Влияние больших пластических деформаций на низкотемпературный пик термоэдс и электросопротивление поликристаллической меди

В.Н. Светлов, А.Л. Соловьев, В.Б. Степанов

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: svetlov@ilt.kharkov.ua

Статья поступила в редакцию 24 мая 2011 г.

Проведены экспериментальные исследования зависимостей температуры и абсолютной величины минимума дифференциальной разностной термоэдс (ТЭДС) от величины пластической деформации в поликристаллических образцах меди с различным содержанием примесей: условно чистых (99,99% Cu) и условно грязных (99,9% Cu). Параллельно с ТЭДС измерено относительное удельное электросопротивление, нормированное на величину остаточного сопротивления при 4,2 К. Немонотонный характер деформационных зависимостей минимума ТЭДС и электросопротивления непосредственно отражает эволюцию дефектной структуры образцов по мере увеличения деформации.

Проведено експериментальні дослідження залежностей температури та абсолютної величини мінімуму диференціальної різницевої термоерс (TEPC) від величини пластичної деформації в полікристалічних зразках міді з різним вмістом домішок: умовно чистих (99,99% Cu) та умовно брудних (99,9% Cu). Паралельно з TEPC виміряно відносний питомий електроопір, нормований на величину залишкового опору при 4,2 К. Немонотонний характер деформаційних залежностей мінімуму TEPC і електроопору безпосередньо відображає еволюцію дефектної структури зразків по мірі збільшення деформації.

РАСS: 72.15.-v Электронная проводимость в металлах и сплавах;

- 72.15.Ев Электро- и теплопроводность в кристаллических металлах и сплавах;
- 62.20.F- Деформация и пластичность.

Ключевые слова: термоэлектродвижущая сила, дислокации, пластическая деформация, электросопротивление.

В различных областях науки и техники широко применяются микро- и наноструктурированные материалы с высокими конструкционными, функциональными и технологическими свойствами. К настоящему времени разработано несколько методов получения таких материалов. Наиболее перспективным является метод интенсивной пластической деформации в различных вариациях [1]. Исследование механизмов деформационного зарождения и развития наноструктур особенно актуально в связи с тем, что не существует общепринятой точки зрения на эту проблему [2], которая имеет фундаментальный характер и касается малоизученных механизмов пластического деформирования.

Хорошо известно, что путем значительных деформаций при низкой температуре, например, в результате холодной прокатки [3], можно сильно измельчить структуру металлов. Поскольку элементарными носителями пластической деформации являются дислокации, их поведение и взаимодействие с другими дефектами кристаллической решетки и определяет электрические и механические свойства металлов.

Одним из перспективных, но малоизученных является метод исследования пластических деформаций с помощью термоэлектродвижущей силы (ТЭДС) [4]. В отличие от электропроводности ТЭДС реагирует на возмущения решетки не только величиной, но и знаком эффекта и несет при этом информацию не только о рассеивающей способности дефекта, но и о характере рассеивающей способности дефекта, но и о характере рассеивания, а также об изменениях электронного энергетического спектра вблизи поверхности Ферми. Поскольку медь является идеальным модельным материалом для изучения особенностей холодной деформации, в настоящей работе исследовано поведение ТЭДС в холоднокатанной меди различной чистоты при различных степенях деформации в широком температурном интервале. Как отмечалось в работе [5], при температуре ~ 40 К наблюдается смена знака абсолютной ТЭДС меди, а затем резко выраженный минимум при ~ 10 К. Природа этого минимума до конца не выяснена, хотя известно [5], что его величина очень чуствительна к малейшим примесям и деформациям. Как показано нами [6,7], внешние воздействия также влияют и на положение минимума разностной дифференциальной ТЭДС на температурной шкале от деформации.

В экспериментах по измерению ТЭДС использована методика, развитая нами в работах [6,7]. Измеряемые образцы представляли собой поликристаллическую проволоку диаметром ~1,5 мм. В одних случаях из чистой меди (99,99%) — в дальнейшем «чистые» образцы, а в других из обычной электротехнической меди M1 — в дальнейшем «грязные», следующего химического состава, %: Си — 99,9; Ві — 0,001; Sb — 0,002; As - 0,002; Fe - 0,005; Ni - 0,002; Pb - 0,005; Sn — 0,002; S — 0,004; О — 0,055; Zn — 0,004. Для устранения дефектов и напряжений исходные образцы отжигались в течение 1 ч в атмосфере аргона при температуре ~0,5*T*_m, где *T*_m — температура плавления. Затем образцы прокатывались при комнатной температуре со все увеличивающейся степенью деформации. После каждой прокатки они отжигались при температуре ~0,1 T_m в течение 1 ч для удаления точечных дефектов, в них измеряли ТЭДС и электросопротивление в интервале температур 4,2-300 К.

Следует заметить, что, как отмечалось в работах [6,7], величина минимума разностной дифференциальной ТЭДС и его положение на температурной шкале в районе 20 К зависят и от величины деформации, и от чистоты образца и характерны как для «чистых», так и для «грязных» образцов. Таким образом, этот минимум служит чувствительным индикатором процессов, протекающих в образце при различных степенях пластической деформации.

На вставке рис. 1 показана схема измерения образца, который представляет собой дифференциальную термопару. Методика вычисления S_{AB} описана в работах [6,7]. На рис. 1 приведена зависимость модуля величины минимума S_{AB}^{min} разностной дифференциальной ТЭДС от степени деформации (ε) в «чистом» и «грязном» образцах (темные треугольники и квадраты), а на рис. 2 показана зависимость положения этого минимума на температурной шкале в этих же образцах при тех же степенях деформации.

Обращает на себя внимание то, что минимумы S_{AB} на рис. 1 в «чистых» и «грязных» образцах появляются при различной степени деформации. Так, в «чистых» образцах минимум появляется уже после $\varepsilon \sim 10\%$, а в «грязных» — в районе ~ 40% деформации. Примерно после 60% деформации поведение «чистых» и «грязных» образцов практически одинаково. Отличие на начальном этапе деформации проявляется и на зависи-

Рис. 1. Зависимости модуля величины отрицательной разностной дифференциальной ТЭДС (▲,■) и относительного удельного электросопротивления (△,□) от степени деформации. Квадраты (темные и светлые) относятся к условно грязным образцам, треугольники — к условно чистым.

мости температурного положения минимума от деформации (рис. 2). На рис. 2 видно, что при увеличении деформации от 0 до ~ 40% температура, при которой наблюдается минимум ТЭДС в «чистых» образцах, заметно убывает. Подчеркнем еще раз, что при таких значениях ε в «грязных» образцах минимум на разностной дифференциальной ТЭДС не наблюдается, а появляется после $\varepsilon > 40\%$. После ~ 40% деформации «чистые» и «грязные» образцы ведут себя практически одинаково. Возникает вопрос, какие процессы в деформируемом материале описывает изменение величины минимума от деформации и почему в «грязных» образцах начальный минимум появляется при больших степенях деформации, чем в «чистых». Как мы полагаем, это, во-первых, может быть связано с так называе-

Рис. 2. Зависимость температурного положения минимума разностной дифференциальной ТЭДС от степени деформации є. Квадраты — «грязная» медь, треугольники — «чистая».

мым твердорастворным упрочнением [8] в «грязных» образцах. Как известно, при взаимодействии атомов замещения и внедрения с атомами основного металла может образоваться определенный порядок в расположении атомов (ближний или дальний) и возникнуть искажения кристаллической решетки вследствие различного размера атомов, образующих твердый раствор. В процессе пластической деформации дислокации при своем движении разрушают ближний порядок в сплаве и преодолевают искажение кристаллической решетки. Это, естественно, повышает работу сопротивления деформированию и приводит к упрочнению. Таким образом, при одних и тех же степенях деформации в «чистых» и «грязных» образцах образуются различные дислокационные субструктуры, поскольку твердорастворное упрочнение задерживает перестройку дислокаций и, соответственно, субструктурные превращения. Дальнейшие изменения в структуре твердого раствора влекут за собой изменение величины твердорастворного упрочнения в ходе деформации вплоть до его полного исчезновения [8]. В рассмотренном случае, как мы полагаем, этот процесс наблюдается при степенях деформации порядка 40-50%. При этом следует заметить, что природа взаимосвязи превращений дислокационной субструктуры с другими процессами, происходящими в слаболегированных сплавах, изучена недостаточно.

Во-вторых, это может быть связано с взаимным положением и величиной минимума на абсолютной ТЭДС в измеряемом образце и подводящих проводах, которые также медные. Ответ, вероятно, может быть получен при измерениях абсолютной ТЭДС образцов.

Интересно сравнить зависимости от деформации величины минимума ТЭДС и удельного электросопротивления на одних и тех же образцах.

Зависимости удельного электросопротивления после деформации р_d, нормированного на удельное сопротивление недеформированного образца р, измеренные при T = 4,2 К, также приведены на рис. 1. Светлые треугольники и квадраты — данные для условно «чистых» и «грязных» образцов соответственно. Видно, что при деформации ~ 95% удельное сопротивление ра превышает сопротивление недефомированной меди более чем в 7 раз. При этом зависимость ρ_d/ρ от ϵ немонотонная и качественно совпадает с зависимостью $|S_{AB}^{\min}|$ от є. Особенно хорошее согласие наблюдается для «чистых» образцов (рис. 1, треугольники). Для «грязных» образцов при є > 40% согласие кривых также вполне удовлетворительное (рис. 1, квадраты). При ε < 40% трудно говорить о каком-то согласии, поскольку при этих значениях є минимум в «грязных» образцах не наблюдается, что обсуждалось выше. Таким образом, поведение двух независимых величин минимума на ТЭДС и электросопротивления — в деформированных образцах качественно совпадает.

Похожее поведение относительного удельного сопротивления чистой меди наблюдалось в работе [9], где показано, что в зависимости от среднего размера зерен, уменьшающихся в результате деформации, сопротивление нелинейно возрастает. На графике рис. 1 это область более 40% деформации, где зависимость также носит нелинейный характер и электросопротивление изменяется незначительно до тех пор, пока, как следует из работы [9], размер зерен уменьшается до 10 мкм и резко увеличивается в субмикронной области. С чем связана ярко выраженная периодическая зависимость положения минимума разностной дифференциальной ТЭДС на температурной шкале от деформации (рис. 2), требует дальнейшего исследования. Однако можно предположить, что она связана со стадийностью [8] пластического течения и причиной такого поведения являются изменения в дислокационных субструктурах. Известно, что переход от одной дислокационной субструктуры к другой приводит к значительному, иногда весьма резкому, изменению механических и электрических свойств металлов и сплавов.

Таким образом, можно сказать, что нами впервые обнаружено, что величина минимума на разностной дифференциальной ТЭДС довольно хорошо коррелирует с зависимостью электросопротивления от деформации, а зависимость положения минимума на температурной шкале при деформации и природа такого поведения, вероятно, связаны с последовательностью дислокационных превращений и требует дальнейших исследований.

Авторы выражают благодарность К.А. Чишко за полезные обсуждения.

- Р.З. Валиев, И.В. Александров, Наноструктурные материалы, полученные интенсивной пластической деформацией, Логос, Москва (2000).
- M.A. Meyers, A. Mishra, and D. Benson, J. Progr. Mater. Sci. 51, 427 (2006).
- 3. В.В. Рыбин, Большие пластические деформации и разрушение металлов, Металлургия, Москва (1986).
- 4. А.А. Лухвич, в кн.: Влияние дефектов на электрические свойства металлов, Наука и техника, Минск (1976).
- 5. R.H. Kropschot and F.J. Blatt, Phys. Rev. 116, 617 (1959).
- В.М. Дмитриев, Н.Н. Пренцлау, В.Н. Светлов, В.Б. Степанов, ФНТ **31**, 94 (2005) [Low Temp. Phys. **31**, 73 (2005)].
- В.Н. Светлов, В.Б. Степанов, ФНТ 32, 919 (2006) [Low Temp. Phys. 32, 700 (2006)].
- Н.А. Конева, Э.В. Козлов, Л.И. Тришкина, Металлофизика 131, 49 (1991).
- 9. Р.К. Исламгалиев, Н.А. Ахмадеев, Р.Р. Мулюков, Р.3. Валиев, *Металлофизика* **130**, 317 (1990).

The influence of intensive plastic deformation on thermopower low-temperature peak and resistivity of polycrystalline copper

V.N. Svetlov, A.L. Solovjov, and V.B. Stepanov

The temperature dependence and the absolute value of the minimum of differential difference thermoelectric power (TEP) were investigated experimentally as a function of plastic deformation in polycrystalline copper samples with different contents of impurities: conditionally pure (99.99% Cu) and conditionally dirty (99.9% Cu). Simultaneously the relative electrical resistivity normalized to the value of residual resistance at 4.2 K was measured. The nonmonotonic character of the deformation dependences of the resistivity and TEP minimum account for the evolution of the defect structure in specimens with increasing strain.

PACS: **72.15.-v** Electronic conduction in metals and alloys; 72.15.Eb Electrical and thermal conduction in crystalline metals and alloys;

62.20.Fe Deformation and plasticity.

Keywords: thermoelectric power, dislocations, plastic deformation, electrical resistance.