Low-temperature phosphorescence of dicyanoacetylene in rare gas solids Michał Turowski¹, Claudine Crépin², Isabelle Couturier-Tamburelli³, Nathalie Piétri³, and Robert Kołos^{1,4} ¹Institute of Physical Chemistry of the Polish Academy of Sciences, 44 Kasprzaka Str., Warsaw 01-224, Poland E-mail: robert.kolos@ichf.edu.pl ²Institut des Sciences Moléculaires d'Orsay, UMR 8214, Univ Paris- Sud, CNRS, Orsay F-91405, France ³UMR CNRS 6633, Physique des Interactions Ioniques et Moléculaires, Université de Provence, Case 252, Centre de St. Jérôme, 13397 Marseille Cedex 20, France > ⁴Cardinal S. Wyszyński University, Faculty of Mathematics and Natural Sciences Wóycickiego 1/3, Warsaw 01-938, Poland > > Received March 12, 2012 A strong visible $\tilde{a}^3 \Sigma_u^+ - \tilde{X}^1 \Sigma_g^+$ luminescence was observed upon the UV excitation of cryogenic rare gas (argon, krypton, and xenon) matrices doped with dicyanoacetylene (NC₄N). Spectra and lifetimes of this phosphorescence have been measured. A detailed analysis of resolved vibronic bands is presented. PACS: 33.50.Dq Fluorescence and phosphorescence spectra; Keywords: matrix isolation, phosphorescence, dicyanoacetylene, cyanopolyynes. Dedicated to Professor Elena V. Savchenko ## Introduction Dicyanoacetylene (dicyanoethyne, 2-butynedinitrile, NC₄N, Fig. 1) is a rod-shaped molecule, first synthesized by Moureu and Bongrand [1]. Its IR and Raman vibrational spectroscopy was thoroughly studied [2-5], as were the mid-UV [6,7] and vacuum-UV [8] electronic transitions. Electronic luminescence (phosphorescence) has so far been found for several cyanoacetylene-family molecules dispersed in solid rare-gas matrices, namely for NC₄N [9] and HC₅N (cyanodiacetylene) [10], for another isoelectronic pair: NC₂N (cyanogen) [11] and C₃N⁻ (cyanoacetylide anion) [12], and finally for NC₆N [13]. Such emission, on the other hand, is not occurring for HC₃N (cyanoacetylene). The study presented here has been carried out with the goal of revisiting the topic investigated by Smith et al. [9], by giving a detailed account of NC₄N phosphorescence in solid rare gases. Smith et al. limited their description to the most intense vibronic bands (0-0), and 3 elements of the v_1 " progression) in Ar. We were also interested in comparing the NC₄N phosphorescence to that of HC₅N, recently measured by Turowski et al. [10] in Ar, Kr, and Xe. ## **Experimental** NC₄N was prepared following the method described by Miller and Lemmon [14], starting from the methyl ester of acetylene dicarboxylic acid (Aldrich, 99%). Inert gases either argon (Multax 5.0 grade), krypton (Linde 4.0) or xenon (Messer 4.8) were doped with NC₄N at a typical ratio of 1:1000, and solidified onto a sapphire substrate inside a closed-cycle helium refrigerator Displex DE-202 (Air Products). Purity of samples was checked with standard FTIR absorption spectroscopy. All spectra were routinely measured at 15 K. The luminescence studies were accomplished with an Edinburgh FL 900 CDT fluorometer equipped with a high-pressure xenon lamp, grating monochromators, and a photon-counting detection system. The spectral resolution was 0.2-0.4 nm; wavenumber differences (leading to vibronic spacings) were measured with an accuracy of approx, 20 cm⁻¹. Edinburgh FL 900 CDT time-resolved fluorometer, featuring a pulsed nitrogen discharge lamp, was employed for luminescence lifetime measurements. *Fig. 1.* Displacement vectors for fundamental vibrational modes of NC₄N in its ground electronic state, as derived with a harmonic density functional theory computation B3PW91/aug-cc-pVTZ. #### Results and discussion Strong NC₄N luminescence was emitted upon the excitation of $\tilde{A}^1\Sigma_u^- - \tilde{X}^1\Sigma_g^+$ or $\tilde{B}^3\Delta_u^- - \tilde{X}^1\Sigma_g^+$ transitions in all investigated matrices. Its lifetime was long, as expected for the $\tilde{a}^3 \Sigma_u^+ - \tilde{X}^1 \Sigma_g^+$ phosphorescence — and was found to depend on the environment, being as long as 1.25 s in solid Ar, 52 ms in krypton, and just 2.5 ms in xenon. Qualitatively, the phosphorescence intensity was found to grow in the Ar, Kr, Xe order. The wavenumber of a vibrationless origin (0_0^0 band) , 25659 cm⁻¹ in Ar (red-shifted from that value by 344 cm⁻¹ in Kr, and by 452 cm⁻¹ in Xe), is approx. 50 cm⁻¹ higher than measured by Smith et al. [9] with a Fourier transform instrument. The reason for this discrepancy, larger than our estimated absolute calibration error, is not clear; it may possibly originate in the pulsed method of matrix deposition employed by Smith et al. (a technique known to produce particularly well-relaxed arrangements of dopant molecules in cryogenic solids). Despite certain efforts, we did not detect any fluorescence, i.e., any emission originating from excited singlet electronic states. As already recognised by Smith et al., the main vibronic progression is governed mostly by a triple-bond stretching frequency of about 2300 cm⁻¹ (Fig. 2), which corresponds to the fully symmetric mode v_1 (cf. Fig. 1). This general spectral pattern, resembling the one observed for related linear cyanides NC₂N, NC₆N or HC₅N (see Introduction), suggests a linear emitting state, $\tilde{a}^3 \Sigma_u^+$. Of note, Fig. 2. NC₄N phosphorescence in solid rare gases (15 K). the spectrum is by far dissimilar to that reported by Vuitton *et al.* [15] for a seemingly similar case of diacetylene, HC₄H; there, phosphorescence is dominated by the progression of bands spaced with a bending mode frequency of ca. 630 cm⁻¹. These findings are in agreement with the theoretically predicted geometry of the corresponding lowest triplet states: bent in the case of HC₄H [16] and linear for NC₄N [17]. Table 1 reports the main vibronic frequencies observed for the NC₄N phosphorescence in rare gas solids, together with corresponding spectral assignments. A more detailed table is available as the Supplemental Material. The selection rules for spin-forbidden, orbitally-allowed $\tilde{a}^3 \Sigma_u^+ - \tilde{X}^1 \Sigma_\sigma^+$ transitions predict the occurrence of a vibrationless band, and of those vibronic features, which involve totally symmetric modes, such as v_1 . A closer inspection of the distance separating the strongest groups of bands reveals that its change is not monotonic, and hence not governed solely by the anharmonicity of v_1 . The reason for this stems from multiple cases of Fermi resonance. While the first (0_0^0) band of the progression consists of a single strong component, the second one is doubled due to the $v_1/2v_5$ anharmonic interaction — as discovered in the gas-phase Raman spectrum by Miller and Hannan [3], and further studied in solid Ar by Smith *et al.* [9]. The third group of strong bands consists of as many as three components, for which the possible explanation involves a resonance between two overtone modes and a combination mode, namely $2v_1$, $4v_5$, and $v_1 + 2v_5$. If this is the case then the fourth group may originate from the interacting modes $3v_1$, $2v_1 + 2v_5$, $v_1 + 4v_5$. When comparing the spectral shifts that accompany the transition from one solid matrix to another, it can clearly be seen that bending modes are usually more strongly altered by the environment than the stretching ones. Moreover, certain bands that appear prominently in Ar, are weak or missing in Kr and in Xe (see Fig. 3). This applies in particular to the spectral features associated with the centrosymmetric zig-zag bending mode v_6 . The bands v_6 , $2v_6$, and $3v_6$ are of medium intensities in Ar, while in Kr only the $2v_6$ is of a comparable strength, v_6 being barely visible, and $3v_6$ — absent. The symmetry of v_6 is π_g whereas the $2v_6$ overtone, a $\pi_g \times \pi_g$ product, contains a totally symmetric (and thus orbitally allowed) component. The appearance (albeit weak) of π_g -symmetry modes in argon $(v_6, v_7, 2v_6 + v_7, 3v_6, ...)$ may indicate a slight distortion of the NC₄N molecule from linearity, imposed by the argon lattice. Table 1. Vibronic assignments for the $\tilde{a}^3\Sigma_u^+ - \tilde{X}\Sigma_g^+$ phosphorescence of NC₄N in solid rare gases at 15 K. See <u>Supplemental Material</u> at for a complete list of spectral features. | Ar | | | Kr | | | Xe | | | | |------------------------------|-------------------|-------------------|------------------------------|--------------|-------------------|------------------------------|--------------|-------------------|-------------------------------| | Wavenumber, cm ⁻¹ | | Int. ^b | Wavenumber, cm ⁻¹ | | Int. ^b | Wavenumber, cm ⁻¹ | | Int. ^b | Assignment | | ν | Δv^a | | ν | Δv^a | | ν | Δv^a | | | | 25659 | 0 ° | VS | 25315 | 0 | vs | 25207 | 0 | vs | 00 | | 25392 | 267 ^c | vvw | 25068 | 247 | vvw | 24937 | 270 | vvw | 71 | | 25144 | 515 | w | 24807 | 508 | vvw | 24703 | 504 | vvw | 61 | | 25037 | 622 ^c | w | 24697 | 618 | w | 24594 | 613 | w | 31 | | 24875 | 784 | w | 24558 | 757 | w | 24444 | 763 | w | 6 ₁ 7 ₁ | | 24697 | 962 | vvw | 24373 | 942 | vvw | 24254 | 953 | vvw | 82 | | 24630 | 1029 | w | 24307 | 1008 | w | 24190 | 1017 | w | 62 | | 24366 | 1293 ^c | w | 24050 | 1265 | vvw | 23947 | 1260 | vvw | 6271 | | 24114 | 1545 ^c | w | 23804 | 1511 | vvw | 23669 | 1538 | vvw | 63 | | 23844 | 1815 | w | 23541 | 1774 | w | 23425 | 1782 | w | 6371 | | 23597 | 2062 | vvw | | | | 23171 | 2036 | w, sh | 64 | | 23519 | 2140 | w | | | | 23069 | 2138 | w, sh | 21 | | 23376 | 2283 | VS | 23021 | 2294 | VS | 22916 | 2291 | vs | 11 | | 23305 | 2354 | m | 22958 | 2357 | s, sh | 22858 | 2349 | s, sh | 52 | | 21125 | 4534 | S | 20760 | 4555 | s, sh | 20654 | 4553 | s, sh | 54 | | 21049 | 4610 | VS | 20692 | 4623 | S | 20594 | 4613 | S | 12 | | 20952 | 4707 | m | | | | | | | 1 ₂ 5 ₂ | | 18822 | 6837 | w | 18446 | 6869 | w | 18362 | 6845 | w | 13 | | 16518 | 9141 | w | 16146 | 9169 | vvw | 16069 | 9138 | vvw | 14 | | 14325 | 11334 | vvw | | | | | | | 15 | Comment: a wavenumber relative to the 0–0 band; ${}^{b}s$ – strong, m – medium, w – weak, v – very, sh – shoulder; c bands featuring phonon sidebands, redshifted by ca. 40 cm $^{-1}$ (see Supplemental Material). Fig. 3. Short-wavelength part of the NC₄N phosphorescence in solid rare gases (15 K). Relative abscissa scale, drawn with respect to vibrationless origins positioned at: $25\ 659\ \text{cm}^{-1}$ in Ar, $25\ 315\ \text{cm}^{-1}$ in Kr, $25\ 207\ \text{cm}^{-1}$ in Xe. NC_4N and HC_5N (cyanoacetylene) are similar, being linear, isoelectronic, and of comparable sizes; a nitrogen atom of the dicyano- is replaced by CH in the monocyanospecies. Both molecules feature a number of mutually alike vibrations. In fact the v_1 , v_2 , v_3 , v_4 , v_5 , v_6 , v_7 , v_8 , v_9 modes of NC_4N are close to respective HC_5N vibrations v_2 , v_4 , v_6 , v_3 , v_5 , v_8 , v_{10} , v_9 , v_{11} (neglecting the obvious lack of a symmetry center in the latter). It is therefore interesting to compare their phosphorescence. Indeed, the above-mentioned environment-dependent comportment found for the v_6 mode of NC_4N , is similarly observed for the corresponding v_8 mode of HC_5N , where it may also be rationalised in terms of a small matrix-induced nonlinearity of the molecule. Dramatic changes between solid Ar and Kr have also been reported for the intensity of bending modes in the phosphorescence of other linear chains: HC_4H [15] and C_3N^- [12]. Particularly interesting is the case of C_3N^- , for which nontotally symmetric modes appeared in Kr, and were absent in Ar (a behavior opposite to that of NC_4N). The chain size, similar for NC_4N and HC_5N , but quite different for C_3N^- , is obviously a critical factor determining the arrangement and possible distortions of the molecule within a given host lattice. The main vibronic progressions concern the mutually similar vibrations ν_1 of NC₄N and ν_2 of HC₅N [10]. Fermi-type resonances of $2\nu_5$ with either of these modes are observed. Such an anharmonic interaction is weaker in the case of HC₅N; consequently the vibrational progression is for HC₅N less perturbed than in the case of NC₄N. #### **Conclusions** The phosphorescence of NC₄N in rare gas matrices, induced by the absorption to excited singlet states, is very intense. This qualitative observation, together with the absence of any measurable fluorescence, suggests an efficient intersystem crossing between the excited states. The triplet state lifetime, of the order of seconds in Ar, is reduced in heavier host solids due to the external heavy atom effect [18], especially pronounced in Xe. The vibronic structure of the phosphorescence is complex, due to Fermi resonances between totally symmetric modes and lower-symmetry overtones. Exploration of different host media allows for detailed analyses of vibronic bands and highlights the matrix effects. ## Acknowledgments Authors acknowledge the financial support from the Polish Ministry of Science & Higher Education (grant No. N N204 152 036), as well as from the French-Polish cooperation programs: PICS (2009–2011) and Polonium (2012–2013). - C. Moreau and J.C. Bongrand, *Bull. Soc. Chem.* 5, 846 (1909). - 2. A. Miller and R.B. Hannan, Jr., *J. Chem. Phys.* **21**, 110 (1953). - 3. A. Miller and R.B. Hannan, Jr., and L. R. Cousins, *J. Chem. Phys.* **23**, 2127 (1955). - F. Winther and M. Schönhoff, *J. Mol. Spectrosc.* 186, 54 (1997). - 5. R.K. Khanna, M.A. Perera-Jarmer, and M.J. Ospina, *Spectrochim. Acta* **A43**, 421 (1987). - 6. F.A. Miller and R.B. Hannan, *Spectrochim. Acta* 12, 321 (1958). - Y. Bénilan, D. Andrieux, M. Khlifi, P. Bruston, E. Raulin, J.-C. Guillemin, and C. Cossart-Magos, *Astrophys. Space Sci.* 236, 85 (1996). - 8. R.E. Connors, J.L. Roebber, and K. Weiss, *J. Chem. Phys.* **60**, 5011 (1974). - A.M. Smith, G. Schallmoser, A. Thoma, and V.E. Bondybey, J. Chem. Phys. 98, 1776 (1993). - M. Turowski, C. Crépin, M. Gronowski, J.-C. Guillemin, A. Coupeaud, I. Couturier-Tamburelli, N. Piétri, and R. Kołos, J. Chem. Phys. 133, 074310 (2010). - 11. J.-W. Chang and Y.-P. Lee, J. Mol. Struct. 157, 155 (1987). - M. Turowski, M. Gronowski, C. Crépin, S. Douin, S. Boyé-Péronne, L. Monéron, and R. Kołos, *J. Chem. Phys.* 128, 164304 (2008). - C. Crépin, M. Turowski, J. Ceponkus, S. Douin, S. Boyé-Péronne, M. Gronowski, and R. Kołos, *Phys. Chem. Chem. Phys.* 13, 16780 (2011). - 14. F.A. Miller and D.H. Lemmon, *Spectrochim. Acta* **A23**, 1415 (1967). - V. Vuitton, C. Gée, F. Raulin, Y. Bénilan, C. Crépin, and M.-C. Gazeau, *Planet. Space Sci.* 51, 847 (2003). - F. Vila, P. Borowski, and K.D. Jordan, *J. Phys. Chem.* A104, 9009 (2000). - 17. G. Fischer and I.G. Ross, *J. Phys. Chem.* **A107**, 10631 (2003). - 18. S.P. McGlynn, T. Azumi, and M. Kinoshita, *Molecular Spectroscopy of the Triplet State*, Prentice-Hall, Englewood Cliffs, N.J. (1969).