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A Green function analysis has been developed for quasiparticle spectrum of a 2D graphene sheet in presence 
of different types of substitutional disorder, including vacancies. The anomalous character of impurity effects in 
this system is demonstrated, compared to those in well known doped semiconductors, and explained in terms of 
conical singularities in the band spectrum of pure graphene. The criteria for appearance of localized states on 
clusters of impurity scatterers and for qualitative restructuring of band spectrum are established and a possibility 
for a specific metal/insulator transition at presence of vacancies is indicated. 
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1. Introduction 

There is a growing attention to electronic properties of 
a single carbon layer known as graphene [1]. Its 2D honey-
comb lattice defines a peculiar band structure [2] with two 
nodal points in the Brillouin zone (BZ) where conical 
energy surfaces (with zero effective mass) of conduction 
and valence bands touch each other. This gives rise to elec-
tronic dynamics of relativistic Dirac type [3], extraordinary 
for condensed matter, and generates such unusual pheno-
mena as half-integer Hall effect [4–6] and, possibly, the 
magnetic catalysis of an excitonic gap [7,8], ferromagnet-
ism and superconductivity [9]. On the other hand, it is of 
interest to examine the effects that various kinds of impuri-
ties can produce on this remarkable material, regarding for 
instance a fundamental role of such effects in physics of 
common semiconductors (with finite effective mass) [10]. 
An intriguing situation with impurity levels near conical 
singularities was recognized in d-wave superconductors 
[11] where theoretical predictions are sometimes contra-
dictory [12] and not fully confirmed by the existing expe-
rimental data. To this time, the disorder effects in graphene 
were theoretically studied, searching for weak localization 
in this 2D electronic system under weak scattering (Born 
limit) [13,14] or for strong localization under infinitely 

strong (unitary limit) perturbation [15]. This work is aimed 
on a consequent description of restructured electronic spec-
trum, at arbitrary perturbation strength and in a rather 
broad range of impurity concentration, and on specifics of 
this restructuring for Dirac quasiparticles under realistic 
perturbation, compared to more common quasiparticles 
with parabolic dispersion. In this respect, our results con-
tribute to the overall topic of the present issue dedicated to 
Prof. E.V. Savchenko's jubilee and her notable works on 
the electronically induced defects, especially vacancies, in 
cryocrystals [16–18]. 

2. Hamiltonian and Green functions 

Let us start from the simplest tight-binding Hamiltonian restricted 
to nearest neighbor hopping 

 †

,
= h.c.,H t a bn n+δ

n δ
+∑  (1) 

where t  is the hopping amplitude, an  and bn δ+  are the 
Fermi operators of (spinless) electrons on sites of type 1 
and 2, respectively, and the atomic energy on each site is 
chosen as zero energy reference. The set of vectors δ  
(of length | |= )aδ  relates to three nearest neighbors of 
a type 1 site (due to lack of central symmetry, it does not 
coincide with the set of δ−  for nearest neighbors of a type 2 
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site, see Fig. 1,a). Passing from site operators to plane 
waves: 1/2= e ia N akn

k n n
− −∑  and 1/2= e ib N bkn

k n n
− −∑

 (N being the number of cells in the lattice) the Hamilto-
nian, Eq. (1), is splitted in quasimomentum k: 

 †= ( h.c.),H t a bγk kk
k

+∑  (2) 

with the complex function 

 /2 3
= e = e 2e cos .

2
yiak iaki x x

ak
γ k δ

k
δ

−⋅ +∑  

It is then fully diagonalized: 

 † †= ( ),H ε α α β βk k kk k
k

−∑  (3) 

in terms of the normal modes operators: 

 ( )/2 /21= e e ,
2

i ia bϕ ϕα k kk k k
− +   

 ( )/2 /21= e e ,
2

i ib aϕ ϕβ k kk k k
−−    

with the eigen-energies = tε γk k . The main specifics of 
graphene is that the function γk  vanishes near two iso-
lated points in the BZ: = (0, 4 /3 3 )aπK  and –K (Fig. 1). 
Also the lack of central symmetry for the point group 3C  
makes this vanishing linear in a small difference 

=q k K−  (or =q k K+ ): 

 
3

( ), at 1,
2 y xa q iq aqγ γk q≡ ≈ − +  (4) 

defining the conical form of isoenergetic surfaces =ε εq±  as 
 q F qε ≈ v   

with the Fermi velocity 3
2= / .F tav  This conical spec-

trum is commonly compared with the relativistic massless 
Dirac fermions. The following analysis of this system is 
restricted to the low energy physics, essentially determined 
by the vicinities (below also referred to as valleys) of two 
nodal points K± . 

The electronic quasiparticle states at given k can be 
suitably generated by the operator spinors: 

 = ,
a
b

ψ k
k

k

⎛ ⎞
⎜ ⎟⎝ ⎠

 (5) 

and the Hamiltonian, Eq. (1), is expressed through such 
spinors as: 

 † ˆ= ,H hε ψ ψk k kk
k
∑  (6) 

with the matrix ˆ ˆ ˆ= ( )h t γ τ γ τk k k
∗

+ −+ , and ˆ ˆ ˆ= x yiτ τ τ± ±  
involving Pauli matrices ˆiτ . In what follows, the integration 
in k over BZ is presented as twice of that in q, done in an 
approximate way over a circle of radius = 8 /3 3 /mq aπ  
around K (half of the full BZ area). The corresponding ef-
fective bandwidth = 2.87F mW q t≈v , by the approximate 
dispersion law ,εq  is close to the exact bandwidth 3 ,t  by 
the exact dispersion law .εk  

We describe the dynamics of this system by the (Fouri-
er transformed) two-time Green functions (GF's) [19], here 
combined into a 2 × 2 matrix †

,
ˆ = |G ψ ψk k k k′ ′〈〈 〉〉  and 

satisfying the equation of motion: 

 [ ]† †
,| = , | ,Hε ψ ψ δ ψ ψk k k kk k′′ ′〈〈 〉〉 + 〈〈 〉〉  (7) 

where the commutator [ ], Hψk  is understood as a spinor 
whose components are commutators of respective ψk  
components with H: [ ] ,, = ,jjH Hψ ψk k⎡ ⎤⎣ ⎦ . For the 
unperturbed system with the Hamiltonian, Eq. (5), the ex-
act form of GF is readily obtained from Eq. (6) as 

, ' , '
ˆ ˆ=G g δk k k k k  where 

 2 2

ˆ
ˆ = .

h
g

ε

ε ε
k

k
k

+
−

 (8) 

The observable characteristics of the system follow 
from the Green functions in a usual way, for instance, the 
density of states (DOS) is obtained as 

 ,
1 ˆ( ) = Im Tr .G
N

ρ ε
π k k

k
∑  (9) 

Fig. 1. 2D lattice structure of a graphene sheet. Rhombic primi-
tive cell (shadowed) with two non-equivalent positions for carbon
atoms, 1 (open circles) and 2 (solid circles), and elementary trans-
lation vectors 1a  and 2a  of length 3a  (a). Rhombic Brillouin
zone (shadowed) with two non-equivalent nodal points, K (open)
and –K (solid), and vectors of reciprocal lattice 1b  and 2b  of
length 4 / ( 3)aπ  (b). 

a

b

2 1
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Another important quantity, the local density of states 
(LDOS) on a site jn  of jth type: 

 ( )
,

,

1 ˆ ˆ( ) = Im e ,
i j

jj
G

N
ρ ε τ

π
k k n

n k k
k k

− ′
′

′
∑  (10) 

with the projecting matrices ˆ ˆ= 1 ( 1) / 2j
j zτ τ⎡ ⎤+ −⎣ ⎦ . In the 

unperturbed system, the exact solution, Eq. (7), leads to 
simple linear energy dependencies of DOS: 0 2( ) = / ,Wρ ε ε  

and also of LDOS: 0 0( ) = ( ) / 2
j

ρ ε ρ εn . The following 

analysis is focused on modifications of these dependencies 
under local perturbations by impurities or vacancies. 

3. Impurity perturbations 

The notable distinction of graphene from genuine rela-
tivistic systems of quantum field theory is the possibility to 
study the effects of localized perturbations on its dynamics, 
which is our main purpose here. The disordered systems 
are specific by presence of localized states whose wave 
functions are restricted to atomically short distances 
[20,21], they always appear near the limits of non-
perturbed energy spectrum but can either emerge near 
some impurity resonance energies [22]. Besides them, ex-
tended (also called Bloch-like) states are present, similar to 
common Bloch waves in perfect crystals but with limita-
tion of wave function coherence by certain (long enough) 
mean free path .  

Here we adopt the Lifshitz model of impurity perturba-
tion, where the perturbation potential is identical for all 
impurity sites randomly distributed among the lattice sites 
[20]. This model looks more adequate to the case of rare 
defects in graphene, than the alternative choice [23] of 
Anderson model with random perturbations at each lattice 
cite [24]. Within the tight-binding framework, two charac-
teristic types of local perturbation are considered: i) that on 
the on-site atomic energy, also referred to as the “diagonal 
disorder” [25], here more relevant for substitution impuri-
ties and ii) that on the inter-site hopping, or the “nondia-
gonal disorder”, more relevant for vacancies. 

We begin from the simplest point-like diagonal pertur-
bation by a Lifshitz impurity, producing a certain shift V  
of the on-site energy at the impurity site. We denote 1p  
the defect sites of type 1 with concentration 1c  and 2p  
those of type 2 with concentration 2c  (not necessarily 
equal to 1c ), the total impurity concentration being 

1 2 = 1c c c+ . Then the perturbation operator in terms of 
local Fermi operators appears as 

† †
1 21 2

1 2

= ,H V a a b bp pp p
p p

⎛ ⎞
⎜ ⎟+′
⎜ ⎟⎝ ⎠
∑ ∑  

and, passing to the spinor representation, Eq. (5), it gets 
the form of scattering operator: 

 
( )†

, ,
ˆ= e .

i j
j

j j

VH
N

ψ τ ψ
k k p

kk
k k p

−′
′

′′
′ ∑ ∑  (11) 

The equation of motion for the perturbed GF matrix, 
Eq. (7) with Hamiltonian H H+ ′ , takes the form: 

  
( )

, , ,
,

ˆ ˆˆ ˆ= e ,
i j

j
j j

VG g G
N

δ τ
k k p

k k k k k k k
k p

−′′
′ ′ ′′ ′

′′

⎡ ⎤
⎢ ⎥+⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑  (12) 

the sum in the brackets presenting a set of “scattered” GF’s 
by impurity perturbations. Then certain iteration routines 
on the scattered GF's ,Ĝk k′′ ′  lead to solutions for the ini-
tial (or “master”) GF as certain expansions in groups of 
impurity scatterers, called group expansions (GE’s), spe-
cific for band-like or localized states in the disordered sys-
tem [22]. 

Namely, the band-like states are better described by the 
so-called fully renormalized GE, resulting from consecu-
tive iterations of Eq. (12) on each scattered GF except 
those already present in the previous iterations. Collecting 
the same GF's from all the iterations forms some coeffi-
cients beside them as infinite series of respective scattering 
amplitudes by all multiple scatterings. The subsequent al-
gebraic solution of resulting chained equations either for 
the master GF and its posterior scattered ones can be 
closed so that the master GF gets expanded in terms of 
multiple scatterings on a single impurity, on a pair of im-
purities, etc. The full renormalization means that each ele-
ment of such expansion also presents as a similar expan-
sion (but subdued to a particular scattering history of the 
master GF), and so on for its own elements. Such hierar-
chical structure is assured by the fact that one can uniquely 
trace the scattering history for each element at each level 
of the expansion. The most important momentum-diagonal 
GF is written as: 

 ( ) 11
,

ˆ ˆ ˆˆ= ,G G g Σk k k k
−−≡ −  (13) 

that is the inverse GF involves the self-energy matrix in 
the GE form: 

 ·

, 0

ˆ ˆ ˆˆˆ ˆ ˆ ˆ ˆ= 1 (e )i
j j j j j j

j j
T c c A A AΣ τ τ τ τk n

n n n
n

−
−′ ′ ′

≠′

⎡
⎢ + + ×
⎢⎣

∑ ∑   

 ( ) 1ˆ ˆˆ ˆ1 .j jA Aτ τn n …
−

−′
⎤

× − + ⎥
⎥⎦

 (14) 

Here 1ˆˆ = (1 )T V GV −−  is the common T-matrix, the pro-
jectors ˆ jτ  refer to the types of impurity scatterers and 
the matrix of effective interaction: 

 ·1ˆ ˆ ˆ= e .' iA G T
N

k n
n k

k
∑  (15) 

in a sequence ˆˆ ˆj jAτ τn ′  describes electron scatterings on 
a pair of impurities of types j  and j ′  at separation n. 
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The primed sum in Eq. (15) is subdued to the history be-
fore this scattering, that is restricted only to momenta non-
coincident with its preceding ones in products like 

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆj j j jA A A Aτ τ τ τn n n n…− −′ ′ . Thus the sum next to the uni-
ty in the brackets of Eq. (14) defines the contribution to 
GE by impurity pairs and the dropped terms are due to 
impurity triples, etc. [22]. 

Other iteration routine, applied to all the scattered GF’s 
with no exception to collect all the terms due to the free 
term ,ĝ δk k k ′  at any iteration of Eq. (13), leads to the non-
renormalized representation: 

 ˆ ˆ ˆ ˆ ˆ= ,G g g gσk k k k+  (16) 

more adequate for localized states. The respective GE for 
the self-energy σ̂  appears in the GF itself, instead of its 
inverse in Eq. (13), and has a similar structure to Eq. (14) 
but with the non-renormalized T-matrix ˆ ˆ= / (1 )t V gV− , 

1ˆ ˆ=g N gkk
− ∑ , and pair scattering matrices ˆˆ ˆ=a g tn n  

having no restrictions in quasimomentum sums. This re-
presentation is easier for practical evaluation of impurity 
effects and can also serve as an approximation for the 
(more involved) fully renormalized representation. Gener-
ally, each representation only makes sense until the corres-
ponding GE is convergent that is qualitatively checked 
below by comparison of the contributions by T-matrix and 
pair terms. 

In the low-energy approximation, Eq. (4), one has 
( ) 0Fγ εk kk ≈∑  for any regular function F  and can neg-

lect the nondiagonal elements in the above local GF matrix 
ĝ  to present it as a scalar: 

 
2

2 2
ˆ ( ) = ln 1 .Wg g

W
ε

ε
ε

⎛ ⎞
≈ − −⎜ ⎟

⎝ ⎠
 (17) 

Then the T-matrix also turns a scalar: ˆ / ( )t V D ε≈ , whose 
denominator ( ) = 1 ( )D Vgε ε−  would define a single-
impurity resonance at the energy res=ε ε  such that 

resRe ( ) = 0.D ε  But, this requires a strong enough per-
turbation: cr| | >V V , and, accordingly to Eq. (17), 

2
cr = 1 e / 2 1.45V W W+ ≈  amounts up to cr 10.4V ≈  eV 

(with a common choice of 2.5t ≈  eV). Of course, this is 
not an easy condition for real impurities like N or B substi-
tutes for C in the graphene plane, as can be seen from 
rough estimates of related perturbation parameters, by 
the difference of corresponding ionization potentials: 

B C B 3V I I≈ − ≈  eV and N C N 3.2V I I≈ − ≈ −  eV. Then, 
in a realistic situation when cr| |<V V , impurity effects 
would mainly affect the conical point in the energy spec-
trum. 

The choice between the above two GE forms for given 
k is done through the known Ioffe–Regel–Mott (IRM) cri-
terion for band-like states 1k  [26,21], which can be 
written in more detail as: 

 ,ε Γk k kk ⋅∇  (18) 

in terms of the renormalized dispersion law 
= Re ( )ε ε Σ εk k k−  and its broadening = Im ( )Γ Σ εk k . 

Since Re ( )Σ ε  is almost constant at low energies, for 
k K≈ , the left hand side of Eq. (18) is close to 

F K Wv ∼  here, while the right hand side is much small-
er, as shown below. Thus the IRM criterion, in the form 
accepted by Eq. (18), is granted and all the states are band-
like in this k-range. 

Then, using the renormalized form, Eq. (14), approx-
imated to its first term, we obtain the self-consistency equ-
ation: 

 ( )( ) = ,sc scG gε ε Σ−  (19) 

with the related self-energy ( ) = / [1 ( )]sc sccV VGΣ ε ε−  en-
tering the argument of the g-function, Eq. (17). It admits a 
simple solution, revealing the most evident impurity effect as 
the shift of the nodal point by cV : ( ) ( )scG gε ε≈  for all 

= cVε ε − , except for an exponentially narrow vicinity of 
the shifted nodal point, 2 2 2| | = (2 / ) exp ( /2 )cV W W cVε δ −  
[27], where it behaves as: 

 ( )
2

2
1( ) .
2sc

WG i
cV

ε ε δ
⎛ ⎞≈ − −⎜ ⎟⎝ ⎠

 (20) 

By this solution, DOS at the shifted nodal point would 
drop to an exponentially low minimum value, 

2

,min 2 2exp .
2

sc
W W
cV cV

ρ
π

⎛ ⎞
≈ −⎜ ⎟

⎝ ⎠
 

However some stronger contributions can come from the 
next GE terms as shown below. 

Since the T-matrix estimated with use of Eq. (17) is 
scalar: ( ) / [1 ( )]T V Vgε ε≈ − , the matrix structure of next 
GE terms is essentially defined by the structure of interac-
tion matrix: 

( )ˆˆ ˆ= e cos ( · ).i zyA T g fτ θτ nn n n K n+  

Here e = ( )/i
x yn in nθn +  and the two propagator functions 

are approximated at low energies, | | Wε , and not too 
short distances, ,n a  as: 

 (2)
02 2

3, .n n
F

i n t ag H f
nW W

πε ε π⎛ ⎞
≈ ≈⎜ ⎟⎝ ⎠v

 (21) 

involving the zeroth order Hankel function (2)
0H  [28]. 

Calculation of the pair GE term in Eq. (14) is simplified 
by the two facts: 

i) since the fast oscillating factor has zero average: 

 
1cos ( ) = cos ( ) = 0,

nN
K n K n⋅ ⋅∑   

the odd part of the pair term can be neglected beside 
the even part, 
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ii) the even part is defined by the diagonal form of 
the matrix product: 

   

2 2
, ,2 (1 )ˆ ˆ ˆˆ ˆ ˆ ˆ= ,

2
j j j jjj g f

A jA j A j jT
δ δn n

n n n
′ ′′

−
+ −

≈′  (22) 

(using the average: 2 ( ) = 1/ 2cos K n⋅ ). The related cor-
rection to Σ̂  is a scalar 2 3 2

2 / ,c V WΣ ∼  that is small 
enough beside the T-matrix term cT cV≈  to assure con-
vergence of the renormalized GE. The contribution to 2 ,Σ  
non-vanishing at | | 0ε → , is due to interactions between 
impurities of different types ( j j≠ ′ ) realized by the func-
tions nf  and amounts to: 

 
22 2 3

2 2 ln 1.c V W
VW

π
Σ

π
⎛ ⎞≈ −⎜ ⎟⎝ ⎠  (23) 

Note that Im 2Σ  by Eq. (23) is non-zero only if the pertur-
bation parameter is not too weak: | | /V W π  (though this 
restriction is easier than by the above cr .V  Otherwise, for 

2/ | | /W V Wπ π , the maximum GE correction to ˆIm Σ  
would come from impurity quadruples: 4 5 4

4Im / ,c V WΣ ∼  
and so on. Anyway, such power low (in c ) contributions 
would dominate over the exponentially small ,minscρ  in 
the minimum DOS under impurity effect. Also, smallness 
of these contributions assure the IRM criterion, Eq. (18), 
and thus the band-like type of states through entire low 
energy range. 

4. Vacancy perturbations 

The defects most commonly discussed in graphene are 
vacancies and the following analysis concentrates on their 
effects in this material. Since vacancy perturbation has no 
explicit energy parameter, its modeling finds a certain 
freedom of choice and the most usual approach in literature 
uses the model for vacancy by the before considered local 
perturbation, Eq. (11), in the limit of V → ∞  [15]. Such 
a strong assumption may look somewhat artificial physi-
cally, so it can be of interest to check its validity by a com-
parison with a more realistic perturbation model. To this 
end, we employ here the mechanism of simple exclusion of 
the hopping processes from and to the vacancy sites in 
the Hamiltonian, Eq. (1), this perturbation being expressed 
in terms of the local operators as: 

 † †
1 21 2, ,1 2

= ( h.c.) ( h.c.) .H t a b b ap δ p δp p
p δ p δ

+ −

⎡ ⎤
⎢ ⎥− + + +′
⎢ ⎥⎣ ⎦
∑ ∑   

  (24) 
Then, using Eq. (5), the perturbation is rewritten in the 
spinor form, analogous to Eq. (11): 

 
( ) ( )†

,
, ,

1 ˆ= e ,
2

i jj

j j

H V
N

ψ ψ
k k p

kk k k
k k p

−′
′′

′
′ ∑ ∑  (25) 

with the scattering matrices (1)
,

ˆ ˆ ˆ= ( )γ τ γ τV t ∗
− +′′ − +k kk k  and 

(2)
,

ˆ ˆ ˆ= ( )V t γ τ γ τk kk k
∗

+ −′′ − + . Also we apply below this model 

to study the effects of inter-vacancy interactions using 
the respective GE’s.  

Table 1. Basic elements and their multiplication rules for the 
self-energy problem in graphene with vacancies 

 
But the important difference of the vacancy non-local 

perturbation, Eq. (25), from the local perturbation, 
Eq. (11), is the momentum k  dependence of the V̂  ma-
trices. Their treatment is facilitated by the fact that the con-
stituent matrices τ̂± , together with the above defined 1,2τ̂ , 
form a simple algebra with the multiplication rules given 
by Table 1. Then, for instance, the fully renormalized GF 
matrix in this case is similar to Eq. (13): 

 1 1ˆ ˆˆ= ( ) .G g Σk k k
− −−  (26) 

Here the self-energy matrix (1) (2)ˆ ˆ ˆ=Σ Σ Σk k k+  include the 
particular terms 

 ( ) ( ) · ( )

0

ˆˆˆ = 1 (e ) ,j j i j
j jc T c AΣ k n

nk k
n

… …−

≠

⎡ ⎤
+ + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑  

for jth type vacancies and the interaction matrices 
( )( ) 1 ·ˆ ˆ ˆ= eΣ jj ' iA N G T− ′

′ ′
k n

n kk k . The formal structure of the 
GE pair term in Eq. (26) is analogous to that in Eq. (14) for 
impurities but, in contrast to that case, here the same sym-
metry condition ( ) 0Fγ εΣk k k ≈  makes only effective 
interactions to be those between vacancies of the same type 
( =j j ′ ). 

The above T-matrices can be found as momentum-
diagonal values, ( ) ( )

,
ˆ ˆj jT Tk k k≡ , of more general forms: 

 ( ) ( ) ( )
, , ,11=0 , ,1

ˆ ˆˆ ˆ ˆ=j j j
n n

n

T N V G G Vn
k kk k k k k k

n k k…
…

∞
−

′ ′∑ ∑  (27) 

From this definition, a matrix equation is readily obtained: 

 ( ) ( ) ( ) ( )
, , , ,11 1

1

1 ˆˆ ˆ ˆ ˆ= .j j j jT V V G T
N kk k k k k k k k

k
′ ′ ′+ ∑  (28) 

and, using the τ-algebra by Table 1, solved in the form: 

 ( )
2

( ) ( )
, ,

1ˆ ˆ ˆ ˆ= 1 .
( )

j j
j j

t
T V

G
γ γ

τ ε τ
ε ε
k k

k k k k

∗
′

′ ′
⎛ ⎞

+ + − −⎜ ⎟⎝ ⎠
 (29) 

Under the natural assumption that vacancies are equally 
present in two sublattices: 1 2= = / 2c c c , and taking ac-
count of identities: 1 2ˆ ˆ = 1τ τ+  and ˆ ˆ ˆ= xτ τ τ+ −+ , the full 
T-matrix results as: 

 
2 21ˆ ˆ= Re ,

( ) xT t
G

ε ε
γ τ

ε ε
k

k k
+

− + −  (30) 

 τ̂+  τ̂−  1τ̂  2τ̂  
τ̂+  0 1τ̂  0 τ̂+  
τ̂−  2τ̂  0 τ̂−  0 

1τ̂  τ̂+  0 1τ̂  0 

2τ̂  0 τ̂−  0 2τ̂  
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where the first term describes a characteristic zero-energy 
resonance by vacancy and just presents the V → ∞  limit 
of the above momentum-independent T̂  for impurities 
while the momentum-dependent terms are non-resonant 
and only weakly renormalize the dispersion law at higher 
energies. 

It is also natural to use the T-matrix, Eq. (30), “trun-
cated” to its resonant part, in a self-consistent equation for 
local GF, as a V → ∞  limit of Eq. (19): 

= ,sc
sc

cG g
G

ε
⎛ ⎞

+⎜ ⎟⎝ ⎠
 

whose solution would, in particular, tend to a finite imagi-
nary limit: ( 0) ln (1/ ) / .scG i c c Wε→ ∼  However ex-
tending of this solution towards zero energy in the case of 
vacancies is essentially restricted by the failure of the IRM 
criterion in a certain vicinity of the (here unshifted) nodal 
point: 0| |ε Δ . Approximating Eq. (30) to its first term 
with ( ) ( )scG Gε ε≈ , such vicinity is estimated from 
Eq. (18) as: 

 0 ,
ln(1 / )

c W
c

Δ ∼  (31) 

to define the Mott's mobility edges [21] between band-like 
and localized states in this disordered system. Also, the 
limit of band-like states and hence of the self-consistent 
treatment is manifested here by failing convergence of the 
renormalized GE. The latter is checked by comparing the 
pair term similar to Eq. (23), but with V  replaced by 

1( )scG ε− , and the T-matrix term written respectively as 
/ ( )scc G ε− . 
Otherwise, calculation of DOS within validity of the 

renormalized GF, Eq. (26), in the approximation of full 
T-matrix, Eq. (30), but taking ( ) ( )G gε ε≈ , leads to the 
analytic result: 

 
2

2
1 2( ) = Im 1 ln 1

2
T

cW
R RcW ε ε

ε
ρ ε

ε επ

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎢ ⎥− + − +⎨⎜ ⎟ ⎜ ⎟+⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦⎩
  

 
2

1 21 ln 1 ,cW
R Rε εε ε

⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎪⎢ ⎥+ − − ⎬⎜ ⎟ ⎜ ⎟−⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎪⎣ ⎦⎭
 (32) 

where 2= 1 4 4 / [ ( )]R c c gε ε ε+ + . This function within its 
validity is close to the “truncated” T-matrix result: 

 
21 ( )( ) = Im ln 1 ,

( ) ( )T
c Wg

g g c
ε

ρ ε ε
π ε ε ε′

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥+ −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ + ⎠⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦
(33) 

as shown in Fig. 2, and both them deviate down from the 
non-perturbed linear 0 ( )ρ ε . But at approaching the mo-
bility edges, 0| |ε Δ∼ , they also notably deviate from the 
self-consistency behavior (which should be in principle 
more reliable until the renormalized GE converges). 

At least, within the range of localized states, 0| |ε Δ , 
the choice should be done for the non-renormalized GF, in 
analogy with Eq. (16). Its contribution in the simplest T-
matrix approximation: ˆ / ( )c gσ ε≈ , used in Eq. (16), leads 
to the expression for DOS by localized states: 

loc 2( ) ,
/ln

c
W

ρ ε
ε ε

≈  

that intercepts the before considered scρ  at such low ener-
gies. Nevertheless its validity is also limited by the GE 
convergence requirement, to some more narrow vicinity of 
zero, 

 1 ,
ln (1 / )

c W
c

Δ ∼   

estimated with use of similar expressions as for the above 
case of impurities, Eq. (31), but replacing ( )scG ε  by ( ),g ε  
This vicinity should measure the area of concentration 
broadening around the vacancy resonance peak. 

A closer insight on the localization process can be ob-
tained, beginning from a single vacancy on site p  (say, of 
type 1) and constructing a quasiparticle state with energy 
ε : (1) † (2) †| = ( ) | 0a bεψ ψ ψn n n nn〉 + 〉∑ , whose amplitudes on 
type j sites ( )jψn  are found from the Schroedinger equa-
tion, ( ) | = 0'H H εε ψ+ − 〉 . The solutions having central 
symmetry with respect to the impurity site p are of 
the same form as the above referred propagator functions, 
Eq. (21), dominated at 0ε→  by the scale-free nf . The 
resulting marginal behavior of zero-energy states by single 
defects [15], though does not correspond to their true loca-
lization, facilitates localization of states on defect pairs 
(and their higher numbers). For instance, a pair of vacan-
cies at long enough separation r a  produces a doublet 

Fig. 2. Results of different approximations for DOS in graphene 
with vacancies at their concentration = 0.005c  in comparison 
with the non-perturbed linear law 0( )ρ ε . The thin dashed lines 
indicate the estimated limits of validity of renormalized GE ( 0,Δ
the Mott’s mobility edge) and of non-renormalized GE ( 1Δ ). 
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of localized levels at finite energies rε±  where 
/ [ ln ( / )],εr Wa r r a∼  both having characteristic radius 

pair ln ( / ) ,r r r a r∼  thus yet much bigger than the sepa-
ration between these vacancies. This situation can be seen 
in the spirit of general theory of of quasiparticle spectra in 
disordered systems [20,22], as presence of a whole series 
of defect pairs with separations ranging from a∼  to 

/r a c∼ ∼  (the average distance between single defects, 
a reasonable biggest size of an isolated pair). Accordingly, 
the biggest pair size will define the closest distance, 1,Δ  
from a pair level to zero energy, and the effectively smal-
lest size (but not too rare in the system) will define the 
mobility edge 0Δ . 

Existence of a finite mobility gap 0 0[ , ]Δ Δ−  around 
zero energy should produce important practical effects on 
electron dynamics and transport in the disordered graphene 
system. Though vacancies themselves should not perturb 
the initial electron-hole symmetry and zero location of the 
Fermi energy Fε , it can be modified by some other me-
chanisms like adsorbed impurities or chemical bias. Then, 
with its crossing the mobility edge by a related control, 
a transition from insulating to metallic state can occur in 
this system at zero temperature and a very high tempera-
ture sensitivity of transport in the vicinity of such transition 
can be expected. 

It is of interest to compare this type of spectrum restruc-
turing with the known examples for non-relativistic spec-
tra. Thus, the low-frequency acoustic resonance 

res /D DM Mω ω ω′∼  by impurities with mass 
M M′  in a crystal with atomic mass M  and Debye 
frequency Dω  [32] gives rise to splitting of phononic 
spectrum near resω  with opening of a quasi-gap (seen as 
a dip in DOS) of width 2

res/Dcω ω∼ , at surpassing 
the characteristic impurity concentration 3

0 res( / )ω ωDc ∼  
(the cubic law) [33]. This dip corresponds to repulsion of 
band levels from the impurity resonance (in contrast to the 
hump in DOS and attraction of band levels to the reson-
ance expected in graphene). Another example is the donor 
level locε  near a parabolic conductance band [31], which 
rapidly expands and merges with this band when the donor 
concentration exceeds loc loc / mc Eε∼  (linear law), in the 
2D case, or 3/2

loc loc( / ) ,ε mc E∼  in the 3D case. The 3/2 
law also defines the characteristic concentration 

3/2
0 res( / )c Jω∼  of weakly coupled ( J J′ ) impurity 

spins in a Heisenberg ferromagnet when the magnon spec-
trum splits near the resonance frequency res ,ω J J′∼  
and the cubic law 3

0 res( / )c Jω∼  defines such effect in 
an aniferromagnet [22]. Hence the case of defects in gra-
phene, where the critical concentration appears to be either 
impossibly high: 0 1c ∼  (for substitutional impurities), or 
completely vanishing: 0 0c →  (for vacancies), differs 
from all those, even at seemingly identical linear disper-
sion (as for phonons and antiferromagnons). 

5. Conclusions 

In conclusion, the effects of local perturbation by vari-
ous types of impurities, including vacancies, in single layer 
graphene were studied by means of Green function tech-
niques. Namely, restructuring of electronic quasiparticle 
spectrum near its relativistic Dirac-type nodal points was 
analyzed through application of various types of group 
expansions for a Green function itself or for its inverse 
(self-energy) in groups of interacting impurity clusters. A 
special study for substitutional impurities with realistic 
(not too strong compared to the non-perturbed bandwidth) 
perturbation potential permitted to conclude on persistence 
of band-like states in the whole nodal area, though the ac-
count of non-trivial cluster terms by the group expansion 
provides essential corrections (power-law in impurity con-
centration c ) to the finite density of nodal states, besides 
an exponentially small (∼  e 1/c− ) value by the common T-
matrix term, and should so essentially modify the related 
low-energy physics. Similar group expansions in the case 
of vacancies, indicated the conditions for quasiparticle 
localization near nodal points and location of the Mott's 
mobility edges around them for any small vacancy concen-
tration c . A possibility for specific metal/insulator transi-
tion in a graphene layer at presence of vacancies, under 
modulation of the Fermi energy by some additional me-
chanisms, is indicated. The developed group expansion 
approach can be useful for other types of Green functions 
in the systems with nodal points in quasiparticle spectrum 
under disorder effects. 
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