Природа магнитного фазового перехода в монокристаллическом LaMnO_{3+δ}

И.К. Галетич, А.В. Еременко, В.А. Пащенко, В.А. Сиренко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: galetich@ilt.kharkov.ua

В.В. Брук

Украинский научно-исследовательский институт экологических проблем ул. Бакулина, 2, г. Харьков, 61103, Украина

Статья поступила в редакцию 29 февраля 2012 г.

Измерены изотермы полевых зависимостей магнитного момента M(H) при температурах выше и ниже магнитного фазового перехода ($T_c = 125$ К) в монокристаллическом лантановом манганите с избытком кислорода (LaMnO_{3+δ}). Анализ этих магнитных изотерм с построением графиков Арротта и привлечением критерия Бенерджи показал, что магнитный фазовый переход в этом монокристалле относится к фазовым переходам второго рода.

Виміряно ізотерми польових залежностей магнітного моменту M(H) при температурах вище та нижче магнітного фазового переходу ($T_c = 125$ K) у монокристалічному лантановому манганіті з надлишком кисню (LaMnO_{3+δ}). Аналіз цих магнітних ізотерм з будуванням графіків Аррота та використанням критерію Бенерджи показав, що магнітний фазовий перехід в цьому монокристалі відноситься до фазових переходів другого роду.

PACS: 75.30.Kz Магнитные фазовые границы (включая классические и квантовые магнитные переходы, метамагнетизм и т.д.);

36.40.Сд Электронные и магнитные свойства кластеров.

Ключевые слова: манганит, магнитный фазовый переход, графики Арротта.

Введение

Магнитные свойства оксидов марганца интересны как с практической, так и с точки зрения фундаментальной физики. Особенно интригует тесная связь в манганитах различного рода упорядочений: орбитального, зарядового и магнитного [1,2]. Наименее изучено характерное для манганитов состояние спинового стекла, которое неоднократно наблюдалось в керамических образцах манганитов различного состава. В работе [3] изучались магнитные свойства монокристаллов лантанового манганита анионизбыточного состава, однако не рассматривался вопрос о природе магнитного фазового перехода из парамагнитного в упорядоченное состояние. Поэтому прежде, чем переходить к изучению самого магнитоупорядоченного состояния, мы остановились на выяснении природы фазового перехода из парамагнитного в магнитоупорядоченное состояние. Для этого, как обычно, проведены измерения полевых зависимостей магнитного момента образца M(H) при фиксированных температурах выше и ниже температуры перехода T_c . Затем строились графики Арротта [4] и привлекался критерий Бенерджи [5].

Методика эксперимента

Измерения полевых зависимостей магнитного момента M(H) проведены на СКВИД-магнитометре MPMS-XL5 (производство Quantum Design) при фиксированных температурах в диапазоне 100–150 К и в магнитных полях до 5 Тл. Поле ориентировалось вдоль *с*-оси монокристаллического образца. Погрешность ориентации магнитного поля не более одного градуса. Масса монокристаллического образца m = 1,86 мг.

Анализ результатов и численные расчеты выполнены с помощью программы, разработанной одним из соавторов.

Рис. 1. Температурная зависимость обратной восприимчивости в поле H = 100 Гс.

Результаты и их обсуждение

На рис. 1 показана температурная зависимость обратной магнитной восприимчивости в слабом магнитном поле $H = 100 \, \Gamma c$. В высокотемпературной области эта зависимость неплохо описывается формулой $\chi^{-1}(T) = (T - T_c)/C$, где C = 5,64, а $T_c = 120$ К. Положительное значение Т_с говорит о ферромагнитном взаимодействии, а абсолютное значение Т_с дает возможность оценить величину отклонения содержания кислорода от стехиометрического в монокристаллическом образце. В работе [3] исследованы магнитные свойства трех монокристаллических образцов анионизбыточного состава LaMnO_{3+ δ} с δ = 0,01; 0,02; 0,085, для которых получены $T_c = 144$; 177,9; 203,4 К соответственно. Поскольку в исследованном нами образце $T_c = 120$ К, в нашем случае следует считать $\delta < 0.01$. В работе [3] было показано, что при столь малом параметре б анионизбыточный лантановый манганит относится к пространственной группе Pbnm, имеет структуру

Рис. 3. Графики Арротта: $M^2(H/M)$ при фиксированных температурах.

 $O_{1'}$ и параметры элементарной ячейки a = 5,529 Å, e = 5,572 Å, c = 7,756 Å (при комнатной температуре).

Все эксперименты в настоящей работе проведены при ориентации магнитного поля вдоль *с*-оси (**H**||**c**).

На рис. 2 представлены изотермы полевых зависимостей магнитного момента М(Н) образца при фиксированных температурах выше и ниже Тс. На рис. 3 приведены графики Арротта [4] — зависимости $M^2 = f(H/M)$ при фиксированных температурах. Поскольку график Арротта линейно экстраполируется в начало координат при температуре 125 К, следует считать, что эта температура наиболее близка к Т_с, хотя и отличается от определенной по температурной зависимости обратной восприимчивости. Производные графиков Арротта по температуре $d(M^2)/d(H/M)$ и эти же производные в логарифмическом масштабе представлены на рис. 4 и 5 соответственно. Видно, что при всех температурах производные положительны, следовательно, в соответствие с критерием Арротта-Бенерджи [5,6], речь идет о фазовом переходе второго рода.

Рис. 2. Изотермические зависимости магнитного момента от напряженности магнитного поля.

Рис. 4. Производные $d(M^2)/d(H/M)$ в линейном масштабе

Рис. 5. Производные $d(M^2)/d(H/M)$ в полулогарифмическом масштабе.

Выводы

Измерены изотермы полевых зависимостей магнитного момента M(H) при температурах выше и ниже магнитного фазового перехода в монокристаллическом лантановом манганите с избытком кислорода. Анализ этих магнитных изотерм с построением графиков Арротта и привлечением критерия Бенерджи показал, что магнитный фазовый переход в этом монокристалле относится к фазовым переходам второго рода.

Авторы благодарны В.В. Еременко за интерес к работе и полезные обсуждения и В.П. Гнездилову за предоставленные для исследования монокристаллы.

- 1. L.P. Gor'kov and V.Z. Kresin, Phys. Rep. 400, 149 (2004).
- 2. E. Dagotto, Science 309, 257 (2005).
- С.Н. Барило, В.И. Гатальская, С.В. Ширяев, Г.Л. Бычков, Л.А. Курочкин, С.Н. Устинович, R. Szymczak, M. Baran, В. Krzymanska, *ФТТ* 45, 139 (2003).
- 4. A. Arrott and J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967).
- 5. S.K. Banerjee, Phys. Lett. 12, 16 (1964).
- 6. A. Arrott, Phys. Rev. 108, 1394 (1957).

Nature of magnetic phase transition in the LaMnO_{3+δ} single crystal

I.K. Galetich, A.V. Eremenko, V.A. Pashchenko, V.A. Sirenko, and V.V. Brook

Isotherms of field dependences of magnetic moment M(H) are measured in the lanthanum manganite single crystal with an excess of oxygen (LaMnO_{3+ δ}) at the temperatures above and below the magnetic phase transition ($T_c = 125$ K). Analysis of the magnetic isotherms by constructing the Arrott graphs and taking into account the Benergy criteria shows that the magnetic phase transition in this single crystal is the second-order phase transition.

PACS: 75.30.Kz Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.);
36.40.Cg Electronic and magnetic properties of clusters.

Keywords: manganite, magnetic phase transition, Arrott graphs.