ε
π∫ ∫r r r r r r

  (21) 

where ( ) = 1/ (1 exp[( ) / ])Fn Tε + ε −μ  is the Fermi distri-
bution function, μ  is the chemical potential and T  is tem-
perature. The angular brackets in Eq. (21) mean averaging 
over impurity configurations. Since the impurity distribu-
tions on each layer is uncorrelated with other layers, one 
can perform this averaging separately for each spectral 
function independently, which gives 

 
2 24

= z
zz

x y

e t d
L L

σ ×   

2 2 Im ( , , , ) Im ( , , 1, ) [ ( )].
2 R R F
dd d G j G j nε′ ′ ′ ′× ε + ε − ε
π∫ ∫r r r r r r

  (22) 

The averaged Green’s (or spectral) functions are transla-
tional invariant: ( , , , ) = ( , , ) .R RG j G j′ ′ε − εr r r r  

In the magnetic field perpendicular to the conducting 
layers the coordinate dependence of the electron Green’s 
function on the adjacent layers is the same. Then the inte-



New features of magnetoresistance in the strongly anisotropic layered metals 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 933 

Fig. 1. The MQO of resistivity ( ) = 1 / ,zz zzR B σ  calculated using 
Eq. (28) with BΓ  given by Eq. (18) (solid line) and with 

0= ,BΓ Γ  that corresponds to Ref. 37 (dashed line). The para-
meters are = ,em m∗  0 = 0.8 KΓ  and = 0.6 K.T  
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gration over r  for the Green’s function of the form (9) is 
very simple and gives 

2 2
24

= [ ( )] Im ( , ) .
2

z LL
zz F R

n

e t d N d n G nε ′σ − ε ε
π ∑∫  (23) 

Substituting Eq. (10) we obtain 

22 2

22 2

[ ( )] Im ( )4
= .

2 [( Re ( )) Im ( ) ]
Fz LL

zz
n n

ne t d N d ′− ε Σ εε
σ

π ε − ε − Σ ε + Σ ε
∑∫

  (24) 

The sum and integral in Eq. (24) is calculated in a standard 
way, transforming the sum over LL into the harmonic sum 
by applying the Poisson summation formula [36]: 

 2

= =0

( ) = e ( ) ,ikn

n n k a
f n f n dn

∞∞ ∞
π

−∞
∑ ∑ ∫  (25) 

where 0 0( 1; ).a n n∈ −  Then, performing the integrations, 
we obtain 

 0
=

2 [ Re ( )]= ( 1) [ ( )]expk
zz F

ck

ikd n
∞

−∞

⎛ ⎞π ε − Σ ε′σ σ − ε − ε ×⎜ ⎟ω⎝ ⎠
∑ ∫   

 002 Im ( ) 2
exp ,

Im ( )c c

k k⎛ ⎞⎛ − π Σ ε ⎞ π ΓΓ
× +⎜ ⎟⎜ ⎟⎜ ⎟ω Σ ε ω⎝ ⎠⎝ ⎠

 (26) 

where 

 
2 2

0
0

= ,z Fe t dν
σ

Γ
 (27) 

= /F LL cNν ω  is the DOS at the Fermi level in the ab-
sence of magnetic field. 

5. Results 

At 0cω Γ� , substituting Eq. (20) into Eq. (26) and 
performing the integration over ε  we obtain in analogy 
with Ref. 39 

 0
0

=

2 ( )
= ( 1) expk B

zz
B ck

k i∞

−∞

⎡ ⎤Γ π μ −Γ
σ σ − ×⎢ ⎥Γ ω⎣ ⎦

∑   

 
2

2
22 /

1 .
sinh(2 / )

Bc

cc

kk T

k T

⎡ π Γ ⎤π ω
× +⎢ ⎥ωπ ω ⎣ ⎦

 (28) 

Equation (28) outwardly resembles Eqs. (17)–(21) of 
Ref. 37, derived in the Born approximation in the limit of 
well-defined 3D electron dispersion. It also resembles Eqs. 
(12), (15) of Ref. 38 and Eqs. (10), (15) of Ref. 16 in the 
limiting case of 0.zt →  However, there is the important 
difference between Eqs. (28), (27) and the previous results, 
which comes out because Eqs. (28), (27) are derived beyond 
the traditionally used Born approximation. This difference 
consists in the replacement of the field independent quanti-

ties 0Γ  and εΓ  by ,BΓ  which has the strong monotonic 
dependence on magnetic field given by Eq. (18). 

Let us now compare how strongly the field depen-
dence of interlayer conductivity given by Eqs. (28), (27) 
differs from the previous results (see, e.g., Eqs. (17)–(21) 
of Ref. 37). In Fig. 1 we compare the field dependence 
of magnetoresistance ( ) = 1/ ,zz zzR B σ  calculated using 
Eq. (28) with BΓ  given by Eq. (18) (solid line, corres-
ponding to the new result) and with 0=BΓ Γ  (dashed line, 
corresponding to Ref. 37). The strong difference is evident. 
First, the interlayer magnetoresistance shows the monoton-
ic growth with the increase of magnetic field, directed 
along conductivity and perpendicular to the conducting 
layers. This monotonic growth is observed in all experi-
ments on interlayer magnetoresistance in strongly aniso-
tropic metals (see, e.g., Refs. 15, 19) but was not explained 
before and, therefore, was not used to extract any informa-
tion about compounds. Equations (18), (27) allow to use 
this dependence for the alternative estimate of the Landau 
level broadening ( )BΓ  from the experimental data. 
Second, the new result takes into account the magnetic 
field dependence of the Dingle temperature, which leads to 
the weaker field dependence of MQO amplitude and pre-
dicts smaller amplitude of MQO as compared to the result 
of Refs. 37, 40. 

The angular dependence of interlayer magnetoresis-
tance is also considerably modified by the replacement 

0 .BΓ → Γ  In tilted magnetic field the calculation of con-
ductivity, performed in Ref. 26, can be applied with the 
new magnetic-field-dependent value BΓ  instead of 0 ,Γ  
which gives [39] (compare to Eq. (1) of Ref. 26) 

 
2

2
0 0

=1

[ ( )]
= ( ) [ ( )] 2 ,

1 ( )zz z
c B

J
B J

∞
ν

ν

⎧ ⎫κ⎪ ⎪σ σ κ +⎨ ⎬
+ νω τ⎪ ⎪⎩ ⎭

∑  (29) 

where tanFk dκ ≡ θ  is the same as in Ref. 26, but 
0 ( )zBσ  and Bτ  acquire the field and angular dependence: 
0 ( )zBσ  is given by Eq. (27) and 
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 0 0= ( ) = / 2 = ( / ).B B z B BBτ τ Γ τ Γ Γ  (30) 

In high magnetic field 1cω τ�  and in the “weakly incohe-
rent limit” <z Bt Γ , 0 ( ) 1 / cos .z BB Bσ ∝ τ ∝ θ  

There are two main differences between the new angu-
lar dependence of magnetoresistance given by Eq. (29) and 
Eq. (1) of Ref. 26. First, the sharp peaks of magnetoresis-
tance at the Yamaji angles become smoother in the new 
formula. This change is due to the higher harmonics 

2[ ( )]Jν κ  in AMRO, which are less damped in Eq. (29) as 
compared to Eq. (1) in Ref. 26 because of the smaller value 
of 0 0= ( / ) 1 / .B B zBτ τ Γ Γ ∝  These higher harmonics 
also slightly shift the positions of the Yamaji angles. 
Second, the monotonic part of the angular dependence of 
magnetoresistance changes because of the additional angu-
lar dependence of the prefactor 0 ( )zBσ  given by Eq. (27), 
which in strong field 1/ cos .B∝ θ  

To illustrate these differences, in Fig. 2 we plot the an-
gular dependence of magnetoresistance ( ) = 1/ ( )zz zzR θ σ θ  
given by Eq. (29) with 0 0= / 2 = ( / )B B Bτ Γ τ Γ Γ  (solid 
line) and 0=Bτ τ  (dotted line). For simplicity, we take the 
axially symmetric case, i.e. the symmetric in plane electron 
dispersion. One can see that in the minima of conductivity, 
i.e. at the Yamaji angles, the replacement 0 Bτ → τ  is very 
important. The predicted value of magnetoresistance at the 
Yamaji angles with Bτ  given by Eq. (30) is much smaller 
than with 0=Bτ τ  (see Fig. 2). This difference grows with 
the increase of magnetic field. The positions of the conduc-
tivity minima, i.e. the Yamaji angles, also slightly shift 
after the replacement 0 Bτ → τ  in Eq. (29) (see Fig. 2). For 
the first Yamaji angle at = 5 TB  this shift Yam 0.5Δθ ≈  
(see Fig. 2). The angular-dependent prefactor 0 ( )zBσ  
in Eq. (29) considerably changes the ratio ( =zzσ θ

/ 2) / ( = 0)zz= π σ θ , which according to Eqs. (27) and 
(29) becomes larger by the factor 0/BΓ Γ  (see Eq. (17) 
and Fig. 2). 

6. Discussion 

Let us formulate the main difference of the present 
approach to the calculation of interlayer conductivity in 
the weakly incoherent regime compared to the previous 
methods, developed in Refs. 16, 37, 38, 40, 41 to calcu-
late the MQO of conductivity. In these papers the impuri-
ty potential is considered as a small perturbation on the 
background of a free electron gas with well-defined 3D 
electron dispersion given by Eq. (1). Hence, the impurity 
scattering was taken into account only by the imaginary 
part of the electron self-energy, which was calculated in 
the Born approximation. Even less accurately the impuri-
ties are treated in Ref. 26, where the constant electron 
mean-free time has been used to include the interaction 
with impurities. The Born approximation can be applied 
only in the 3D coherent limit, when the interlayer transfer 
integral is much larger than the LL broadening. In the 
“weakly incoherent” regime, when < , ,z ct Γ ω  this is 
incorrect, because for a 2D electron system in magnetic 
field the impurity potential has much stronger effect than 
in 3D. Qualitatively, in a 3D electron system the elec-
trons after scattering by an impurity move away in the 
interlayer direction and never return to this impurity. 
Therefore, this impurity only leads to the single scattering 
of this electron into some other state, which is well de-
scribed by the Born approximation or even by a constant 
electron mean-free time 0 ,τ  or equivalently, by the con-
stant imaginary part 0Γ  of the electron self-energy. In 2D 
electron system in magnetic field, the electrons after scat-
tering return to the same impurity after the cyclotron pe-
riod. Therefore, the impurity has permanent influence on 
the electron state, considerably shifting the electron ener-
gy and modifying the electron states. Hence, in the weak-
ly incoherent regime, when < , ,z ct Γ ω  the interlayer 
hopping term (5) in the Hamiltonian (2), rather the impur-
ity potential (6), must be considered as a small perturba-
tion. Therefore, to calculate the interlayer conductivity, 
we start from the stack of isolated 2D disordered con-
ducting layers in magnetic field, where the effect of im-
purity potential is considered much more accurately, at 
least in the self-consistent single-site (“noncrossing”) 
approximation. This allows us to go beyond the Born 
approximation, incorrectly applied in Refs. 37, 40, 41. 
Then we substitute the obtained electron Green’s func-
tions to the Kubo formula for the tunnelling conductivity 
between adjacent conducting layers, which does not re-
quire the 3D electron dispersion. The effect of impurities 
in the final results turned out to be much stronger than in 
the previous approaches. Phenomenologically, this dif-
ference can be taken into account by the replacement of 
the initial level broadening 0Γ  in Eq. (16) by the larger 
value given by Eq. (18). 

The oscillations of the chemical potential, which appear 
to be strong in the artificial layered compounds as hetero-

Fig. 2. The angular dependence of magnetoresistance
( ) / (0),zz zzR Rθ  calculated using Eq. (29) with Bτ  given by

Eq. (30) (solid line) and with 0=Bτ τ  (dotted line). The parame-
ters for this plot are = 4,Fk d  = ,em m∗ = 5 T,B  0 = 1 K,Γ
which gives 1.74.cω τ ≈  

–50 0 50
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structures [42] and are also observed in some other mate-
rials [43], may considerably affect the MQO of thermody-
namic and transport quantities [44,45]. For example, they 
may lead to the mixing of the MQO frequencies even in the 
de Haas–van Alphen effect [44]. However, in the natural 
layered compound, even in the extremely anisotropic almost 
2D layered system as β″-(BEDT-TTF)2SF5CH2CF2SO3, the 
oscillations of the chemical potential turned out to be neg-
ligibly small, as was experimentally confirmed by analyz-
ing the shape of the magnetization oscillations [46]. This 
shape turned out to be the same as in the 2D theory of 
magnetization oscillations with fixed chemical potential 
(see Fig. 3 of Ref. 46). In anisotropic 3D metals as beryl-
lium, where the magnetic quantum oscillations are very 
strong, the oscillations of the chemical potential are also 
damped by more than ten times [47]. The absence of the 
chemical potential oscillations was explained by the obser-
vation of MQO of the sample volume, which lead to the 
oscillations of the electron concentration and cancel the 
oscillations of the chemical potential [47]. The observation 
of strong MQO of the metallic sample volume is not sur-
prising, because the delocalized electrons give the main 
contribution to the modulus of elasticity of metals [48]. 
The role of this magnetostriction on the damping of the 
MQO of chemical potential is somewhat analogues to the 
electron reservoir, which can be simply included to the 
theory of MQO [37,45]. The main result of the present 
paper, that the monotonic field dependence of the LL 
broadening strongly affects the magnetic field and angular 
dependence of the interlayer magnetoresistance, is not sen-
sitive to the oscillations of the chemical potential. 

The electron–electron interaction, neglected in the 
above calculations, is more important in the layered strong-
ly anisotropic compounds than in usual 3D metals and may 
modify the quantitative behavior of magnetoresistance. For 
example, the superconducting fluctuations may considera-
bly change the properties of cuprate high-temperature su-
perconductors even above the superconducting transition 
temperature [49]. The quantum corrections to conductivity 
are small, but may also become detectable when magnetic 
field is tilted toward the conducting plane [50]. However, 
all these effects are much weaker than the gross qualitative 
effects predicted in the present work. 

The proposed analysis considers only the limiting case 
0 ,c ztω Γ� �  when BΓ  is given by Eqs. (15) or (18), 

but it is not accurate at 0 ,cω Γ∼  where the crossover 
from weak to strong magnetic field regime takes place. The 
phenomenological formula (18) gives only a qualitative de-
pendence ( )B zBΓ  in this region. To study the opposite limit 

0 c ztΓ ω� �  one can expand Eq. (26) in the small pa-
rameter 0= exp( 2 / ).D cR − πΓ ω  In the Born approxima-
tion in the second order in DR  this expansion gives no cor-
rection to the monotonic part of zzσ  [51]. This suggests that 
the crossover from weak to strong magnetic field is rather 
sharp, similar to that observed in Refs. 21, 24 and studied in 

Ref. 25. Evidently, the limit 0c ztω Γ� �  and the cros-
sover region need further theoretical study. Note, that the 
one-particle approximation, used in the above calculations, 
may violate at zero field. 

7. Summary 

We consider interlayer magnetoresistance zzR  of 
strongly anisotropic layered metals in the so-called “weak-
ly incoherent“ regime, when the interlayer transfer integral 

zt  is much less than the Landau level separation cω  and 
broadening 0Γ  due to the interaction with impurities. The 
angular and field dependence of interlayer conductivity in 
this regime is calculated. We obtain that both these depen-
dencies in strong magnetic field, 0 ,cω Γ�  considerably 
differ from those in the limit ,z ct ω .BΓ  This contra-
dicts the previous theoretical results [26,37]. The back-
ground interlayer conductivity zzσ  decreases with the in-
crease of magnetic field zB  according to Eq. (27) with 

BΓ  approximately given by Eq. (18), while in the standard 
“coherent” theory [37] it remains constant (see Fig. 1). The 
Dingle temperature of MQO also increases with magnetic 
field ,B∝ Γ  which modifies the field dependence of MQO 
amplitude (see Fig. 1 for illustration). Meantime, in the 
“weakly incoherent” regime the angular oscillations of 
background magnetoresistance are not damped as in the 
completely incoherent mechanisms of the interlayer electron 
transport, considered, e.g., in Refs. 23, 25, 52–56. However, 
the angular dependence of interlayer magnetoresistance in 
the “weakly incoherent” regime, given by Eqs. (29), (30), 
considerably differs from that in the standard “coherent” 
theory [57] and from the dependence obtained in Ref. 26 for 
the same “weakly incoherent” regime (see Fig. 2 and the 
discussion after Eqs. (29), (30)). This difference includes 
both the monotonic and oscillating parts of the angular de-
pendence of magnetoresistance. Phenomenologically, the 
differences between the coherent and weakly incoherent 
regimes can be taken into account by the replacement of the 
electron mean free time 0τ  by the new smaller value 

2 1/4
0 0/ [(8 / ) 1]B cτ ≈ τ ω τ π +  in all formulas for the field 

and angular dependence of interlayer magnetoresistance. 
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