Магнитное состояние монокристаллического анионизбыточного манганита LaMnO_{3+б}

И.К. Галетич, А.В. Еременко, В.А. Пащенко, В.А. Сиренко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Ленина, 47, г. Харьков, 61103, Украина E-mail: galetich@ilt.kharkov.ua

В.В. Брук

Украинский научно-исследовательский институт экологических проблем ул. Бакулина, 2, г. Харьков, 61103, Украина

Статья поступила в редакцию 29 февраля 2012 г.

Проведены измерения магнитного момента монокристалла LaMnO_{3+δ} в широком интервале температур и магнитных полей в различных режимах охлаждения и измерения. Установлена природа магнитного состояния монокристаллического манганита LaMnO_{3+δ}: в нем возникает кластерное спиновое стекло.

Проведено вимірювання магнітного моменту монокристала LaMnO_{3+δ} у широкому інтервалі температур і магнітних полів в різних режимах охолоджування і вимірювання. Встановлено природу магнітного стану монокристалічного манганіту LaMnO_{3+δ}: в ньому виникає кластерне спінове скло.

РАСS: 75.50.-у Изучение конкретных магнитных материалов;

75.10.Nr Спиновое стекло и другие случайные модели;

75.25.Dk Орбитальное, зарядовое и другое упорядочение, включая их взаимодействие;

36.40.Сд Электронные и магнитные свойства кластеров.

Ключевые слова: манганит, магнитный момент, охлаждение в поле, охлаждение без поля, спиновое стекло.

Введение

Исследованию свойств магнитных оксидов в последние десятилетия уделяется большое внимание по причине их практической значимости и интереса с точки зрения фундаментальной физики [1,2]. Наименее изучено состояние спинового стекла, характерное для манганитов, которое наблюдалось в керамических образцах манганитов различного состава. Магнитные свойства монокристаллов лантанового манганита анионизбыточного состава изучались в работе [3], однако остался невыясненным вопрос о природе магнитного состояния. В настоящей работе предпринята попытка ответить на этот вопрос.

Методика эксперимента

Эксперименты по измерению температурных зависимостей магнитной восприимчивости монокристалла LaMnO_{3+δ} в интервале температур 2–350 К и магнитных полей 0,001–1 Тл при **H**||**c** проведены на СКВИДмагнитометре MPMS-XL5 (Quantum Design). Дополнительно измерялись полевые зависимости намагниченности образца при постоянной температуре в диапазоне 100-140 К и в магнитных полях от 0 до 5 Тл. Результаты получены в двух режимах измерений: 1) ZFC (zero field cooling) — охлаждение образца в нулевом магнитном поле до минимальной температуры прибора и затем измерение магнитного момента в поле при нагревании; 2) FC (field cooling) — охлаждение образца в измерительном поле с одновременной регистрацией величины магнитного момента FC↓ либо охлаждение образца в магнитном поле до минимальной температуры прибора и затем измерение магнитного момента в этом поле при отогреве FC↑. Перед началом измерений каждого цикла перемагничивания кристалла образец всегда предварительно нагревался (выше T_N) и затем охлаждался в режиме ZFC до требуемой температуры.

Ориентацию кристаллографических осей кристалла LaMnO_{3+ δ} определяли методом Лауэ. Погрешность установки магнитного поля вдоль **H**||**c** составляла не более $\pm 1^{\circ}$.

© И.К. Галетич, А.В. Еременко, В.А. Пащенко, В.А. Сиренко, В.В. Брук, 2012

Сравнение полученных нами результатов измерений магнитной восприимчивости в высокотемпературной области (100–300 К) с результатами работы [3], в которой магнитные исследования сопровождались рентгеноструктурными, привело к выводу [4], что исследуемый нами монокристалл по составу слабо отличается от стехиометрического и описывается формулой LaMnO_{3+δ}, где $\delta < 0,01$. При $\delta < 0,01$ кристалл относится к пространственной группе *Pbnm* и должен иметь структуру $O_{1'}$ и параметры элементарной ячейки a = 5,529 Å, b = 5,572 Å, c = 7,756 Å (при комнатной температуре).

Все магнитные измерения проведены при ориентации магнитного поля вдоль *с*-оси (**H**||**c**). Масса монокристаллического образца m = 1,86 мг.

Анализ экспериментальных данных и численные расчеты выполнены с помощью программы, разработанной одним из авторов. Аппроксимирующие кривые получены по методу наименьших квадратов.

Результаты и их обсуждение

Для манганитов характерно влияние режима охлаждения на температурные зависимости намагниченности: выше некоторой температуры T^* результаты, полученные при охлаждении образца в магнитном поле и без поля, совпадают, а ниже T^* — расходятся. Несколько различаются температурные зависимости намагниченности, полученные при охлаждении в магнитном поле, но измеренные при нагреве и в процессе охлаждения.

На рис. 1 представлены температурные зависимости намагниченности в ZFC и FC режимах $M_{ZFC}(T)$ и $M_{FC}(T)$ в различных магнитных полях. Виден ряд особенностей этих зависимостей: максимум в слабых магнитных полях (до 500 Гс) и резкое различие температурного хода $M_{ZFC}(T)$ и $M_{FC}(T)$.

Рис. 1. Температурные зависимости магнитного момента M(T) в магнитных полях H = 10, 100, 200, 500 Гс; 1, 5 и 10 кГс (снизу вверх) в ZFC (•) и FC↑ (•) режимах. Измерения проведены при отогреве. *Т**— температура расщепления FC и ZFC кривых.

Проведено сопоставление магнитных восприимчивостей $\chi_{ZFC}(T)$ и $\chi_{FC}(T)$ при различных значениях напряженности магнитного поля. В качестве примера на рис. 2 и 3 приведены температурные зависимости восприимчивости при H = 200 Гс и 5 кГс соответственно.

Максимум магнитной восприимчивости наблюдается (наиболее отчетливо для ZFC) в слабых магнитных полях (до 1 кГс). Во многих работах, посвященных магнитным свойствам манганитов, температуру максимума ZFC интерпретируют как температуру магнитного (спинового) стеклования T_f .

Отчетливо видно расхождение (*splitting*) температурных зависимостей магнитных восприимчивостей при ZFC и FC (T^* — температура расщепления). Кривые $\chi_{FC\uparrow}(T)$ и $\chi_{FC\downarrow}(T)$ расщепляются, причем трижды: при температурах T_{rev1} , T_{rev2} и T_{rev3} (рис. 4). Температуру T_{mo} , при которой достигается минимум производной dM/dT, связывают с установлением магнитного порядка.

Чтобы проследить, как изменяется с ростом напряженности магнитного поля температура T_{f} , достаточно продифференцировать кривые $M_{ZFC}(T)$ по температуре при различных полях. Температура T_f определяется по обращению в нуль производной dM_{ZFC}/dT , как показано на рис. 4,*a* для H = 200 Гс.

Значения температур T^* , T_{mo} , T_f , T_{rev1} , T_{rev2} , T_{rev3} в магнитных полях напряженностью 10, 100, 200, 500 Гс, 1, 5 и 10 кГс собраны в табл. 1.

Обсуждение низкотемпературных особенностей производных выходит за рамки настоящей статьи, но зависимости особых температур T_{mo} , T_f , T_{rev1} , T_{rev2} , T_{rev3} от напряженности магнитного поля очевидны и близки к линейным:

Рис. 2. Температурные зависимости магнитной восприимчивости $\chi(T)$ в поле H = 200 Гс, измеренные в режимах FC↑ (×), ZFC↑ (○); FC↓ (▽). T^* — температура расщепления FC и ZFC кривых; T_f — температура максимума M(T); T_{rev2} и T_{rev3} — температуры расщепления кривых FC↑↓.

Low Temperature Physics/Физика низких температур, 2012, т. 38, № 6

Puc. 3. Температурные зависимости магнитных восприимчивостей в магнитном поле $H = 5 \ \kappa\Gamma c$. На вставке *a* показана температурная зависимость разности магнитных моментов M_{FC} , измеренных в поле $H = 5 \ \kappa\Gamma c$ при охлаждении и отогреве: $M_{FC\downarrow}(T) - M_{FC\uparrow}(T)$. На вставке δ — температурная зависимость производной магнитного момента по температуре dM_{ZFC}/dT в поле $H = 5 \ \kappa\Gamma c$.

$$T_f(H) = 120 \text{ K} - k_f H,$$
 (1)

$$T_{\rm ray1}(H) = 185 \,\mathrm{K} + k_1 H \tag{2}$$

$$T_{\rm rev2}(H) = 84 \text{ K} - k_2 H.$$
 (3)

$$T_{\rm rev3}(H) = 115 \text{ K} - k_3 H,$$
 (4)

$$T_{mo}(H) = 121 \text{ K} - k_{mo}H,$$
 (5)

при $k_f = 0,0040$ К/Гс, $k_1 = 0,0130$ К/Гс, $k_2 = 0,0051$ К/Гс, $k_3 = 0,0030$ К/Гс.

Зависимость T_{mo} от напряженности магнитного поля более сложная. В малых полях с ростом напряженности она быстро уменьшается, а затем в полях больших 1 кГс возрастает. В полулогарифмических координатах эта зависимость описывается симметричной параболой $T_{mo} = 0,3244X^2 - 4,3936X + 135,7$, где $X = \ln H$ (качество аппроксимации $R^2 = 0,94$).

Для определения температуры расщепления T^* $M_{ZFC}(T)$ разделили на $M_{FC}\uparrow(T)$ и получили температурные зависимости отношения $\beta(T) = M_{ZFC}(T)/M_{FC}\uparrow(T)$. Затем, проведя горизонтальную линию, отличающуюся от $\beta = 1$ на 0,5% (второй вариант — на 1%), на пересечении ее с кривыми $\beta(T)$ при разных напряженностях магнитного поля находили $T^*(H)$, как показано стрелками на рис. 5. Аналогичная процедура проводилась с отношением $M_{ZFC}/M_{FC}\downarrow$ для нахождения температур T_x . Они тоже внесены в таблицу.

Зависимость *Т**(*H*) удается хорошо аппроксимировать степенной функцией

$$T^*(H) = A + BH^n \tag{6}$$

при значениях параметров A = 123,5 К, B = -0,6521 К/Гс^{*n*}, n = 0,4191 (качество аппроксимации $R^2 = 0,9922$). Столь же высокое качество аппроксимации получается при следующих значениях параметров:

$$A = 116,5 \text{ K}, B = -0,6876 \text{ K/Cc}^n, n = 0,5712, R^2 = 0,9845;$$

 $A = 125,0 \text{ K}, B = -0,9652 \text{ K/Cc}^n, n = 0,3805, R^2 = 0,9915.$

Важно отметить, что во всех вариантах с высоким качеством аппроксимации показатель n < 2/3.

Low Temperature Physics/Физика низких температур, 2012, т. 38, № 6

Рис. 4. Температурные зависимости производной магнитного момента по температуре dM/dT (*a*), разности между магнитными моментами $M_{FC\downarrow}(T) - M_{FC\uparrow}(T)$, измеренными при охлаждении и отогреве (δ), и отношения магнитных моментов $M_{FC\downarrow}(T)/M_{FC\uparrow}(T)$, измеренных при охлаждении и отогреве (ϵ) в поле 200 Гс.

Магнитные свойства манганитов различного состава исследовались неоднократно. Считается доказанным, что в орбитально разупорядоченном состоянии сверхобменное взаимодействие Mn³⁺(6)–O–Mn³⁺(6) для октаэдрической координации катионов марганца положительно, а для пентаэдрической координации Mn³⁺(5)–O–Mn³⁺(5) отрицательно [4,5]. Конкуренция этих взаимодействий приводит к фрустрации доменных связей и образованию нового магнитного состояния — спинового стекла.

Зависимость (6) характерна для спинового стекла, теория которого построена в работе [6]. Диаграмма спинового стекла в координатах температура–энергия (в рамках модели Изинга) была построена в работе [7]. Показано, что магнитное поле вызывает переход из состояния спинового стекла в ферромагнитное состояние. При этом в матрице с нулевым суммарным моментом могут выделяться протяженные области с ненулевой намагниченностью — магнитные кластеры

Рис. 5. Фрагмент температурных зависимостей отношения $\beta(T) = M_{ZFC}(T)/M_{FC}\uparrow(T)$ в магнитных полях напряженностью 100, 200, 500 Гс; 1, 5 и 10 кГс. Стрелками указаны температуры *T** при различных напряженностях магнитного поля.

(возникает кластерное спиновое стекло). Во внешнем магнитном поле температура расщепления ZFC и FC магнитных кривых T^* смещается, следуя теории, по закону, описываемому формулой (6). Та же теория для спинового стекла предсказывает значение n = 2/3, а для кластерного — n < 2/3. В нашем случае n < 2/3, т.е. реализуется кластерное стекло.

В модельном представлении Бина–Ливингстона [8] средний размер ферромагнитных включений в диаили парамагнитной матрице определяется температурой стеклования T_f .

Температура же расходимости ZFC и FC температурных зависимостей намагниченности T^* определяет максимальный размер ферромагнитного кластера, который в нашем случае, пока малы напряженности магнитного поля, мало отличается от среднего размера, поскольку в малых полях значения T^* и T_f близки. Однако с ростом поля T_f изменяется слабо, а T^* значительно. Таким образом, если верна идентификация T_f и T^* (увязывание T_f со средним размером ферромагнитных кластеров, а T^* — с максимальным), то

Таблица 1. Положение особых точек T^* , T_f , T_{mo} , T_{rev1} , T_{rev2} , T_{rev3} , T_x кристалла LaMnO_{3+ δ} (**H**||**c**) для случая ZFC в зависимости от амплитуды приложенного магнитного поля

<i>Н</i> , Тл	<i>Т*</i> , К	<i>T*</i> , K	<i>Т_x</i> , К	<i>Т_x</i> , К	<i>Т_{то}</i> , К	<i>Т_f</i> , К	T _{rev1} , K	<i>T</i> _{rev2} , К	T _{rev3} , K
	(на 0,5%)	(на 1,0%)	(на 0,5%)	(на 1,0%)					
0,001	_	$121,\!64 \pm 0,\!5$	$117,52 \pm 0,5$	$107,\!28 \pm 0,\!5$	$120,67 \pm 0,5$	118,977	182,48	116,64	79,67
0,01	$117,\!90\pm0,\!5$	$114,94 \pm 0,5$	$105,\!47 \pm 0,\!5$	$92,\!82\pm0,\!5$	$120{,}69\pm0{,}5$	118,587	188,03	115,40	69,29
0,02	$112,50 \pm 0,5$	$107{,}57\pm0{,}5$	$94,\!18\pm0,\!5$	$86,\!27\pm0,\!5$	$120,92 \pm 0,5$	118,288	188,16	113,78	66,85
0,05	$96{,}39\pm0{,}5$	$89,42 \pm 0,5$	$85{,}67\pm0{,}5$	$78,\!37\pm0,\!5$	$120,15 \pm 0,5$	117,139	179,48	110,72	57,62
0,1	$83,\!94\pm0,\!5$	$81,\!39\pm0,\!5$	$78,52 \pm ,5$	$70{,}24\pm0{,}5$	$119,77\pm0,5$	114,714	188,78	111,22	45,08
0,5	$54{,}82\pm0{,}5$	$46,84 \pm 0,5$	_	_	$120,92 \pm 0,5$	-	285,56	-	41,33
1,0	$53,94 \pm 0,5$	$48,27 \pm 0,5$	—	_	$124,23 \pm 2,0$	-	298,29	64,29	41,58

приходим к выводу, что максимальный размер кластера убывает с ростом поля (дробление крупных кластеров), а средний размер почти сохраняется. Это возможно, если число кластеров с максимальными размерами невелико, а кластеры малых размеров с ростом поля не дробятся.

В заключение отметим, что в недавно опубликованной работе [9] исследовалось магнитное состояние аниондефицитного манганита $La_{0,70}Sr_{0,30}MnO_{2,85}$. Как и в нашем случае, результаты интерпретируются с точки зрения возникновения кластерного спинового стекла. Различие состоит в том, что в нашей работе исследовался монокристаллический, а не керамический образец, и состав его был не аниондефицитным, а, напротив, анионизбыточным. Однако общим является то, что в обеих системах реализуется кластерное спиновое стекло.

Выводы

Результаты измерения магнитного момента в широком интервале температур и внешних магнитных полей в различных режимах охлаждения и измерения позволили установить природу магнитного состояния монокристаллического манганита LaMnO_{3+δ}.

Показано, что в нем возникает кластерное спиновое стекло, что прослеживается по полевой зависимости температуры расходимости ZFC и FC магнитных кривых.

Авторы благодарны В.В. Еременко за интерес к работе и полезные обсуждения и В.П. Гнездилову за предоставленные для исследования монокристаллы.

- 1. L.P. Gor'kov and V.Z. Kresin, Phys. Rep. 400, 1 (2004).
- 2. E. Dagotto, Science 300, 257 (2005).
- С.Н. Барило, В.И. Гатальская, С.В. Ширяев, Г.Л. Бычков, Л.А. Курочкин, С.Н. Устинович, R. Szymczak, M. Baran, В. Krzymanska, *ФТТ* 45, 139 (2003).

- K.R. Poeppelmeier, M.E. Leanowicz, and J.M. Longo, J. Solid State Chem. 44, 89 (1982).
- И.О. Троянчук, Д.Д. Халянин, С.В. Труханов, Г.Н. Чобот, H. Szymczak, *Письма в ЖЭТФ* 70, 583 (1999).
- S.F. Edwards and P.W. Anderson, J. Phys. F: Metal Phys. 5, 965 (1975).
- B. Sherrington and S. Kirkpatrick, *Phys. Rev. Lett.* 35, 1792 (1975).
- C.P. Bean and J.D. Levingstone, J. Appl. Phys. 30, S120 (1959).
- 9. С.В. Труханов, А.В. Труханов, А.Н. Васильев, А.М. Балагуров, Г. Шимчак, *ЖЭТФ* **140**, 942 (2011).

The magnetic state of a single-crystal anion-excess manganite LaMnO_{3+\delta}

I.K. Galetich, A.V. Eremenko, V.A. Pashchenko, V.A. Sirenko, and V.V. Brook

The magnetic moment of the LanO_{3+ δ} single crystal is measured in wide temperature and magnetic field ranges at different cooling and measuring condition. As a result, the nature of the magnetic state of LaMnO_{3+ δ} have been defined: there appears a cluster spin glass in it.

PACS: **75.50.-y** Studies of specific magnetic materials; 75.10.Nr Spin-glass and other random models;

75.25.Dk Orbital, charge, and other orders,

- 75.25.DK Ofoliai, charge, and other
- including coupling of these orders;
- 36.40.Cg Electronic and magnetic properties of clusters.

Keywords: manganite, magnetic moment, the cooling with field, cooling without field, spin glass.