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The influence of the inelastic nature of electron scattering by surface excitations of liquid helium (ripplons) on the shape 

of magnetoconductivity oscillations induced by resonance microwave (MW) excitation is theoretically studied. The MW 
field provides a substantial filling of the first excited surface subband which sparks off inter-subband electron scattering by 
ripplons. This scattering is the origin of magneto-oscillations in the momentum relaxation rate. The inelastic effect becomes 
important when the energy of a ripplon involved compares with the collision broadening of Landau levels. Usually, such a 
condition is realized only at sufficiently high magnetic fields. On the contrary, the inelastic nature of inter-subband scattering 
is shown to be more important in a lower magnetic field range because of the new enhancement factor: the ratio of the inter-
subband transition frequency to the cyclotron frequency. This inelastic effect affects strongly the shape of conductivity oscil-
lations which acquires an additional wavy feature (a mixture of splitting and inversion) in the vicinity of the level-matching 
points where the above noted ratio is close to an integer. 

PACS: 73.40.–c Electronic transport in interface structures; 
73.20.–r Electron states at surfaces and interfaces; 
73.25.+i Surface conductivity and carrier phenomena; 
78.70.Gq Microwave and radio-frequency interactions. 

Keywords: resonance MW excitation, magneto-oscillations, liquid-helium surface. 

1. Introduction

Microwave-induced magnetoconductivity oscillations, 
whose minima evolve into novel zero-resistance states at 
high microwave (MW) power, were first observed in dege-
nerate semiconductor two-dimensional (2D) electron sys-
tems [1–3]. In these experiments, the magnetic field B was 
directed normally to the electron layer, and the MW fre-
quency ω  was substantially larger than the cyclotron fre-
quency = / .c eeB m cω  These observations have attracted 
much theoretical interest and sparked invention of a wide 
variety of theoretical mechanisms [4–6] intended to ex-
plain remarkable 1/B-periodic oscillations and the appear-
ance of zero-resistance states. 

Recently, similar 1/B-periodic magnetoconductivity os-
cillations were observed in a particulary simple nondegene-
rate multi-subband 2D electron liquid formed on the free 
surface of liquid 3He [7,8]. Their minima also evolve into
zero-resistance states at high MW power. Still, there is an 
important difference between results reported for surface 

electrons (SEs) in liquid helium and those obtained for sem-
iconductor systems. In experiments [1–3], ω  is quite arbi-
trary: > .cω ω  To observe magneto-oscillations in the elec-
tron system formed on the liquid-helium surface it is 
necessary that the MW frequency ω  be equal to the reson-
ance frequency 2,1 2 1= ( )/ω ∆ −∆   for electron excitation to 
the next surface subband. The sequence l∆  (here 

= 1, 2, ...)l  describes the energy spectrum of electron sub-
bands formed at the free surface of liquid helium because of 
the interplay of the attractive image force and the potential 
barrier 0 1 eVV   at the interface [9,10]. In the limit of low 
holding electric fields E⊥  directed normally to the interface, 

2,1 2 1 3.2 K∆ ≡ ∆ −∆   for liquid 3He and 2,1 5.7 K∆ 

for liquid 4He. Thus, in experiments on semiconductor sys-
tems, higher electron subbands were not excited by the MW 
field, whereas in experiments with SEs [7,8] there is a sub-
stantial fraction of electrons occupied the first excited sub-
band because of the MW resonance. 

The theory explaining MW-resonance-induced magne-
toconductivity oscillations observed for SEs on liquid he-
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lium was worked out [11,12] using the quasi-elastic ap-
proximation for electron scattering by ripplons and vapor 
atoms. This approximation assumes that the energy ex-
change at a collision is much smaller than the collision 
broadening of Landau levels. 

The origin of magneto-oscillations and negative con-
ductivity effects induced by resonance MW excitation can 
be seen already from a simple analysis of the energy con-
servation for usual inter-subband electron scattering (not 
involving photons) in the presence of the uniform driving 
electric field .E



 According to this analysis, for the elec-
tron spectrum 

 , , = ( 1/2)l n X l c n eE Xε ∆ + ω + +



 (1) 

(here X  is the center coordinate of the cyclotron orbit), the 
decay of an excited subband l l′→  ( > ,l l′  , =l l′∆  

> 0,l l′= ∆ − ∆  and = > 0)n n m∗′ −  results in displace-
ments of the orbit center 

 ,= l lc

c
X X m

eE
′ ∗∆ ω

′ − − ω 







 (2) 

proportional to the quantity ,( / ).l l c m∗
′∆ ω −  This quantity 

changes its sign at the level-matching points *mB  defined 
by the condition , / =l l c m∗′∆ ω  (here m∗  is an integer). 
At *< ,mB B  the displacement > 0X X′ −  and, therefore, 
the decay of the excited subband is accompanied by elec-
tron scattering against the driving force. 

Somehow, Eq. (2) resembles the displacement mechan-
ism of the negative conductivity effect discussed broadly 
for semiconductor systems [13] where in a similar equation 
the photon quantum ω  stands instead of , .l l′∆  In that 
theory, the sign-changing correction to xxσ  is due to radia-
tion-induced disorder-assisted current, and the photon 
energy enters the energy conservation law. The important 
point is that here photons are not involved in inter-subband 
scattering directly and the condition > 0X X′ −  found for 
decay processes is not sufficient for obtaining negative 
corrections to the momentum relaxation rate. Naturally, a 
reverse electron scattering from the ground subband to the 
excited subband results in < 0,X X′ −  and the negative 
conductivity effect is fully compensated if the electron 
system is in equilibrium, and fractional occupancies of 
surface subbands obey the condition / =l l en N N≡  

,exp ( / )l l e lT n′ ′= −∆  (here eT  is the electron temperature). 
The important role of the resonant MW field is to pro-

vide an extra filling of the excited subband to break the 
balance of inter-subband scattering mentioned above. For 
example, the decay of the first excited subband ( = 2)l  to 
the ground subband ( = 1)l  caused by quasi-elastic scatter-
ing is possible only if B  is close to the level-matching 
points *,mB  because | |X X′ −  is restricted by the magnet-
ic length. If B  is substantially away from these level-
matching points, the quasi-elastic decay is impossible and 

2 1 1/2n n   because of MW excitation. Under a weak 

driving field, the width of regions of the magnetic field 
near *,mB  where the excited subband decays quasi-elas-
tically, is determined by the collision broadening of the 
corresponding Landau levels. Within these regions, the 
momentum relaxation rate of SEs caused by inter-subband 
scattering [11,12] 

 2,1
inter 2 2,1 1[ exp ( / ) ].e

c
m n T n∗ω 

ν ∝ − − − −∆ ω 
 (3) 

Therefore, the condition 2 2,1 1> exp ( / )en T n−∆  is crucial 
for the appearance of negative corrections to the momen-
tum relaxation rate ν  and to magnetoconductivity .xxσ  
An increase in 2n  caused by trivial heating of SEs ob-
viously cannot lead to the sign-changing term. 

The above noted analysis assumes that the ripplon 
energy qω  can be neglected as compares to typical elec-
tron energies. In the absence of the magnetic field, this is 
the conventional approximation because q Tω   for 
ripplons involved in scattering events. Under a magnetic 
field applied perpendicular to the electron layer, there is an 
additional energy parameter which describes the width of 
the single-electron density of states: the collision broaden-
ing of Landau levels nΓ . For SEs on liquid helium, Lan-
dau levels are extremely narrow: .n TΓ   Wave vectors 
of ripplons involved in electron scattering 1/ Bq L  [here 

= /BL c eB  is the magnetic length], and the energy ex-
change 3/2

q qω ∝  increases with B  faster than nΓ  
which is approximately proportional to .B  Therefore, in 
a high magnetic field range, depending on temperature 
( ),n TΓ ∝  qω  becomes comparable with ,nΓ  and 
electron scattering is suppressed. 

Experimental observation [14,15] indicates that the in-
elastic effect on the quantum magnetotransport becomes 
substantial at T   0.1–0.2 K and > 1 T,B  and the sup-
pression of xxσ  is the stronger the higher magnetic field is 
applied. Simple estimates allow to assume that similar 
conditions can be realized in an experiment on magneto-
oscillations in photoconductivity of SEs on liquid 4He, 
because the corresponding excitation frequency 2,1ω  is 
high, and the level-matching points * > 1 T,mB  if < 4.m∗  
In this case, the inelastic effect can cause additional varia-
tions of the shape of magnetoconductivity oscillations in 
the vicinity of the level-matching points *,mB  which could 
be used for experimental identification of the microscopic 
mechanism of zero-resistance states and the resonant pho-
tovoltaic effect discovered recently [16]. 

In this work, we report the theory of magnetoconductiv-
ity oscillations induced by resonance MW excitation which 
takes into account the inelastic nature of the decay of ex-
cited subbands caused by electron–ripplon interaction. We 
show that for inter-subband scattering the inelastic effect 
displays differently as compared to the equilibrium magne-
totransport in a single subband. In our treatment, the max-
imum of the decay rate of an excited subband is naturally 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 10 1069 



Yu.P. Monarkha 

split near the level-matching points *mB  because of one-
ripplon creation and destruction processes. The unusual 
thing is that this inelastic effect increases with ,m∗  and 
therefore extends itself into the lower magnetic field range 

< 1 T.B  
We show also that the inelastic effect on the momentum 

relaxation rate of the electron layer caused by inter-subband 
scattering cannot be reduced to simple splitting similar to 
that of the decay rate. In magnetoconductivity curves, this 
effect displays itself as a combination of splitting and inver-
sion. As a result, xxσ  develops a new remarkable wavy 
feature in the vicinity of the level-matching points. The in-
fluence of both mutual electron interaction and electron 
heating on the new fine structure of MW-induced magneto-
oscillations is also analyzed. 

2. Inelastic inter-subband scattering  
and momentum relaxation 

The most interesting features of MW-induced magneto-
conductivity oscillations such as zero-resistance states are 
observed [7,8] in the low-temperature range ( 0.2 K)T   
where SEs are predominantly scattered by capillary wave 
quanta (ripplons). Ripplons represent a sort of 2D phonons 
with an unusual spectrum 3/2= / ,q qω α ρ  where α  and 
ρ  are the surface tension and mass density of liquid he-
lium, correspondingly. Therefore, the Hamiltonian of elec-
tron–ripplon interaction is similar to the Hamiltonian of 
electron–phonon interaction in solids 

 ( ) †
int = ( ) ( )e ,ie R eq e q

e
H U z Q b b−

−+∑∑ qr
q q

q
 (4) 

where bq  and †bq  are destruction and creation operators, 
2 = /2 ,q qQ q ρω  and ( )q eU z  is the electron–ripplon coupl-

ing whose properties and matrix elements | ( ) |ql U z l′〈 〉 ≡  
,( )q l lU ′≡  are well defined in the literature [15,17]. 

To describe quantum magnetotransport of a 2D electron 
gas it is conventional to use the self-consistent Born ap-
proximation (SCBA) theory [18] or the linear response 
theory [19] with the proper approximation for the electron 
density-of-states function. Unfortunately, these approaches 
cannot be applied directly to the SE system under reson-
ance MW excitation. In these theories, conductivity is an 
equilibrium property of the system, whereas here we need 
to describe conductivity of the system which is far away 
from its equilibrium state. In our conductivity treatment, 
we intend also to include strong Coulomb interaction be-
tween electrons whose average potential energy can be 
much higher then the average kinetic energy. For this pur-
poses, it is necessary to use an extension of the SCBA 
theory applicable for arbitrary subband occupancies ln  and 

.eT T≥  
Firstly, we note that the well-known results of the 

SCBA theory and Kubo equations for magnetoconductivity 
of the 2D electron gas can be reproduced in a quite direct 

way by simple evaluation of the momentum gained by 
scatterers [15], if scattering probabilities of the Born ap-
proximation are taken in the proper form which includes 
the contribution from high order terms (self-energy ef-
fects). This kind of probabilities were actually given al-
ready in the Kubo theory [19]. Here we express these 
probabilities through a quite general correlation function of 
the multi-subband 2D electron system which preserves 
basic equilibrium properties of the in-plane motion and, at 
the same time, is independent of subband occupancies. 

Consider the average probability of both intra and inter-
subband scattering ( )l l′→  which is accompanied by the 
momentum exchange q  caused by ripplon destruction 

(–)
, ( )l l′ν q  and creation ( )

, ( ).l l
+
′ν q  Conventional Born approx-

imation yields 

 2(–) 2
, , ;,

,

2( ) = | (e ) |i el l l X l Xl l
n X

u
A ′ ′ ′′

′ ′

π
ν 〈 ×∑ qrq    

 , in( ) ,n n l l q eE X eE X′ ′ ′× δ ε − ε + ∆ + ω + − 〉

 

 (5) 

where nε  represents Landau levels, in...〈 〉  means avera-
ging over initial in-plane states for the given surface sub-
band l, and we have introduced 

 
2

2 2 2 2
, , ,2 2( ) = | ( ) | | ( ) |

4
B

l l q q q q l l q l l
q

TLAu x N Q U U
x

′ ′ ′
α 

  (6) 

as the function of the dimensionless parameter 2 2= /2.q Bx q L  

For 1/ ,Bq L  the distribution function of ripplons 
/ .q qN T ω  In the following, the surface area A  will be 

set to unity. It is well known that 2
, ;| (e ) |i e l X l X′ ′

qr  can be 

written as 22
,, ( ) ,

BX X qn n LyJ q ′ −′ δ  where 2
, ( )n nJ q′  is a func-

tion of the absolute value of the 2D wave-vector. The exact 
expression for 2

, ( )n nJ q′  is given in the literature (for recent 
examples, see [17,20]). 

According the relationship 2= y BX X q L′ − −  the quantity 
to be averaged in Eq. (5) does not depend on X, and, there-
fore, Eq. (5) actually contains the averaging over discrete 
Landau numbers n  only. It is natural to assume that a weak 
dc driving field E



 does not change electron distribution 
over Landau levels, and one can use the distribution function 

/e /Tn e Z−ε


 for the averaging operation. This is quite clear in 
the absence of scatterers, because under the magnetic field a 
driving electric field can be eliminated by a proper choice of 
the inertial reference frame: = / 0.c′ − × →E E B V  More-
over, if there is no a driving electric field in the laboratory 
frame, it appears in any other inertial reference frame. At a 
low drift velocity of the electron system, quasi-elastic 
scattering cannot change the population of Landau levels. 
The above given statement is also verified by the compar-
ison of the results obtained in the treatment considered 
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here with the well-known results of the conventional 
SCBA at zero MW power. 

Following the procedure described in the linear re-
sponse theory [19], and taking into account that 

2 =B Hl eE V


 (here = /HV cE B


 is the absolute value of 
the Hall velocity), Eq. (5) can be transformed into the form 
containing level densities of the initial and final states 

 (–) 2
, , ,, ( ) = ( , ),l l l l l l q y Hl l u S q q V′ ′ ′′ν ω +ω +q  (7) 

where 

 2
, ,

,

2( , ) = ( )l l n n
n n

S q J q
Z′ ′

′
Ω ×

π ∑




  

 /
, ,e Im ( ) Im ( ).Te l n l nd G G−ε

′ ′× ε ε ε + Ω∫   (8) 

Here , ( )l nG ε  is the single-electron Green's function of the 
corresponding subband whose imaginary part is a substi-
tute of ( ).n−π δ ε − ε  We retain the index l keeping in 
mind further broadening due to interaction with scatterers 
because its strength is different for different surface sub-
bands. Similar equation can be found for ripplon creation 
processes: 

 
/( ) 2

, , ,, ( ) = e ( , ).
Tq

l l l l l l q y Hl l u S q q V
ω+

′ ′ ′′ν ω −ω +q


 (9) 

At =l l′  the function , ( , )l lS q′ Ω  coincides with the dy-
namic structure factor (DSF) of a nondegenerate 2D elec-
tron gas. It should be noted that the above given equations 
resemble scattering cross-sections of thermal neutrons and 
x rays in solids [21]. Here scatterers (ripplons) play the role 
of a particle flux whereas the electron layer represents a 
target. 

The self-energy effects (high order terms), which are 
very important for 2D electron systems under a quantizing 
magnetic field, are taken into account by inclusion of the 
collision broadening ,l nΓ  of Landau levels of a given sur-
face subband (l) according to the cumulant approach [22]:  

 
2

, 2
, ,

2 ( )2Im ( ) = exp .n
l n

l n l n
G

 ε − επ  − ε −
Γ  Γ 

  (10) 

Thus, similarly to the Kubo presentation [19], the average 
probabilities of electron scattering with the momentum 
exchange q  are expressed in terms of density-of-state 
functions of the initial and final states broadened because 
of interaction with scatterers. For the Gaussian shape of 
level densities, the integral entering the definition of 

, ( , )l lS q′ Ω  can be evaluated analytically [12]. Moreover, 
this kind of a level density represents a good starting point 
for obtaining an analytical form of , ( , )l lS q′ Ω  for the mul-
ti-subband 2D Coulomb liquid [17]. 

The Eq. (8) is a useful generalization of the DSF for the 
multi-subband 2D electron system because it preserves the 
important property of the equilibrium of the in-plane motion 

 /
, ,( , ) = e ( , ),Tel l l lS q S q− Ω
′ ′−Ω Ω  (11) 

and, at the same time, it does not depend on ,ln  which al-
lows to describe momentum relaxation for arbitrary subband 
occupancies. The property of Eq. (11) simplifies evaluations 
of the momentum relaxation rate. For example, using this 
property average probabilities for the reverse scattering 
processes discussed in the Introduction can be transformed 
into the same quantities of the direct processes: 

  
(1/ 1/ ) //( ) (–),

, ,( ) = e e e ( ),
T T q V TT q e y H el l e

l l l l
ω −−∆+ ′

′ ′ν ν −q q
 

 (12) 

  
(1/ 1/ ) //(–) ( ),

, ,( ) = e e e ( ).
T T q V TT q e y H el l e

l l l l
ω −−∆ +′

′ ′ν ν −q q
 

 (13) 

We shall use these relationships in the following analysis. 
The introduced above quantities ( )

, ( )l l
±
′ν q  represent use-

ful assemblies to construct major relaxation rates of the 
multi-subband 2D electron system under a quantizing 
magnetic field such as the decay rate of an excited subband 
and the momentum relaxation rate due to inter-subband 
scattering. It is important that they preserve peculiarities of 
quantum magnetotransport in two-dimensions. They in-
clude the self-energy effects eliminating magnetoconduc-
tivity singularities, the effect of the driving electric field 
and, after the following generalization, can even include 
strong Coulomb forces acting between electrons. 

2.1. The many-electron effect 

Even for the lowest electron areal density en  (about 
1·106 cm–2) used in the experiments on SEs in liquid he-
lium [7,8], Coulomb interaction between SEs cannot be 
neglected. For example, at 0.2 KT   the average interac-
tion energy per an electron CU  is much larger than the 
average kinetic energy (T). The generalized DSF of the 
multi-subband 2D electron system applicable for such con-
ditions was found in Ref. 17: 

 
2
,

, , ; ,
, ; ,,

2( ) = exp ( ) ,n n n
l l l n l n

el n l nn n

J
S D

Z T
′

′ ′ ′
′ ′′

 επ
Ω − − Ω Γ  

∑




  

  (14) 

where 

   

22 2
,2

2
,

, ; , 2 2
, ; ,

4
= ,

8

l n q C
c

e l n
l n l n

l n l n e

x
m

T
D

T

∗

′ ′
′ ′

 Γ + Γ
 Ω − ω −
  Γ  −

Γ







 (15) 

 
2 2
, ,2 2

, ; , ( ) = ,
2

l n l n
l n l n q q Cx x′ ′

′ ′
Γ + Γ

Γ + Γ  (16) 
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= ,m n n∗ ′ −  (0)= 2C BfeE LΓ  and (0) 3/43 .e efE T n  The 
quantity (0)

fE  represents the typical quasi-uniform electric 
field of other electrons acting on a given electron because 
of thermal fluctuations [23]. Here and in some following 
equations we do not show explicitly the dependence on q  
of functions , ,l lS ′  2

,n nJ ′  etc., in order to shorten lengthy 
equations. In the limiting case 0,CΓ →  Eq. (14) trans-
forms into the generalized DSF of the multi-subband 2D 
system of noninteracting electrons. 

The function , ( )l lS ′ Ω  has sharp maxima when Ω  is 
close to Landau excitation energies ( ) .cn n′ − ω  These 
maxima are broadened because of electron interaction with 
scatterers and because of the fluctuational electric field 

.fE  It is important that Coulomb broadening of the DSF 
q Cx Γ  is not equivalent to the collision broadening be-

cause it depends on q  through the dimensionless parame-
ter 2 2= /2.q Bx q L  The fluctuational field does not broaden 
the single-electron level densities, because, as noted above, 
it can be eliminated by a proper choice of the inertial refer-
ence frame moving along the layer [15]. 

Small frequency shifts in the general expression for 
, ( )l lS ′ Ω  play very important role: they provide the basic 

property of Eq. (11). The small shift 2
, /4l n eTΓ   can be 

neglected only for substantially positive values of .Ω  
Therefore, it is convenient to transform terms containing 

, ( )l lS ′ Ω  with negative Ω  into forms with positive Ω  
employing the relationship of Eq. (11). It worth noting also 
that the Coulomb shift in the frequency argument of the 
DSF 2 /4q C ex TΓ   increases with qx  and (0)

fE  faster than 
the Coulomb broadening q Cx Γ  which curiously affects 
positions of magnetoconductivity extremes [17]. There-
fore, we shall retain it in , ( )l lS ′ Ω  even for substantially 
positive values of the frequency argument. 

2.2. The decay rate of an excited subband 

The decay rate of an excited subband l  due to electron 
scattering down to a lower subband <l l′  is easily ex-
pressed in terms of (–)

, ( )l l′ν q  and ( )
, ( ) :l l
+
′ν q  

 ( ) (–)
, ,= ( ) ( ) .l l l l l l
+

′→ ′ ′
 ν ν + ν ∑

q
q q  (17) 

Here, we can neglect the small corrections y Hq V  in the 
frequency argument of the generalized DSF entering 
Eqs. (7) and (9). Then, using Eqs. (12) and (13), one can 
see that for inelastic scattering the detailed balance 

/,= e
Tl l e

l l l l
−∆ ′

′ ′→ →ν ν  is fulfilled only if the electron 
temperature coincides with the temperature of the envi-
ronment. Anyway, because of the condition q Tω   
discussed above, the detailed balance is approximately 
valid even at high electron temperatures. 

When evaluating l l′→ν  in the ultra-quantum limit 
c eTω   ( = 0)n  one can use the approximate expression 

for the generalized DSF, 

 ( )
, , , ;

,0; ,=0

e
( , ) 2 ( ),

!

xm q
q

l l l l q ql l m
l l mm

x
S q I x

m

−∞
±

′ ′ ′
′

ω ±ω π
Γ∑



 (18) 

applicable for positive values of the frequency argument. 
Here we introduce functions 

 ( ) ( ) 2
, ; , ;( ) = exp [ ( )] ,{ }q ql l m l l mI x R x± ±
′ ′−  (19) 

and 

   
2

,( )
, ;

,0; ,

( /4 )
( ) = l l q c q C e

ql l m
l l m

m x T
R x ′±

′
′

ω ± ω − ω − Γ

Γ

  



. (20) 

It should be noted that in Eqs. (19) and (20) we have omit-
ted small frequency shifts of the order ,0 /4 ,l eTΓ  because 
the frequency argument of ,l lS ′  in Eq. (18) is substantially 
positive for decay processes. 

Employing the above given notations l l′→ν  can be 
transformed into  

 
2

, 1

,0; ,=1 0

| ( ) |1= e
!4

xq l l m q
l l q

l l mm

UT x
m

∞∞ −′ −
′→

′
ν ×

Γπα
∑ ∫





  

 ( ) ( )
, ; , ;[ ( ) ( )] .q q ql l m l l mI x I x dx− +
′ ′× +  (21) 

From this equation it is quite clear that the inelastic effect 
splits the decay maximum of the elastic theory into two 
maxima when 3/4 3/4 3/2= / 2 /q q Bx Lω α ρ   becomes com-

parable with the broadening ,0; ,l l m′Γ . It is very important 

that the position of the maximum of the function 1e
xm q

qx
−−  

entering the integrand of Eq. (21) max( )qx  increases 
strongly with the level-matching number ,m  whereas 

,0; ,l l m′Γ  is nearly independent of m  if electron density is 
sufficiently low. This leads to unexpected enhancement of 
the inelastic effect in the low magnetic field range where 

* 2,1= round ( / )cm ω ω  is larger. 
The above stated is illustrated in Fig. 1 where 2 1→ν  is 

shown as the function of 2,1/ ( )c B m∗ω ω −  for 
= 1, 2, ..., 7m∗ . Conditions of the figure are chosen to be 

such (ne = 1·106 cm–2 and T = 0.2 K) that the splitting of 
the decay maximum is absent at = 1m∗  1( ),B B→  how-
ever, it appears near some lower level-matching points 

.mB ∗  At the lowest mB ∗  ( = 7),m∗  the splitting disap-
pears again because of the Coulombic correction 2

q Cx Γ  to 
2
,0; ,l l m′Γ  which also increases strongly with .m∗  

2.3. Subband occupancies 

Under the condition of the MW resonance 2,1= ,ω ω  
the stimulated photon absorption (emission) rate 

2= /2 ,mw R mwr Ω γ  where mwγ  is the half-width of the re-
sonance, and = 2 | |1 /R mwe z EΩ 〈 〉   is the Rabi frequency 
proportional to the amplitude of the MW field .mwE  In 
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dynamic equilibrium, the fractional occupancies ln  are 
found from the time-independent rate equation. In the 
framework of the two-subband model 1 2( = 1),n n+  the 
solution of the rate equation for the relative occupancy has 
the following form [24]: 

 2,1 2 12

1 2 1

exp ( / )
= .mw e

mw

r Tn
n r

→

→

+ −∆ ν

+ ν
 (22) 

According to this equation the 1/B-periodic dependence of 
the decay rate 2 1→ν  with sharp maxima in the vicinity of 
the level-matching points mB ∗  induces a 1/B-periodic de-
pendence of the fractional occupancies 2n  and 1.n  

In experiments [7,8], the half-width of the MW reso-
nance was limited by the inhomogeneous broadening 
( / 0.3 GHz).mwγ π  We shall use this estimate in the fol-
lowing numerical evaluations. For typical /2RΩ π  

15.9 MHz,  the results of calculation of 2n  are pre-
sented in Fig. 2. Variations of 2n  are shown in the vicinity 
of the level-matching point B4 vs the parameter 2,1/ 4.cω ω −  
Far away from the level-matching point, 2 1→ν  is nearly 
zero and, therefore, 2 1 1/2.n n→ →  In the vicinity of 4 ,B  
the occupancy 2n  drops according to the sharp increase in 
the decay rate. The inelastic effect broadens the 2n  minima, 
and leads to small local maxima at the level-matching points. 
The local peak at 2,1/ = 4cω ω  becomes more pronounced 
with cooling, as shown in this figure by the dash-dotted line. 

For SEs on liquid helium at = 0,E⊥  there is a spectrum 
crowding: 0l∆ →  at .l →∞  Therefore, at low holding 
fields, there is a good chance to meet the MW resonance 
condition for three surface subbands simultaneously: 

2,1 ,2= = kω ω ω  where k is substantially larger than 2. In 
wide ranges between the level-matching points mB ∗  intro-
duced above for the first excited subband, the decay rate 

2 1→ν  is very small, and the occupancy of the third subband 
kn  can also satisfy the condition ,1 1exp ( / ) > 0k k en T n− −∆  

necessary for the appearance of the sign-changing correction 
to .xxσ  Since ,1 2,1= 2 ,kω ω  the new level-matching condi-
tion ,1/ =k c m∗ω ω  defined for the decay from =l k  to 

= 1l′  can be rewritten as 

 2,1 = .
2c

m∗ω

ω
 (23) 

Thus, oscillatory features of xxσ  could appear also at frac-
tional values of the ratio / .cω ω  

2.4. Magnetoconductivity variations induced by the MW 
resonance 

Using the quantities ( )
, ( )l l
+
′ν q  and (–)

, ( )l l′ν q  the fric-
tional force fricF  acting on the whole electron system can 
be evaluated directly: at first we multiply these average 
probabilities by ,e lN n q  and then perform summation 
over all q  and the subband numbers l  and .l′  Since we 
intend to obtain the conductivity of interior electrons ig-
noring edge effects, consider an uniform and infinite 
electron layer. In this case, the kinetic friction fricF  is 
antiparallel and proportional to the current [15,25,26], 
which can be written as fric eff= ,e eN m− ν 〈 〉F v  where 
〈 〉v  is the average electron velocity. The proportionality 
factor effν  represents an effective collision frequency, 
because balancing fricF  and the average Lorentz force  

ext ˆ= [ ]e e e cN e N m〈 〉 − − ω 〈 〉 ×F E v z


 yields the conven-
tional Drude form for the conductivity tensor ,i kσ  with 

effν  standing instead of the semi-classical collision fre-
quency. It should be emphasized that here effν  is not a 
semi-classical quantity because it depends on B  and .en  

Fig. 1. The decay rate of the first excited subband 2 1→ν  vs 

2,1/ ( )c B m∗ω ω −  for different level-matching numbers .m∗  
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Fig. 2. The occupancy of the first excited subband vs ω2,1/ωc – 4 for 
ne = 1·106 cm–2: elastic treatment at T = 0.2 K (solid), inelastic 
theory for T = 0.2 K (dashed) and T = 0.1 K (dash-dotted). 
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The simplest way to obtain effν  is to consider the com-
ponent fric( )yF  and to assume that the magnetic field is 
strong enough eff( ) :cω ν  .y HV〈 〉 −v  Then, we can 
represent effν  as 

 ( ) (–)
eff , ,

,

1= [ ( ) ( )].l y l l l l
e H l l

n q
m V

+
′ ′

′
ν ν + ν∑ ∑

q
q q  (24) 

According to (7) and (9), the right side of this relation-
ship is actually a nonlinear function of .HV  Therefore, one 
have to expand it in .y Hq V  From the first glance at 

, ( )l lS ′ Ω  given in Eq. (14) one may conclude that 
, ; ,/y H l n l nq V ′ ′Γ  is the main expansion parameter. Still, an 

accurate analysis employing the relationship of Eq. (11) 
indicates that for intra-subband scattering at =eT T  the 
actual expansion parameter equals / .y H eq V T  Therefore, 
before proceeding with the expansion of the right side of 
Eq. (24) we shall transform it into the form containing ,l lS ′  
with positive frequency arguments only. 

For intra-subband scattering , = 0,l l′ω  the basic proper-
ty of Eq. (11) applied to , ( , )l l q y HS q q V−ω +  yields 

 2
intra , ,

1= ( )l l l y l l q y H
e H l

n u q S q V
m V

ν ω + ×∑ ∑
q

   

 
(1/ 1/ ) /

[1 e e ].
T T q V Tq e y H eω − −

× −
 

 (25) 

Here we have changed the sign of the summation index q  
in the term with , ( ).l l q y HS q Vω −  At =eT T  and low 

,HV the expression in the square brackets is proportional to 
/ .y H eq V T  Therefore, one can neglect y Hq V  in the fre-

quency argument of the DSF. This confirms the above giv-
en statement that for intra subband scattering /y H eq V T  is 
the main expansion parameter. 

In the general case ( ),eT T≠  one have to expand the ex-
ponential function in (1/ 1/ )q eT Tω −  and the DSF in y Hq V  
as well. This gives two terms (0) (1)

intra intra intra( = ) :ν ν + ν  

 (0) 2 2 2
, ,intra

1= ( , ),l l l y l l q
e e l

n u q S q
m T

ν ω∑ ∑
q

  (26) 

 (1) 2 2 2
, ,intra = ( , ).e

l l l y q l l q
e e l

T T
n u q S q

m TT
−

′ν − ω ω∑ ∑
q

  (27) 

Here and below , ,= / .l l l lS S′ ′′ ∂ ∂ω  The term (0)
intraν  coincides 

with the well-known result obtained previously for intra-
subband scattering [15]. In the limit 0,en →  it transforms 
into the result of the conventional SCBA theory [18]. The 
second term appears only for eT T≠  when the scattering 
is substantially inelastic. Therefore, it is not an equilibrium 
property of the system. In the absence of the MW field, it 
can appear only as a nonlinear correction. 

Consider now the contribution from inter-subband scat-
tering. In Eq. (24), one can transform terms with negative 
Ω  ( < )l l′  into the forms with positive Ω  using Eqs. (12) 
and (13). Thus, we have 

 inter
>

= y
e H l l

q
m V ′

ν ×∑∑
q

   

 
(1/ 1/ ) // ( ),

,{[ e e e ] ( )
T T q V TT q e y H el l e

l l l ln n
ω − −−∆ +′

′ ′− ν +q
 

 

 
(1/ 1/ ) // (–),

,[ e e e ] ( )}.
T T q V TT q e y H el l e

l l l ln n
ω − −−∆ ′

′ ′+ − ν q
 

  

  (28) 

The sign “–” of the second term in the square brackets ap-
pears because of the change of the summation index 
→ −q q  for terms containing ( )

, ( )l l
+
′ν −q  and (–)

, ( )l l′ν −q . 
Expanding this equation in y Hq V  we find that linear in 

HV  terms of the square brackets yield a positive (normal) 
contribution 

 
2 /(N) 2 2,

,inter
>

= e
Tl l e

l l l y
e e l l

n u q
m T

−∆ ′
′ ′

′
ν ×∑ ∑

q

   

 , , , ,{ ( ) ( )}.l l l l q l l l l qS S′ ′ ′ ′× ω −ω + ω +ω  (29) 

Here we used the condition .q Tω   If the electron sys-
tem is not heated high ,( ),e l lT ′∆  this contribution is 
exponentially small. 

Under MW excitation, the major contribution to interν  
comes from the expansion of the DSF entering ( )

, ( )l l
+
′ν q  

and (–)
, ( ) :l l′ν q  

 (A) 2 2
,inter

>

1= y l l
e l l

q u
m ′

′
ν ×∑∑

q
   

 
(1/ 1/ )/,{[ e e ]

T TT q el l e
l ln n

ω −−∆ ′
′− ×



  

 
/

, ,e ( )
Tq

l l l l qS
ω

′ ′′× ω −ω +


  

 
(1/ 1/ )/,

, ,[ e e ] ( )}.
T TT q el l e

l l l l l l qn n S
ω −−∆ ′

′ ′ ′′+ − ω +ω


  
  (30) 

These anomalous terms are proportional to the derivative 
of , ( ).l lS ′ Ω  The Eq. (30) can be simplified considering the 
two-subband model with =eT T  and / 1.q Tω   Then, 
we obtain 

 
/(A) 2,1

2 1inter = ( )
Te

e
n n e

m
−∆

ν − ×
   

 2 2
2,1 2,1 2,1 2,1 2,1[ ( ) ( )].y q qu q S S′ ′× ω −ω + ω +ω∑

q
 (31) 

From this equation, one can see that the anomalous contri-
bution (A)

interν  is proportional to 
/2,1

2 1e
Ten n

−∆
−  and to the 

sign-changing terms 2,1( ),q cmω ±ω − ω  as expected from 
the qualitative analysis given in the Introduction. 
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In the elastic theory, (A)
interν  changes its sign once in the 

vicinity of each .mB ∗  When the inelastic effect is substan-
tial, the expression in the square brackets is a derivative of 
the function which has two maxima and one minima near 
each .mB ∗  Therefore, in the vicinity of a level-matching 
point, the anomalous contribution caused by inelastic inter-
subband scattering changes its sign three times. 

It should be noted that here we use slightly different de-
finitions of the normal (N)

interν  and anomalous (A)
interν  contri-

butions than that given before [12,17]. Now we apply la-
bels N and A to the corresponding expressions which are 
transformed into the form containing the summation over 

>l l′  only. For such definition, (N)
interν  becomes substan-

tially smaller, and (A)
interν  does not contain small terms 

which are not proportional to 2,1( )S ′ Ω  with > 0.Ω  In the 
limiting case 0,qω →  the sum of (A) (N)

inter interν + ν  obvious-
ly coincides with that found previously in the elastic treat-
ment. 

3. Results and discussion 

In the following evaluations, we shall consider strictly 
the approximation eT T  and fix 2,1/2ω π  to 140 GHz  
which corresponds to =E⊥  28 V/cm for SEs on liquid 4He. 
The situation when eT  differs substantially from T  will be 
analyzed only qualitatively. At typical temperatures of the 
ripplon scattering regime T ≤ 0.3 K, we can restrict our-
selves to the ultra-quantum limiting case ( ).c eTω   
Then, Eq. (26) can be represented as  

 (0)
intra =

4
c

l
e l

T
n

T
ω

ν ×
πα

∑   

 
2 2

,
2

,0; ,0 ,0; ,00

| ( ) | ( )
expq l l q

q q
l l l l

U
x dx

∞  ω
 × − −

Γ  Γ 
∫







. (32) 

This equations shows how the inelastic effect suppresses 
the contribution from intra-subband scattering. Magneto-
oscillations of (0)

intraν  are due to variations of ( )ln B  dis-
cussed above and ( )eT B  if electron heating becomes im-
portant. For = ,eT T  the typical shape of these oscillations 
is shown in Fig. 3 by the dotted line. These evaluations 
have employed the ( )ln B  of the two-subband model. We 
do not show the corresponding line calculated for the elas-
tic approximation because it has a similar shape: just a 
narrower and higher maximum. 

In the same way, the nonequilibrium correction (1)
intraν  

can be found as 

 (1)
intra =

2
e c

l
e l

T T
n

T
− ω

ν ×
πα
∑   

     
2 2 2

,
2 2

, 0; , 0 ,0; ,0 ,0; ,00

| ( ) | ( ) ( )
exp .q l l q q

q q
l l l l l l

U
x dx

∞  ω ω
 × − −

Γ  Γ Γ 
∫

 



 

 (33) 

This contribution becomes important when eT  substantial-
ly exceeds T. As compared to Eq. (32), its integrand con-
tains an additional parameter 2

, 0; ,0( / ) .q l lω Γ  
According to Eq. (32) with an increase in eT  the con-

tribution (0)
intraν  decreases as 1/ eT  if the Coulomb broaden-

ing CΓ  can be neglected. For a finite electron density, the 
Coulombic effect eventually changes this dependence into 

3/21/ .eT  On the contrary, (1)
intraν  increases first with eT  

approaching a saturation. Then, the Coulombic effect leads 
to a decrease with the similar dependence 3/21/ .eT  Magne-
to-oscillations of (1)

intraν  crucially depend on electron tem-
perature oscillations. Still, the calculation of ( )eT B  re-
quires the knowledge of the electron energy relaxation rate 
which will not be discussed in the present work. 

As noted above, the contribution (N)
interν  is exponentially 

small, and it can be neglected in calculations with .eT T  
In the ultra-quantum limit, the contribution ( )A

interν  can be 
transformed into 

 
/(A) ,

inter
>

= ( e )
2

Tc l l e
l l

l l

T
n n

−∆ ′
′

′

ω
ν − − ×

πα
∑   

 
2

,
2

=0 , 0; ,0

| ( ) |1 e
!

xq l l m q
q q

m l l m

U
dx x

m

∞∞ −′

′
× ×

Γ
∑ ∫



 

    ( ) ( ) ( ) ( )
, ; , ; , ; , ;[ ( ) ( ) ( ) ( )].q q q ql l m l l m l l m l l mR x I x R x I x+ + − −
′ ′ ′ ′× +  (34) 

This equation shows the way how the inelastic effect af-
fects magneto-oscillations of interν . Firstly, we note that 
the integrand of Eq. (34) contains the factor e

xm q
qx

−
 

which enhances the inelastic effect 3/4( )q qxω ∝  in the low 
field range where the level-matching numbers m∗  are 
larger. It enhances also the Coulombic correction to the 
broadening parameter ,0; , .l l m′Γ  Therefore, to observe the 
inelastic effect on magneto-oscillations of xxσ  electron 
densities must be sufficiently low. 

The results of numerical evaluations of (A)
interν  are given 

in Fig. 3 for 5.B B≈  Variations of (A)
interν  obtained in the 

elastic approximation are shown by the dash-dotted line. It 
changes sign only once. The dashed line calculated accord-
ing to the inelastic theory changes its sign three times. Re-
markably, at 5=B B  the slope of this line is changed to the 
opposite, as compared to the result of the elastic theory. 
Thus, we have a fine oscillatory structure in the vicinity of 
the level-matching point caused by the inelastic effect. The 
total collision frequency effν  is shown by the solid line. 
For the chosen excitation rate, effν  acquires negative val-
ues which leads to negative conductivity effects. The con-
dition < 0xxσ  was previously shown [27] to be the origin 
of zero-resistance states. 

The evolution of the shape of magnetoconductivity varia-
tions near mB ∗  is illustrated in Fig. 4 for = 1, 2, ..., 7m∗  
and = .eT T  The inelastic effect displays itself as an addi-
tional wavy variation in the vicinity of 2,1/ = 0.c m∗ω ω −  
For = 1,m∗  the inelastic effect is not strong and the corres-

Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 10 1075 



Yu.P. Monarkha 

ponding line just shows an additional plateau at the level-
matching condition. The inelastic effect becomes stronger for 
larger m∗  (lower magnetic fields): the amplitude of new 
wavy variations of xxσ  increases. Then, at = 5m∗  the am-
plitude of variations caused by the inelastic effect starts to 
decrease, and at = 6m∗  a new plateau appears at the level-
matching point. This reduction of the inelastic effect is 
caused by the corresponding increase in the Coulomb broa-
dening of the generalized DSF. 

The broadening of the DSF decreases with cooling 
,0; ,l l m T′Γ ∝  if the holding field is low. Therefore, the 

inelastic effect becomes more pronounced at lower tem-
peratures. This is illustrated in Fig. 5 where xxσ  is plotted 
vs B  in the vicinity of B5 = 1 T for three different temper-
atures. At T = 0.3 K the inelastic effect displays itself as a 
plateau feature appeared at 5= .B B  At lower T it trans-
forms into a wavy line whose amplitude increases sharply 
with cooling. 

The Coulomb broadening of the DSF q Cx Γ  increases 
strongly with electron density. Therefore, with a substan-
tial increase in en  the inelastic effect becomes suppressed, 
as illustrated in Fig. 6. This figure shows the shape of 
magnetoconductivity oscillations near B4 = 1.25 T for 
three different electron densities. One can see that the in-

Fig. 3. Different contributions into the effective collision frequency 
near the level-matching point B5 vs the parameter ω2,1/ωc – 5 for 
Te = T = 0.2 K and ne = 1·106 cm–2: inelastic treatment for intra-
subband scattering (dotted), inter-subband scattering for elastic 
(dash-dotted) and inelastic (dashed) theories. The total collision 
frequency is shown by the solid line. 
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Fig. 4. Magnetoconductivity near the level-matching points Bm* 
vs ω2,1/ωc – m* for m = 1, 2, … , 7. 
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Fig. 5. Magnetoconductivity vs B near the level-matching point 
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Fig. 6. Magnetoconductivity vs B near the level-matching point 
B4 = 1.25 T for three different electron densities ne shown in units 
of 106 cm–2. 
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crease of en  by the factor 3 eliminates the fine wavy struc-
ture introduced by inelastic scattering. The Fig. 6 can be 
used also for modeling of the influence of electron heating 
on the inelastic effect. Since 1/2 3/4 ,C e eT nΓ ∝  the increase 
of eT  by the factor 3/23  produces the same Coulomb 
broadening and the same reduction of the inelastic effect as 
the increase of en  by the factor 3 which is shown in the 
figure. It should be noted also that electron heating can 
affect the height of the new wavy anomaly by the decrease 
of intraν  discussed above. 

Holding electric field E⊥  increases the frequency 2,1ω  
and the characteristic magnetic fields mB ∗  which favours 
the inelastic effect. On the other hand, a larger E⊥  in-
creases the collision broadening of Landau levels which 
reduces the inelastic parameter ,/q l nω Γ . Therefore, the 
holding field should be kept much smaller than the effec-
tive field of the image potential contributing into the elec-
tron–ripplon coupling: (eff ) 180 V/cmE⊥   at 1 T.B   At 
the same time, in the limit of low holding fields, there is a 
chance to meet the resonance condition for three surface 
subbands simultaneously, as noted in the previous section. 
In this case, the shape of magnetoconductivity oscillations 
will be affected by an additional filling of the third reso-
nant subband 

/,1
1> e ,

Tk e
kn n

−∆
 and there might be addi-

tional variations of xxσ  at fractional values of the ratio 
/ cω ω  caused by electron scattering from the third subband 

( = )l k  to the ground subband ( = 1).l  The results of these 
evaluations will be given elsewhere. 

4. Conclusions 

We have presented theoretical description of MW-
resonance-induced magnetoconductivity oscillations for 
surface electrons on liquid helium under the condition that 
the energy exchange at a collision cannot be neglected as 
compared to the Landau level broadening. Such a condi-
tion can be realized for SEs on liquid 4He at low tempera-
tures ( 0.2 K)T ≤  and weak holding fields. The inelastic 
effect discussed here is shown to affect differently the de-
cay rate of the excited subband and the electron momen-
tum relaxation rate caused by inter-subband scattering. 
Near the level matching points ( )mB B ∗  the decay max-
ima are split because of ripplon destruction and creation 
processes. This splitting surprisingly becomes stronger in 
the low magnetic field range because of the enhancement 
factor 2,1= round ( / ).cm∗ ω ω  At the same time, magneto-
conductivity variations induced by the inelastic effect 
represent a mixture of splitting and inversion. As a result, a 
new wavy feature can be realized on the shape of magne-
toconductivity oscillations in the vicinity of the level-
matching points. The amplitude of this fine structure in-
creases in the range of low magnetic fields, which is con-
trary to the inelastic effect observed for intra-subband scat-
tering [14]. 

We have studied the influence of strong electron–
electron interaction and possible heating of the electron sys-
tem on the display of the inelastic effect in photoconductivi-
ty oscillations. The results obtained indicate that a substan-
tial increase in electron density en  above 6 21 10 cm−⋅  
reduces strongly new wavy variations of ( )xx Bσ  induced 
by the inelastic effect. Similar reduction in the display of the 
inelastic effect is expected if the electron system is heated 
strongly because of the decay of excited subbands. Fortu-
nately, the negative effect of electron heating is caused by 
the Coulomb broadening of the generalized dynamic struc-
ture factor of the multi-subband 2D electron system which 
can be reduced by a proper decrease in electron density. 
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