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Diagrammatic analysis for normal state of Hubbard model proposed in our previous paper is generalized and 
used to investigate superconducting state of this model. We use the notion of charge quantum number to describe 
the irreducible Green's function of the superconducting state. As in the previous paper we introduce the notion of 
tunneling Green's function and of its mass operator. This last quantity turns out to be equal to correlation func-
tion of the system. We proved the existence of exact relation between renormalized one-particle propagator and 
thermodynamic potential which includes integration over auxiliary interaction constant. The notion of skeleton 
diagrams of propagator and vacuum kinds were introduced. These diagrams are constructed from irreducible 
Green's functions and tunneling lines. Identity of this functional to the thermodynamic potential has been proved 
and the stationarity with respect to variation of the mass operator has been demonstrated. 

PACS: 71.27.+a Strongly correlated electron systems; heavy fermions; 
71.10.Fd Lattice fermion models. 
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1. Introduction 

The present paper generalizes our previous work [1] on 
diagrammatic analysis of the normal state of the Hubbard 
model [2–4] to the superconducting state. 

Now we shall assume the existence of pairing of 
charge carriers and non-zero Bogolyubov quasi-averages 
[5] and, consequently, of the Gor'kov anomalous Green's 
functions [6]. 

The central idea of standard BCS theory of convention-
al superconductivity is formation of Cooper pairs due to 
the presence of attractive interaction between electrons. 
Such attractive interaction can be of electron–phonon kind 
with mechanism based on the polarizability of ionic lattice 
in metal. After the discovery in 1986 of high-temperature 
superconductivity in cuprate compounds with layered pe-
rovskite structure begins the era of unconventional super-
conductivity with possible alternative mechanisms of su-
perconductivity. One of such possible mechanism is spin 
fluctuation exchange [7] one based on the conception of 
spin polarization of electrons. 

One of the most frequently used model for unconven-
tional superconductivity is the Hubbard model. We shall 
discuss below its properties. 

The main property of the Hubbard model consists in the 
existence of strong electron correlations and, as a result, of 
the new diagrammatic elements with the structure of Kubo 
cumulants and named by us as irreducible Green's func-
tions. These functions describe the main charge, spin and 
pairing fluctuations of the system. 

The new diagram technique for such strongly correlated 
systems has been developed in our earlier papers [8–18]. 
This diagram technique uses the algebra of Fermi operators 
and relies on the generalized Wick theorem which con-
tains, apart from usual Feynman contributions, additional 
irreducible structures. These structures are the main ele-
ments of the diagrams. 

In superconducting state, unlike the normal one, the ir-
reducible Green's functions can contain any even number 
of fermion creation and annihilation operators, whereas in 
normal state the number of both kinds is equal. Therefore 
we need an automatic mathematical mechanism which 
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takes into account all the possibilities to consider the inter-
ference of the particles and holes in the superconducting 
state. 

With this purpose we use the notion of charge quantum 
number, introduced by us in [8] and called α-number, 
which has two values = 1α ±  according to the definition  
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were C  is a fermion annihilation operator. In this new 
representation the tunneling part of the Hubbard Hamilto-
nian can be rewritten in the form 
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with the definition of the tunneling matrix elements 
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In this charge quantum number representation the operator 
H ′  has an additional multiple α  for every vertex of the 
diagrams and additional summation over α . All the 
Green's functions depend of this number. 

In interaction representation operator H ′  has a form  
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The main part of the Hubbard Hamiltonian  
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contains the local part 0 ,H  where μ  is the chemical po-
tential and U  is the Coulomb repulsion of the electrons. 
This interaction is considered as a main parameter of the 
model and is taken into account in zero approximation of 
our theory. The operator H ′  describes electron hopping 
between lattice sites of the crystal and is considered as a 
perturbation. 

We shall use the grand canonical partition function in 
our thermodynamic perturbation theory. 

The paper is organized in the following way. In Sec. 2 
we define the one-particle Matsubara Green's functions in 
terms of α  representation and develop the diagrammatic 
theory in the strong coupling limit. 

In Sec. 3 we establish relation between the full thermo-
dynamic potential and the renormalized one-particle 
Green's function in the presence of additional integration 
over auxiliary constant of interaction λ  and prove the sta-

tionarity theorem both for a special functional consisting of 
skeleton diagrams and for a renormalized thermodynamic 
potential shown to be its equivalent. 

2. Diagrammatic theory 

We shall use the following definition of the Matsubara 
Green's functions in the interaction representation  
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where x  stands for ( , , )σ τx , index c  of 0... c〈 〉  means the 
connected part of the diagrams and 0...〈 〉  means thermal 
average with zero-order partition function 

0 0
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We use the series expansion for the evolution operator 
( )U β  with some generalization because we introduce the 

auxiliary constant of interaction λ  and use H ′λ  instead 
:H ′  

 
0

( ) = exp ( ( ) ),U T H d
β

λ ′β −λ τ τ∫  (7) 

with T  as the chronological operator. At the last stage of 
calculation this constant λ  will be put equal to 1. 

The correspondence between definition (6) and usual 
one [13] is the following: 
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As a result of application of the generalized Wick theorem 
we obtain for propagator (6) the diagrammatic contribu-
tions depicted on the Fig. 1. 

In superconducting state, unlike the normal state, the 
propagator lines do not contain arrows which determine 
the processes of creation and annihilation of electrons be-
cause indices α  can take two values = 1α ±  and every 
vertex of the diagram describes different possibilities. 

In Fig. 1 the diagram (a) is the zero order propagator, 
the diagram (b) and more complicated diagrams of such 
kind are of chain type. They correspond to the contribution 
of the ordinary Wick theorem and give the Hubbard I ap-
proximation. The contributions of the diagrams (c) and (d) 
of Fig. 1 are 



Stationary property of the thermodynamic potential of the Hubbard model 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2012, v. 38, No. 10 1169 

 

ir
1 1

1 1 1
0

1 1
ir

1 2
1 2

0
(0) 1 21 2 1 21 2

1(c) : ( ) ( 0 ) ( ) ( )
2

( ),

1(d) : ( ) ( ) ( ) ( )
2

( ) ( ) ( , | , ) ,

TC C C C

t

TC C C C

t t G

−α α ′α + −α
′′

α

−α α ′α −α
′′

α α
α α

′τ τ + α τ τ ×

′× α −

′τ τ τ τ ×

′ ′ ′× α − α − τ τ

x x11

x x21

1 1

1 1 2 2 1 2

  

where ir
0...〈 〉  means the irreducible two-particle Green's 

function [2–5] and summation or integration is understood 
here and below when two repeated indices are present. 
Spin index has been omitted for simplicity. In the diagram 
(c) the equality of lattice sites indices = = =′ ′x 1 1 x  is 
assumed and in diagram (d) = = =′ ′x 1 2 x . The diagrams 
Fig. 1(c), (d) and (e) contain irreducible two-particles 
Green's functions, depicted as the rectangles. In higher 
orders of perturbation theory more complicated many-
particle irreducible Green's functions (0)ir [1, 2,..., ]nG n  ap-
pear. These functions are local, i.e. with equal lattice site 
indices. Therefore the diagram (c) in Fig. 1 can be dropped 
since it contains a vanishing matrix element, ( ) = 0.t −x x  
The process of renormalization of the tunneling amplitude 
shown in the diagrams (c) and (d) leads to the replacement 
of the bare tunneling matrix element ( )tα ′α −x x  in (c) by 
a renormalized quantity ( | )T x x′αα ′ . This process is de-
termined by the equation  

 1
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and 1 2Gα α  is the full one-particle propagator. The quanti-
ty T ′α α  is shown in the diagrams as a double dashed line. 

We then introduce the notion of correlation function 
( | )x x′αα ′Λ  which is the infinite sum of strongly con-

nected parts of propagator's diagrams. If we now omit from 
these diagrams all those contained in the process of renor-
malization of the tunneling matrix element, we obtain the 
skeleton diagrams for correlation function. In such skele-
ton diagrams we replace thin dashed lines by double 
dashed lines and obtain the definition of ( | )x x′αα ′Λ  
shown in the Fig. 2. 

There are two kinds of λ  dependence in the diagrams 
of Fig. 2. One is conditioned by dependence of T ′αα

λ  and 
the second is determined by λ  being an explicit pre-factor 
in the diagrams. In Hubbard I approximation only the free 
propagator line is taken into account. All the contributions 
of Fig. 2 except the last one are local and their Fourier re-
presentation is independent of momentum. Only these dia-
grams are taken into account in dynamical mean field 
theory [19]. The last diagram of Fig. 2 has the Fourier re-
presentation which depends of momentum. 

As a result of diagrammatic analysis we can formulate 
the Dyson-type equation for full one-particle Green's func-
tion ( = , ) :x τx  

 1 2
001 2 1 2

( | ) = ( | )G x x x x d d
ββ

′ ′αα αα
′ ′σσ σσ

σ σ

′ ′Λ + τ τ ×∑ ∑ ∫∫
x x

  

 1 1 2 2
1 1 2 2

(0)
1 1 2 2( | ) ( | ) ( | ).x x T x x G x x′αα α α α α

′σσ σ σ σ σ ′× Λ  (11) 

This equation can be written in the operator form:  
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Using Eqs. (9) and (12) we obtain the Dyson equation 
for the tunneling Green's function  
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Fig. 1. The examples of the first orders perturbation theory diagrams for propagator. Solid thin lines depict zero order one-particle
Green's functions and rectangles depict two- and four-particle irreducible Green's functions. Thin dashed lines correspond to tunneling
matrix elements. Double solid line corresponds to renormalized propagator. 
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where the correlation function Λ  has the role of mass ope-
rator for the renormalized tunneling Green's function. 

In Appendix A we demonstrate the equivalence of the 
Eq. (11) to usual [6] representation of superconducting 
Green's functions. 

3. Thermodynamic potential 

The thermodynamic potential of the system is deter-
mined by the connected part of the mean value of evolu-
tion operator: 

 0 0
1( ) = ( ) ,cF F Uλλ − β
β

 (14) 

with λ  equal to 1. 

In the Fig. 3 are depicted the first order diagrams for 
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correspond to the Hubbard I approximation. The next 
diagrams contain the rectangles which represent our irre-
ducible Green's functions. Indeed, some of these dia-
grams are equal to zero when the dashed lines are self-
closed by virtue of the relation (0) = 0.t  However, when 
these dashed lines are replaced by renormalized quanti-
ties Tλ  their contributions are different from zero and 
should be retained. Such renormalized tunneling quanti-
ties will be used in the next part of the paper. The contri-

Fig. 2. The skeleton diagrams for correlation function ( | ).x x′αα ′Λ  The rectangles depict the many-particles irreducible Green's func-
tion. The double dashed lines depict the full tunneling Green function ( | ).T x x′αα
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butions of the fifth and eighth diagrams on the right-hand 
side of Fig. 3 are 
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Taking into account Eqs. (12) and (13) we obtain 
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where 

 ˆˆ =λ λΣ λΛ  (18) 

has the role of mass operator for tunneling Green's func-
tion T̂λ . For them Dyson equation exists 
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Equation (17) can be rewritten in the form 
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The Eqs. (15) and (17) establish the relation between the 
thermodynamic potential and renormalized one-particle 
propagator Ĝλ  or tunneling Green's function T̂λ . Both these 
quantities depend on auxiliary parameter λ  which is inte-
grated over. As have been proved by Luttinger and Ward 
[20,21], for normal state of weakly correlated systems, it is 
possible to obtain another expression for the thermodynamic 
potential without such additional integration. 

In our previous paper [1], for the normal state of Hub-
bard model, we have obtained such an equation in the form 
of special functional. We now consider its generalization to 
the case of superconductivity. For this purpose we 
introduce the functional 
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and ( )Y ′ λ  is the functional constructed from skeleton dia-
grams depicted on Fig. 4. 
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Fig. 4. The rectangles depict the irreducible Green's functions. 
The double dashed lines depict the tunneling renormalized 
Green's functions ( | ).T x x′αα ′  
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As a consequence of these equations we have 
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With the functional derivative of ( )Y ′ λ  given in (23) we 
obtain the stationarity property of the functional ( )Y λ :  
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and prove the second form of stationarity property 
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To demonstrate this equation it is sufficient to use the Dy-
son equation (19) in the form 
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where the usual convention about summation over the re-
peated indices has been adopted. 

As a result we obtain the stationarity property (29) of 
the functional ( )Y λ  versus the change of the mass operator 

.λΣ  This mass operator for = 1λ  coincides with correla-
tion function of our strongly correlated model. 

Now it is necessary to find a relation between the ther-
modynamic potential ( )F λ  and the functional ( ).Y λ  

Consider first the value of the derivative ( ) / .dY dλ λ  
The λ  dependence of the functional ( )Y λ  is of two kinds: 
through λΣ  and also explicit through the factors nλ  in 
front of the skeleton diagrams for the functional ( ).Y ′ λ  

Due the stationarity property (29) we obtain 

 ( ) ( ) ( ) ( ) ( )= | | = | .
ddY Y Y dY dY

d d d d
λ

Σ Σ Σλ λ λ
λ

′Σλ δ λ ∂ λ λ λ
+ =

λ δΣ λ ∂λ λ λ
 

  (34) 

Here we took into account that the 1( )Y λ  part of func-
tional ( )Y λ  (see Eqs. (21) and (28)) does not explicitly 
dependent on .λ  

By using the definitions of ( )Y ′ λ  (see Fig. 4) and of 
λΛ  (see Fig. 2) it is easy to establish the property: 

 ( ) ( ) 1 1ˆ ˆ ˆ ˆ= | = Tr( )= Tr( ).
2 2

dY Y T T
d Σ λ λ λ λλ

′λ ∂ λ
λ λ λ Λ Σ

λ ∂λ β β
 

  (35) 

From the Eqs. (20) and (35) we have 

 ( ) 1 ( )ˆ ˆ= Tr( ) = ,
2

dY dFT
d dλ λ
λ λ

λ Σ λ
λ β λ

 (36) 

and we therefore obtain 

 0( ) = ( ) ,F Y Fλ λ +  (37) 

since for = 0λ  the perturbation is absent ( = 0) = 0Y λ  
and 0( = 0) = .F Fλ  Now we set = 1λ  and obtain 

 0= (1),F F Y+  (38) 

with the stationarity property 

 = 0.ˆ
Fδ
δΣ

 (39) 

Stationary property (39) helps to obtain such thermody-
namical quantities as entropy and specific heat 

= / ,S dF dT−  = ( / ).C T dS dT  Thermodynamic potential 
depends of temperature in two forms: one dependence is 
explicit and second is through mass operator and because 
of / = / ( / )( / ),dF dT F T F d dT∂ ∂ + δ δΣ Σ  as a conse-
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quence of (39) the second term in the last formula can be 
omitted. 

4. Conclusions 

We have further developed the diagrammatic theory pro-
posed for strongly correlated systems many years ago to 
establish the stationarity property of the thermodynamic 
potential in the superconducting state of the Hubbard model. 

First, we have introduced the notion of charge quantum 
number which gives the possibility to consider the pres-
ence of irreducible Green's functions with an arbitrary 
number of creation or annihilation Fermi operators in su-
perconducting state. 

We have introduced the notion of tunneling Green's 
function and its mass operator, which turns out to be equal 
to the correlation function of the fermion system. 

We have proven the existence of the Dyson equation for 
this function and establish the exact relation between the 
thermodynamic potential and renormalized one-particle 
propagator. This relation contains an additional integration 
over the auxiliary constant of interaction .λ  

We have constructed a special functional based on the 
skeleton diagrams for the propagator and for the evolution 
operator which contain the irreducible Green's functions 
and full tunneling Green's functions. 

We have proven the existence of the stationarity proper-
ty of this functional and establish its relation with thermo-
dynamic potential. 

It is important to emphasize that there is a close similar-
ity between our results obtained for two different models 
of strongly correlated systems such as periodic Anderson 
model (PAM) and the Hubbard model (HM). From com-
parison of the results obtained for the PAM (see paper 
[18]) and the results of the present paper for the HM the 
topological coincidence of the diagrams for both models 
has been revealed. 

For example the skeleton diagrams of Fig. 3 of paper 
[18], obtained for Λ  functional of PAM topologically 

coincide with the skeleton diagrams of our Fig. 2 for the 
same functional, but of quite a different model. In order to 
obtain a complete coincidence, it is necessary to replace 
the full Green's function ( )cG iω  of conduction electrons 
of PAM by the renormalized tunneling Green's function 

( )T iω  of the HM. 
The same similarity exists between other functionals of 

these models. For example, comparison of the skeleton 
diagrams of Fig. 10 of paper [18] with the diagrams of 
Fig. 4 of the present paper reveals the full coincidence 
upon replacement of the Green's functions cG  by T . This 
comparison allows us to conclude that from the thermody-
namic point of view the PAM can be reduced to the HM if 
we replace the Green's function of the conduction electrons 
of PAM subsystem by tunneling Green's function of hop-
ping electrons of HM. 

We also note that the skeleton representation of our 
functional allows to select the local irreducible Green's 
functions as can be seen from Fig. 2 of our paper and 
Fig. 10 of paper [18]. These quantities contain only fluctu-
ations in time, unlike the nonlocal ones which include both 
fluctuations in time and space. The coefficients of local 
diagrams (see Fig. 10) vary with the order of perturbation 
theory as 11 / (2 !)n n−  for > 1.n  

Only such local diagrams are relevant for DMFT, so 
that one can attempt to carry out the summation of this 
class of diagrams. 

Two of us (V.A.M and L.A.D) would like to thank Pro-
fessor N.M. Plakida and Dr. S. Cojocaru for a very helpful 
discussion. 

Appendix A. 
Gor'kov–Nambu representation 

We consider Eq. (11) in Fourier representation. By in-
serting specific values of charge quantum number = 1λ ±  
we obtain ( = ( , i ))nk ωk  

 

________________________________________________________ 

 
1 1 1 1

1,1 1,1 1,1 1,1 1, 1 1,1
1 1, ,( ) = ( ) ( )є ( ) ( ) ( )є ( ) ( ),G k k k G k k G k− −

−′ ′ ′ ′σσ σσ σσ σ σ σ −σ −σ σΛ + Λ −Λk k  (A.1) 

 
1 1 1

1, 1 1, 1 1,1 1, 1 1, 1 1,1
1 1, , ,, , ,( ) = ( ) ( )є ( ) ( ) ( )є ( ) ( ),G k k k G k k G k− − − −

−′ ′ ′′σ −σ σ −σ −σ −σσ σ σ −σ σ −σΛ +Λ +Λ −k k  (A.2) 

 
1 1 1 1

1,1 1,1 1,1 1,1 1,1 1,1
1 1, , , , , ,( ) = ( ) ( )є ( ) ( ) ( )є ( ) ( ),G k k k G k k G k− − − −

−′ ′ ′ ′−σ σ −σ σ −σ σ σ σ −σ −σ −σ σΛ +Λ +Λ −k k  (A.3) 

 
1 1 1 1

1,1 1,1 1,1 1, 1 1,1 1,1
1 1, , , , , ,( ) = ( ) ( )є ( ) ( ) ( )є ( ) ( ).G k k k G k k G k− −

−′ ′ ′ ′−σ −σ −σ −σ −σ σ σ −σ −σ −σ −σ −σ− Λ − −Λ +Λ − −k k  (A.4) 

Here 

 1, 1 1,1
1 1

1є ( ) = є( ), є ( ) = є( ), є( ) = ( )e , є( ) = 0, ( ) = ( ).i xt G k G k
N

− −
− ′ ′σσ σ σ− − −∑ ∑k

x k
k k k k k x k  (A.5) 
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Assuming that the system is in a paramagnetic state, 

that superconductivity has a singlet character and using the 
definitions (8) together with the additional ones:  

 
1,1 1, 1

1,1

( ) = ( ), ( ) = ( ),

( ) = ( ),

k k k Y k

k Y k

−
σσ σ σσσσ
−

σσσσ

Λ Λ Λ

Λ
 (A.6) 

we obtain the following results: 

( )(1 є( ) ( )) є( ) ( ) ( )
( ) = ,

( )
k k Y k Y k

G k
d k

σ σ σσ σσ
σ

σ

Λ − − Λ − − −k k
  

 
( ) ( )

( ) = , ( ) = ,
( ) ( )

Y k Y k
F k F k

d k d k
σσ σσ

σσ σσ
σ σ

 (A.7) 

 ( ) = (1 є( ) ( ))(1 є( ) ( ))d k k kσ σ σ− Λ − − Λ − +k k   

 є( )є( )Y ( ) ( ),k Y kσσ σσ+ −k k   

which coincide with those found in the papers [10,11]. 
In spinor representation the system of Eqs. (A.1)–(A.7) 

has the form 

 ˆ ˆˆ ˆ ˆ= є ,G GΛ +Λ  (A.8) 

were 

 
( ) ( )ˆ = ,
( ) ( )

G k F k
G

F k G k
σ σσ

σσ σ

⎛ ⎞
⎜ ⎟− −⎝ ⎠

  

   
( ) ( ) є( ) 0ˆ ˆ= , є = .
( ) ( ) 0 є( )
k Y k k

Y k k k
σ σσ

σσ σ

Λ⎛ ⎞ ⎛ ⎞
Λ ⎜ ⎟ ⎜ ⎟−Λ − − −⎝ ⎠⎝ ⎠

 (A.9) 

By using Eq. (9) we can obtain 

 

1,1

1, 1

1,1

є( )(1 є( ) ( ))
( ) = ,

( )

( ) = є( )є( ) ( ) ,

( ) = є( )є( ) ( ).

k
T k

d k

T k F k

T k F k

σ
σ

σ
−

σσσσ
−

σσσσ

− − Λ −

− −

− −

k k

k k

k k

 (A.10) 
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